1
|
Gress C, Fuchs M, Carstensen-Aurèche S, Müller M, Hohlfeld JM. Prostaglandin D2 receptor 2 downstream signaling and modulation of type 2 innate lymphoid cells from patients with asthma. PLoS One 2024; 19:e0307750. [PMID: 39052598 PMCID: PMC11271944 DOI: 10.1371/journal.pone.0307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11β-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11β-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.
Collapse
Affiliation(s)
- Christina Gress
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Saskia Carstensen-Aurèche
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Jens M. Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
4
|
Stanger L, Holinstat M. Bioactive lipid regulation of platelet function, hemostasis, and thrombosis. Pharmacol Ther 2023; 246:108420. [PMID: 37100208 PMCID: PMC11143998 DOI: 10.1016/j.pharmthera.2023.108420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Platelets are small, anucleate cells in the blood that play a crucial role in the hemostatic response but are also implicated in the pathophysiology of cardiovascular disease. It is widely appreciated that polyunsaturated fatty acids (PUFAs) play an integral role in the function and regulation of platelets. PUFAs are substrates for oxygenase enzymes cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX) and 15-lipoxygenase (15-LOX). These enzymes generate oxidized lipids (oxylipins) that exhibit either pro- or anti-thrombotic effects. Although the effects of certain oxylipins, such as thromboxanes and prostaglandins, have been studied for decades, only one oxylipin has been therapeutically targeted to treat cardiovascular disease. In addition to the well-known oxylipins, newer oxylipins that demonstrate activity in the platelet have been discovered, further highlighting the expansive list of bioactive lipids that can be used to develop novel therapeutics. This review outlines the known oxylipins, their activity in the platelet, and current therapeutics that target oxylipin signaling.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
5
|
Dash P, Ghatak S, Topi G, Satapathy SR, Ek F, Hellman K, Olsson R, Mehdawi LM, Sjölander A. High PGD 2 receptor 2 levels are associated with poor prognosis in colorectal cancer patients and induce VEGF expression in colon cancer cells and migration in a zebrafish xenograft model. Br J Cancer 2022; 126:586-597. [PMID: 34750492 PMCID: PMC8854381 DOI: 10.1038/s41416-021-01595-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite intense research, the prognosis for patients with advanced colorectal cancer (CRC) remains poor. The prostaglandin D2 receptors DP1 and DP2 are explored here as potential therapeutic targets for advanced CRC. METHODS A CRC cohort was analysed to determine whether DP1 and DP2 receptor expression correlates with patient survival. Four colon cancer cell lines and a zebrafish metastasis model were used to explore how DP1/DP2 receptor expression correlates with CRC progression. RESULTS Analysis of the clinical CRC cohort revealed high DP2 expression in tumour tissue, whereas DP1 expression was low. High DP2 expression negatively correlated with overall survival. Other pathological indicators, such as TNM stage and metastasis, positively correlated with DP2 but not DP1 expression. In accordance, the in vitro results showed high DP2 expression in four CC-cell lines, but only one expressed DP1. DP2 stimulation resulted in increased proliferation, p-ERK1/2 and VEGF expression/secretion. DP2-stimulated cells exhibited increased migration in the zebrafish metastasis model. CONCLUSION Our results support DP2 receptor expression and signalling as a therapeutic target in CRC progression based on its expression in CRC tissue correlating with poor patient survival and that it triggers proliferation, p-ERK1/2 and VEGF expression and release and increased metastatic activity in CC-cells.
Collapse
Affiliation(s)
- Pujarini Dash
- grid.4514.40000 0001 0930 2361Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Souvik Ghatak
- grid.4514.40000 0001 0930 2361Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Geriolda Topi
- grid.4514.40000 0001 0930 2361Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Shakti Ranjan Satapathy
- grid.4514.40000 0001 0930 2361Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Fredrik Ek
- grid.4514.40000 0001 0930 2361Chemical Biology & Therapeutics Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin Hellman
- grid.4514.40000 0001 0930 2361Chemical Biology & Therapeutics Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- grid.4514.40000 0001 0930 2361Chemical Biology & Therapeutics Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lubna M. Mehdawi
- grid.4514.40000 0001 0930 2361Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
6
|
Liang H, Ye W, Wang Z, Liang J, Yi F, Jiang M, Lai K. Prevalence of chronic cough in China: a systematic review and meta-analysis. BMC Pulm Med 2022; 22:62. [PMID: 35151307 PMCID: PMC8840780 DOI: 10.1186/s12890-022-01847-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Background Individual studies have indicated variable prevalence for chronic cough, but thus far, there has been no systematic report on the prevalence of this condition. Methods In this study, we performed a systematic review and meta-analysis by searching databases including PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Chinese biomedical literature service system, Wanfang Database, and VIP database, for studies on chronic cough in China published before December 28, 2020. A random effects model was used to calculate pooled prevalence estimates with 95% confidence interval [95%CI], weighted by study size. Results Fifteen studies with 141,114 community-based adults were included in the study, showing a prevalence of 6.22% (95% CI 5.03–7.41%). And 21 studies with 164,280 community-based children were included, presenting a prevalence of 7.67% (95% CI 6.24–9.11%). In subgroup meta-analyses, the prevalence in adults was 4.38% (95% CI 2.74–6.02%) in southern China and 8.70% (95% CI 6.52–10.88%) in northern China. In the children population, the prevalence in northern China was also higher than in southern China (northern vs. southern: 7.45% with a 95% CI of 5.50–9.41%, vs. 7.86% with a 95% CI of 5.56–10.16%). Conclusions Our population-based study provides relatively reliable data on the prevalence of chronic cough in China and may help the development of global strategies for chronic cough management. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01847-w.
Collapse
|
7
|
Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Miraglia Del Giudice M. Exercise-Induced Bronchoconstriction in Children. Front Med (Lausanne) 2022; 8:814976. [PMID: 35047536 PMCID: PMC8761949 DOI: 10.3389/fmed.2021.814976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is a transient airflow obstruction, typically 5-15 min after physical activity. The pathophysiology of EIB is related to the thermal and osmotic changes of the bronchial mucosa, which cause the release of mediators and the development of bronchoconstriction in the airways. EIB in children often causes an important limitation to physical activities and sports. However, by taking appropriate precautions and through adequate pharmacological control of the condition, routine exercise is extremely safe in children. This review aims to raise awareness of EIB by proposing an update, based on the latest studies, on pathological mechanisms, diagnosis, and therapeutic approaches in children.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Contieri
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Decimo
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Al-Ahmad MS, Yañez A, Al-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Gómez RM, Gonzalez Diaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortega-Martell JA, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part II: Phenotypes and mechanisms of abnormal cough presentation - Updates in COVID-19. World Allergy Organ J 2021; 14:100618. [PMID: 34963794 PMCID: PMC8666560 DOI: 10.1016/j.waojou.2021.100618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic cough can be triggered by respiratory and non-respiratory tract illnesses originating mainly from the upper and lower airways, and the GI tract (ie, reflux). Recent findings suggest it can also be a prominent feature in obstructive sleep apnea (OSA), laryngeal hyperresponsiveness, and COVID-19. The classification of chronic cough is constantly updated but lacks clear definition. Epidemiological data on the prevalence of chronic cough are informative but highly variable. The underlying mechanism of chronic cough is a neurogenic inflammation of the cough reflex which becomes hypersensitive, thus the term hypersensitive cough reflex (HCR). A current challenge is to decipher how various infectious and inflammatory airway diseases and esophageal reflux, among others, modulate HCR. OBJECTIVES The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on classification, epidemiology, presenting features, and mechanistic pathways of chronic cough in airway- and reflux-related cough phenotypes, OSA, and COVID-19. The interplay of cough reflex sensitivity with other pathogenic mechanisms inherent to airway and reflux-related inflammatory conditions was also analyzed. OUTCOMES Currently, it is difficult to clearly ascertain true prevalence rates in epidemiological studies of chronic cough phenotypes. This is likely due to lack of standardized objective measures needed for cough classification and frequent coexistence of multi-organ cough origins. Notwithstanding, we emphasize the important role of HCR as a mechanistic trigger in airway- and reflux-related cough phenotypes. Other concomitant mechanisms can also modulate HCR, including type2/Th1/Th2 inflammation, presence or absence of deep inspiration-bronchoprotective reflex (lower airways), tissue remodeling, and likely cough plasticity, among others.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, France, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, MA, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | - Mona S. Al-Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Anahi Yañez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. Al-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. Gonzalez Diaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, NL, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University & Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, Shelbyville Rd, Louisville, KY, 9800, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati, USA
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
| | - Luciana K. Tanno
- Université Montpellier, France, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The interuniversity Messerli Research Institute, Medical University Vienna and Univ, of Veterinary Medicine Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
9
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
10
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
11
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
12
|
Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2183-2192. [PMID: 32620432 DOI: 10.1016/j.jaip.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a phenomenon observed in asthma but is also seen in healthy individuals and frequently in athletes. High prevalence rates are observed in athletes engaged in endurance sports, winter sports, and swimming. The pathophysiology of EIB is thought to be related to hyperventilation, cold air, and epithelial damage caused by chlorine and fine particles in inspired air. Several diagnostic procedures can be used; however, the diagnosis of EIB based on self-reported symptoms is not reliable and requires an objective examination. The hyperosmolar inhalation test and eucapnic voluntary hyperpnea test, which involve indirect stimulation of the airway, are useful for the diagnosis of EIB. A short-acting β-agonist is the first choice for prevention of EIB, and an inhaled corticosteroid is essential for patients with asthma. Furthermore, treatment should accommodate antidoping requirements in elite athletes. Tailoring of the therapeutic strategy to the individual case and the prognosis after cessation of athletic activity are issues that should be clarified in the future.
Collapse
|
13
|
Chapman RW, Corboz MR, Fernandez C, Sullivan E, Stautberg A, Plaunt AJ, Konicek DM, Malinin V, Li Z, Cipolla D, Perkins W. Characterisation of cough evoked by inhaled treprostinil and treprostinil palmitil. ERJ Open Res 2021; 7:00592-2020. [PMID: 33614774 PMCID: PMC7882781 DOI: 10.1183/23120541.00592-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/23/2020] [Indexed: 12/04/2022] Open
Abstract
Cough is induced by inhaled prostacyclin analogues including treprostinil (TRE), and, at higher doses, treprostinil palmitil (TP), a prodrug of TRE. In this report, we have investigated mechanisms involved in TRE- and TP-induced cough, using a dry powder formulation of TP (TPIP) to supplement previous data obtained with an aqueous suspension formulation of TP (TPIS). Experiments in guinea pigs and rats investigated the prostanoid receptor subtype producing cough and whether it involved activation of sensory nerves in the airways and vasculature. Experiments involved treatment with prostanoid, tachykinin and bradykinin receptor antagonists, a cyclooxygenase inhibitor and TRE administration to the isolated larynx or intravenously. In guinea pigs, cough with inhaled TRE (1.23 µg·kg−1) was not observed with an equivalent dose of TPIP and required higher inhaled doses (12.8 and 35.8 µg·kg−1) to induce cough. TRE cough was blocked with IP and tachykinin NK1 receptor antagonists but not with EP1, EP2, EP3, DP1 or bradykinin B2 antagonists or a cyclooxygenase inhibitor. TRE administered to the isolated larynx or intravenously in rats produced no apnoea or swallowing, whereas citric acid, capsaicin and hypertonic saline had significant effects. The mechanisms inducing cough with inhaled TRE likely involves the activation of prostanoid IP receptors on jugular C-fibres in the tracheobronchial airways. Cough induced by inhaled dry powder and nebulised formulations of TP occurs at higher inhaled doses than TRE, presumably due to the slow, sustained release of TRE from the prodrug resulting in lower concentrations of TRE at the airway sensory nerves. Cough induced by inhaled treprostinil and treprostinil palmitil involves the activation of prostacyclin (IP) receptors located on airway tachykinin nerveshttps://bit.ly/37sXz1I
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhili Li
- Insmed Incorporated, Bridgewater, NJ, USA
| | | | | |
Collapse
|
14
|
Corboz MR, Salvail W, Gagnon S, LaSala D, Laurent CE, Salvail D, Chen KJ, Cipolla D, Perkins WR, Chapman RW. Prostanoid receptor subtypes involved in treprostinil-mediated vasodilation of rat pulmonary arteries and in treprostinil-mediated inhibition of collagen gene expression of human lung fibroblasts. Prostaglandins Other Lipid Mediat 2021; 152:106486. [PMID: 33011365 DOI: 10.1016/j.prostaglandins.2020.106486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Treprostinil (TRE) is a potent pulmonary vasodilator with effects on other pathological aspects of pulmonary arterial hypertension. In this study, the prostanoid receptors involved in TRE-induced relaxation of isolated rat pulmonary arteries and TRE-induced inhibition of increased gene expression in collagen synthesis and contractility of human lung fibroblasts were determined. TRE (0.01-100 μM) relaxed prostaglandin F2α-precontracted rat pulmonary arteries which was attenuated by denudation of the vascular endothelium. TRE-induced relaxation was predominantly blocked by the IP receptor antagonist RO3244194 (1 μM), with slightly greater inhibition in endothelium-denuded tissue. At higher TRE concentrations (> 1 μM), the DP1 receptor antagonist BW A868C (1 μM) also inhibited relaxation reaching significance above 10 μM. In contrast, the EP3 receptor antagonist L798106 (1 μM) accentuated TRE-induced relaxation of pulmonary arteries with intact endothelium. In human lung fibroblasts, the EP2 receptor antagonist PF-04418948 (1 μM) blocked transforming growth factor β1 (TGF-β1)-increased expression of collagen synthesis (COL1A1 and COL1A2) and fibroblast contractility (ACTG2) genes in presence of TRE (0.1 μM). In conclusion, the IP receptor located on rat pulmonary vascular smooth muscle and endothelium is the primary receptor mediating vasorelaxation, while the DP1 receptor present on the rat endothelium is involved only at higher TRE concentrations. In human lung fibroblasts, the EP2 receptor is the dominant receptor subtype involved in suppression of increased collagen synthesis and fibroblast contractility gene expression induced by TGF-β1 in the presence of TRE.
Collapse
Affiliation(s)
- Michel R Corboz
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - William Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Sandra Gagnon
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Daniel LaSala
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | | | - Dany Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Kuan-Ju Chen
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - David Cipolla
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Walter R Perkins
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Richard W Chapman
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| |
Collapse
|
15
|
Satia I, Priel E, Al-Khazraji BK, Jones G, Freitag A, O'Byrne PM, Killian KJ. Exercise-induced bronchoconstriction and bronchodilation: investigating the effects of age, sex, airflow limitation and FEV 1. Eur Respir J 2021; 58:13993003.04026-2020. [PMID: 33446611 DOI: 10.1183/13993003.04026-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022]
Abstract
Exercise-induced bronchoconstriction (EIBc) is a recognised response to exercise in asthmatic subjects and athletes but is less well understood in an unselected broad population. Exercise-induced bronchodilation (EIBd) has received even less attention. The objective of this study was to investigate the effects of age, sex, forced expiratory volume in 1 s (FEV1) and airflow limitation (FEV1/forced vital capacity (FVC) <0.7) on the prevalence of EIBc and EIBd.This was a retrospective study based on incremental cardiopulmonary exercise testing on cycle ergometry to symptom limitation performed between 1988 and 2012. FEV1 was measured before and 10 min after exercise. EIBc was defined as a percentage fall in FEV1 post-exercise below the 5th percentile, while EIBd was defined as a percentage increase in FEV1 above the 95th percentile.35 258 subjects aged 6-95 years were included in the study (mean age 53 years, 60% male) and 10.3% had airflow limitation (FEV1/FVC <0.7). The lowest 5% of subjects demonstrated a ≥7.6% fall in FEV1 post-exercise (EIBc), while the highest 5% demonstrated a >11% increase in FEV1 post-exercise (EIBd). The probability of both EIBc and EIBd increased with age and was highest in females across all ages (OR 1.76, 95% CI 1.60-1.94; p<0.0001). The probability of EIBc increased as FEV1 % pred declined (<40%: OR 4.38, 95% CI 3.04-6.31; p<0.0001), with a >2-fold increased likelihood in females (OR 2.31, 95% CI 1.71-3.11; p<0.0001), with a trend with airflow limitation (p=0.06). The probability of EIBd increased as FEV1 % pred declined, in the presence of airflow limitation (OR 1.55, 95% CI 1.24-1.95; p=0.0001), but sex had no effect.EIBc and EIBd can be demonstrated at the population level, and are influenced by age, sex, FEV1 % pred and airflow limitation.
Collapse
Affiliation(s)
- Imran Satia
- Dept of Medicine, McMaster University, Hamilton, ON, Canada .,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Eldar Priel
- Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | | | - Graham Jones
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andy Freitag
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | | |
Collapse
|
16
|
Rittchen S, Rohrer K, Platzer W, Knuplez E, Bärnthaler T, Marsh LM, Atallah R, Sinn K, Klepetko W, Sharma N, Nagaraj C, Heinemann A. Prostaglandin D 2 strengthens human endothelial barrier by activation of E-type receptor 4. Biochem Pharmacol 2020; 182:114277. [PMID: 33038299 DOI: 10.1016/j.bcp.2020.114277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Life-threatening inflammatory conditions such as acute respiratory distress syndrome or sepsis often go hand in hand with severe vascular leakage. During inflammation, endothelial cell integrity and intact barrier function are crucial to limit leukocyte and plasma extravasation. Prostaglandin D2 (PGD2) is a potent inflammatory lipid mediator with vasoactive properties. Previous studies suggest that PGD2 is involved in the regulation of endothelial barrier function; however, it is unclear whether this is also true for primary human pulmonary microvascular endothelial cells. Furthermore, as PGD2 is a highly promiscuous ligand, we set out to determine which receptors are important in human pulmonary endothelial cells. In the current study, we found that PGD2 and the DP1 agonist BW245c potently strengthened pulmonary and dermal microvascular endothelial cell barrier function and protected against thrombin-induced barrier disruption. Yet surprisingly, these effects were mediated only to a negligible extent via DP1 receptor activation. In contrast, we observed that the EP4 receptor was most important and mediated the barrier enhancement by PGD2 and BW245c. Stimulation with PGE2 or PGD2 reduced AKT phosphorylation which could be reversed by prior blockade of EP4 receptors. These data demonstrate a novel mechanism by which PGD2 may modulate inflammation and emphasizes the role of EP4 receptors in human endothelial cell function.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Kathrin Rohrer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|
17
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Koskela HO, Nurmi HM, Purokivi MK. Cough-provocation tests with hypertonic aerosols. ERJ Open Res 2020; 6:00338-2019. [PMID: 32337214 PMCID: PMC7167210 DOI: 10.1183/23120541.00338-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Recent advances in cough research suggest a more widespread use of cough-provocation tests to demonstrate the hypersensitivity of the cough reflex arc. Cough-provocation tests with capsaicin or acidic aerosols have been used for decades in scientific studies. Several factors have hindered their use in everyday clinical work: i.e. lack of standardisation, the need for special equipment and the limited clinical importance of the response. Cough-provocation tests with hypertonic aerosols (CPTHAs) involve provocations with hypertonic saline, hypertonic histamine, mannitol and hyperpnoea. They probably act via different mechanisms than capsaicin and acidic aerosols. They are safe and well tolerated and the response is repeatable. CPTHAs can assess not only the sensitivity of the cough reflex arc but also the tendency of the airway smooth muscles to constrict (airway hyper-responsiveness). They can differentiate between subjects with asthma or chronic cough and healthy subjects. The responsiveness to CPTHAs correlates with the cough-related quality of life among asthmatic subjects. Furthermore, the responsiveness to them decreases during treatment of chronic cough. A severe response to CPTHAs may indicate poor long-term prognosis in chronic cough. The mannitol test has been stringently standardised, is easy to administer with simple equipment, and has regulatory approval for the assessment of airway hyper-responsiveness. Manual counting of coughs during a mannitol challenge would allow the measurement of the function of the cough reflex arc as a part of clinical routine. Cough-provocation tests with hypertonic aerosols offer the possibility to measure the function of the cough reflex arc even in everyday clinical workhttp://bit.ly/2RTOfMI
Collapse
Affiliation(s)
- Heikki O Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna M Nurmi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna K Purokivi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Exercise-induced bronchoconstriction in elite or endurance athletes:: Pathogenesis and diagnostic considerations. Ann Allergy Asthma Immunol 2020; 125:47-54. [PMID: 32035936 DOI: 10.1016/j.anai.2020.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the pathogenesis and evaluation of exercise-induced bronchoconstriction pertaining to the elite or endurance athlete, as well as propose a diagnostic algorithm based on the current literature. DATA SOURCES Studies were identified using Ovid MEDLINE and reference lists of key articles. STUDY SELECTIONS Randomized controlled trials were selected when available. Systematic reviews and meta-analyses of peer-reviewed literature were included, as were retrospective studies and observational studies of clinical interest. RESULTS Exercise-induced bronchoconstriction (EIB) is the physiologic entity in which exercise induces acute narrowing of the airways and occurs in patients both with and without asthma. It may present with or without respiratory symptoms, and the underlying cause is likely attributable to environment stressors to the airway encountered during exercise. These include the osmotic effects of inhaled dry air, temperature variations, autonomic nervous system dysregulation, sensory nerve reactivity, and airway epithelial injury. Deposition of allergens, particulate matter, and gaseous pollutants into the airway also contribute. Elite and endurance athletes are exposed to these stressors more frequently and in greater duration than the general population. CONCLUSION A greater awareness of EIB among elite and endurance athletes is needed, and a thorough evaluation should be performed if EIB is suspected in this population. We propose an algorithm to aid in this evaluation. Symptoms should not be solely relied on for diagnosis but should be taken into the context of bronchoprovocative challenges, which should replicate the competitive environment as closely as possible. Further research is needed to validate these tests' predictive values.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In the past decades, cysteinyl leukotrienes (CysLTs) and prostaglandin D2 have been recognized as key mediators of asthma and comorbid conditions for their potent broncho-active and proinflammatory properties. However, both the development and initial positioning of small molecules targeting these lipid mediators [i.e., leukotriene-synthesis inhibitors, CysLT-antagonists, and chemoattractant receptor homologous molecule on T-helper2-cells (CRTH2) antagonists] experienced drawbacks by lacking adequate biomarkers to define potential responders. RECENT FINDINGS New insights into the mechanisms of airway inflammation in asthma including the interaction of leukotrienes and prostanoids has uncovered potential therapeutic targets. Emerging application of biomarkers in more recent clinical studies helped identify responders to therapies targeting lipid mediators and demonstrated their clinical efficacy in distinct asthma phenotypes and endotypes. SUMMARY Interest in small molecules targeting lipid mediators in asthma and related conditions is emerging. Several clinical trials evaluating the efficacy and safety of CRTH2 (Prostaglandin D2 receptor 2) antagonists are ongoing. There is an urgent need for sensitive biomarkers to identify responders to such therapies and for monitoring of (long-term) effects. Furthermore, evaluation of effectiveness of combining different agents targeting lipid mediators or combining them with available or emerging biologics may uncover other potential benefits in certain asthma populations warranting future research.
Collapse
|
21
|
Mulić M, Lazović B, Dmitrović R, Jovičić N, Detanac D, Detanac D. Asthma among elite athletes, mechanism of occurrence and impact on respiratory parameters: A review of literature. SANAMED 2020. [DOI: 10.24125/sanamed.v15i2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction: It is generally accepted that physical activity benefits every person but athletes diagnosed with asthma face various challenges during their training to keep the symptoms of the disease under control. Prolonged exposure to agents in the environment in which athletes train favors the development of permanent changes in the airways. Their action leads to permanent hyper-reactivity with development of an inflammatory response and the release of mediators (IL-8, leukotrienes, eicosanoids) that lead to damage epithelial cells with breaking connection between them and consequent dysfunction of the respiratory system. This condition is called exercise-induced asthma (EIA). This fact is especially important for athletes who have long endurance training. The best way to check the condition of breathing system is with a diagnostic method which is the " gold" standard spirometry. Aim: The point of this systematic review is to get closer the mechanism occurrence of EIA/(exercise-induced bronchoconstriction)-EIB, prevalence and incidence of EIA/EIB, changes of pulmonary function and quality of life in elite athletes. We searched papers from PubMed and Cochrane database using keywords: 'exercise-induced asthma', 'athletes', 'spirometry', 'bronchoconstriction', 'bronchospasm', 'physical activity', 'physical training', 'prevalence', 'incidence'. We have studied 48 scientific papers in total. Conclusion: The prevalence of asthma among elite athletes, especially endurance athletes is higher than in general population. The explanation of this phenomenon is related to the whole mechanism of occurrence, it is still insufficiently clarified, but one thing is for sure that with good disease control athletes can play and compete undisturbed for many years.
Collapse
|
22
|
Tojima I, Matsumoto K, Kikuoka H, Hara S, Yamamoto S, Shimizu S, Kouzaki H, Shimizu T. Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D 2 and cysteinyl leukotrienes in allergic rhinitis. Allergy 2019; 74:2417-2426. [PMID: 31267527 DOI: 10.1111/all.13974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play important roles in allergic inflammation. However, their roles in the pathophysiology of allergic rhinitis (AR) are poorly understood. OBJECTIVE Prevalence of ILC2s in the inferior nasal turbinate (INT) tissues and the activating mechanisms of ILC2s were examined in patients with house dust mite (HDM)-induced AR. METHODS Eighteen patients with HDM-induced AR and 13 control subjects were recruited. Fresh INT tissues and peripheral blood mononuclear cells (PBMCs) were analysed using flow cytometry. Nasal lavage fluids (NLF) were collected at 10 minutes after the nasal provocation test (NPT) with HDM disc, and released mediators were measured by ELISA. Sorted ILC2s were cultured and stimulated with mediators associated with AR. RESULTS The prevalence of ILC2s was significantly increased in nasal mucosa of patients with HDM-induced AR, and it was positively correlated with the number of infiltrating eosinophils. ILC2s in the INT tissues expressed a prostaglandin D2 (PGD2 ) receptor, chemoattractant receptor-homologous molecule-expressed TH2 cells (CRTH2) and a cysteinyl leukotriene (cysLTs) receptor, CysLT1. After NPT, the number of eosinophils and concentrations of PGD2 and cysLTs were significantly increased in the NLF from AR patients. PGD2 and cysLTs significantly induced IL-5 production from cultured PBMC-derived ILC2s dose-dependently. PGD2 -induced and cysLTs-induced productions of IL-5 and IL-13 from ILC2s were completely inhibited by ramatroban, a dual CRTH2 and thromboxane receptor antagonist, and montelukast, a CysLT1 antagonist, respectively. CONCLUSIONS PGD2 -CRTH2 and cysLTs-CysLT1 axes may activate tissue-resident ILC2s to produce Th2 cytokines, IL-5 and IL-13, leading to the development of allergic inflammation in AR.
Collapse
Affiliation(s)
- Ichiro Tojima
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Koji Matsumoto
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Hirotaka Kikuoka
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Shiori Hara
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Sayuri Yamamoto
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Shino Shimizu
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| |
Collapse
|
23
|
Szentirmai É, Kapás L. Nicotinic acid promotes sleep through prostaglandin synthesis in mice. Sci Rep 2019; 9:17084. [PMID: 31745228 PMCID: PMC6863905 DOI: 10.1038/s41598-019-53648-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acid has been used for decades for its antiatherogenic properties in humans. Its actions on lipid metabolism intersect with multiple sleep regulatory mechanisms, but its effects on sleep have never been documented. For the first time, we investigated the effects of acute systemic administration of nicotinic acid on sleep in mice. Intraperitoneal and oral gavage administration of nicotinic acid elicited robust increases in non-rapid-eye movement sleep (NREMS) and decreases in body temperature, energy expenditure and food intake. Preventing hypothermia did not affect its sleep-inducing actions suggesting that altered sleep is not secondary to decreased body temperature. Systemic administration of nicotinamide, a conversion product of nicotinic acid, did not affect sleep amounts and body temperature, indicating that it is not nicotinamide that underlies these actions. Systemic administration of monomethyl fumarate, another agonist of the nicotinic acid receptor GPR109A, fully recapitulated the somnogenic and thermoregulatory effects of nicotinic acid suggesting that they are mediated by the GPR109A receptor. The cyclooxygenase inhibitor indomethacin completely abolished the effects of nicotinic acid indicating that prostaglandins play a key role in mediating the sleep and thermoregulatory responses of nicotinic acid.
Collapse
Affiliation(s)
- Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, United States of America.
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America.
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| |
Collapse
|
24
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
25
|
Al-Shamlan F, El-Hashim AZ. Bradykinin sensitizes the cough reflex via a B 2 receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase. Respir Res 2019; 20:110. [PMID: 31170972 PMCID: PMC6551914 DOI: 10.1186/s12931-019-1060-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/28/2019] [Indexed: 01/10/2023] Open
Abstract
Background Inhaled bradykinin (BK) has been reported to both sensitize and induce cough but whether BK can centrally sensitize the cough reflex is not fully established. In this study, using a conscious guinea-pig model of cough, we investigated the role of BK in the central sensitization of the cough reflex and in airway obstruction. Methods Drugs were administered, to guinea pigs, by the intracerebroventricular (i.c.v.) route. Aerosolized citric acid (0.2 M) was used to induce cough in a whole-body plethysmograph box, following i.c.v. infusion of drugs. An automated analyser recorded both cough and airway obstruction simultaneously. Results BK, administered by the i.c.v. route, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was inhibited following i.c.v. pretreatment with a B2 receptor antagonist, TRPV1 and TRPA1 channels antagonists and cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) inhibitors. Furthermore, co-administration of submaximal doses of the TRPV1 and TRPA1 antagonists or the COX and 12-LOX inhibitors resulted in a greater inhibition of both cough reflex and airway obstruction. Conclusions Our findings show that central BK administration sensitizes cough and enhances airway obstruction via a B2 receptor/TRPV1 and/or TRPA1 channels which are coupled via metabolites of COX and/or 12-LOX enzymes. In addition, combined blockade of TRPV1 and TRPA1 or COX and 12-LOX resulted in a greater inhibitory effect of both cough and airway obstruction. These results indicate that central B2 receptors, TRPV1/TRPA1 channels and COX/12-LOX enzymes may represent potential therapeutic targets for the treatment of cough hypersensitivity. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fajer Al-Shamlan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait.
| |
Collapse
|
26
|
Uchida Y, Soma T, Nakagome K, Kobayashi T, Nagata M. Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma. Ann Allergy Asthma Immunol 2019; 123:81-88.e1. [PMID: 30986547 DOI: 10.1016/j.anai.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various inflammatory eicosanoid levels in biomaterials from airways of asthma and their associations with clinical parameters remain uncertain. We hypothesized that prostaglandin and leukotriene levels differ between in exhaled breath condensates (EBCs) and in sputum in mild, moderate, and severe levels of asthma and that EBC and sputum eicosanoid levels are associated with indexes of pulmonary function and inflammation. OBJECTIVE To determine the differences between EBC and sputum eicosanoid levels in healthy participants and patients with asthma with different asthma severity levels. METHODS Collected EBC and sputum, as well as pulmonary function, were examined in adult patients with asthma and healthy participants. Exhaled breath condensate prostaglandin D2-methoxime (PGD2-MOX), cysteinyl leukotrienes (CysLTs), leukotriene B4 (LTB4), and thromboxane B2 levels, and some sputum eicosanoid and tryptase levels were measured. Differences in eicosanoid levels among participants and their associations with pulmonary function and tryptase and granulocyte levels in sputum were then evaluated. RESULTS Analysis of 94 EBCs and 43 sputa revealed that EBC and sputum PGD2-MOX and CysLT levels were significantly higher in patients with asthma than in healthy participants. Exhaled breath condensate PGD2-MOX, CysLT, and LTB4 levels were significantly higher in patients with severe asthma. Exhaled breath condensate PGD2-MOX level was also significantly correlated with sputum tryptase levels and lower pulmonary function in patients with asthma. Sputum PGD2-MOX and CysLT levels were significantly correlated with the proportion of eosinophils among all cells in sputum in patients with asthma. CONCLUSION The results suggest that EBC PGD2 levels are associated with impairment of pulmonary function in adults with asthma who have undergone guideline treatment. Exhaled breath condensate or sputum PGD2 and CysLTs may represent severity or airway inflammation in asthma.
Collapse
Affiliation(s)
- Yoshitaka Uchida
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| | - Tomoyuki Soma
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan.
| | - Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| | - Takehito Kobayashi
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Department of General Internal Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| |
Collapse
|
27
|
Allergen challenge increases capsaicin-evoked cough responses in patients with allergic asthma. J Allergy Clin Immunol 2019; 144:788-795.e1. [PMID: 30660644 DOI: 10.1016/j.jaci.2018.11.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cough is a common and troublesome symptom in asthmatic patients, but little is known about the neuronal pathways that trigger cough. The mechanisms by which airway inflammation, airway hyperresponsiveness, and variable airflow obstruction cause cough are unclear. OBJECTIVE We sought to investigate the effects of allergen exposure on cough reflex sensitivity. METHODS We performed a 9-visit, randomized, single-blind, placebo-controlled, 2-way crossover study comparing cough responses to inhaled capsaicin in patients with mild atopic asthma after allergen challenge compared with diluent control. Full-dose capsaicin challenge was performed at screening to determine the capsaicin dose inducing a half-maximal response, which was subsequently administered at 30 minutes and 24 hours after inhaled allergen/diluent challenge. Spontaneous coughing was measured for 24 hours after allergen/diluent. Methacholine challenge and sputum induction were performed before and after allergen/diluent challenge. RESULTS Twelve steroid-naive subjects completed the study (6 female subjects; mean age, 34.8 years). Allergen inhalation caused both an early (mean ± SD, 38.2% ± 13.0%) and late (mean ± SD, 23.7% ± 13.2%) decrease in FEV1 and an increase in sputum eosinophil counts 24 hours later (after diluent: median, 1.9% [interquartile range, 0.8% to 5.8%]; after allergen: median, 14.9% [interquartile range, 8.9% to 37.3%]; P = .005). There was also an increase in capsaicin-evoked coughs after allergen exposure compared with diluent at both 30 minutes (geometric mean coughs, 21.9 [95% CI, 16.5-29.20] vs 12.1 [95% CI, 8.3-17.7]; P < .001) and 24 hours (geometric mean coughs, 16.1 [95% CI, 11.3-23.0] vs 9.8 [95% CI, 6.1-15.8]; P = .001). Allergen exposure was also associated with an increase in spontaneous coughs over 24 hours. CONCLUSION Allergen-induced bronchoconstriction and airway eosinophilia result in increased cough reflex sensitivity to capsaicin associated with an increase in 24-hour spontaneous coughing.
Collapse
|
28
|
Kippelen P, Anderson SD, Hallstrand TS. Mechanisms and Biomarkers of Exercise-Induced Bronchoconstriction. Immunol Allergy Clin North Am 2019; 38:165-182. [PMID: 29631728 DOI: 10.1016/j.iac.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise is a common trigger of bronchoconstriction. In recent years, there has been increased understanding of the pathophysiology of exercise-induced bronchoconstriction. Although evaporative water loss and thermal changes have been recognized stimuli for exercise-induced bronchoconstriction, accumulating evidence points toward a pivotal role for the airway epithelium in orchestrating the inflammatory response linked to exercise-induced bronchoconstriction. Overproduction of inflammatory mediators, underproduction of protective lipid mediators, and infiltration of the airways with eosinophils and mast cells are all established contributors to exercise-induced bronchoconstriction. Sensory nerve activation and release of neuropeptides maybe important in exercise-induced bronchoconstriction, but further research is warranted.
Collapse
Affiliation(s)
- Pascale Kippelen
- Department of Life Sciences, Division of Sport, Health and Exercise Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Sandra D Anderson
- Central Clinical School, Sydney Medical School, University of Sydney, Parramatta Road, Sydney New South Wales 2006, Australia.
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Center for Lung Biology, University of Washington, Box 358052, 850 Republican Street, Seattle, WA 98109-4714, USA
| |
Collapse
|
29
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
30
|
Svajdova S, Mazurova L, Brozmanova M. The inflammatory molecule sphingosine-1-phosphate is not effective to evoke or sensitize cough in naïve guinea pigs. Respir Physiol Neurobiol 2018; 257:82-86. [DOI: 10.1016/j.resp.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/31/2023]
|
31
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
32
|
Abstract
Prostaglandins are synthesized through the metabolism of arachidonic acid via the cyclooxygenase pathway. There are five primary prostaglandins, PGD2, PGE2, PGF2, PGI2, and thromboxane B2, that all signal through distinct seven transmembrane, G-protein coupled receptors. The receptors through which the prostaglandins signal determines their immunologic or physiologic effects. For instance, the same prostaglandin may have opposing properties, dependent upon the signaling pathways activated. In this article, we will detail how inhibition of cyclooxygenase metabolism and regulation of prostaglandin signaling regulates allergic airway inflammation and asthma physiology. Possible prostaglandin therapeutic targets for allergic lung inflammation and asthma will also be reviewed, as informed by human studies, basic science, and animal models.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
33
|
Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing. PLoS One 2017; 12:e0185985. [PMID: 28982197 PMCID: PMC5628920 DOI: 10.1371/journal.pone.0185985] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/23/2017] [Indexed: 11/19/2022] Open
Abstract
Capsaicin-sensitive sensory C-fibers derived from vagal ganglia innervate the visceral organs, and respond to inflammatory mediators and noxious stimuli. These neurons play an important role in maintenance of visceral homeostasis, and contribute to the symptoms of visceral inflammatory diseases. Vagal sensory neurons are located in two ganglia, the jugular ganglia (derived from the neural crest), and the nodose ganglia (from the epibranchial placodes). The functional difference, especially in response to immune mediators, between jugular and nodose neurons is not fully understood. In this study, we microscopically isolated murine nodose and jugular capsaicin-sensitive / Trpv1-expressing C-fiber neurons and performed transcriptome profiling using ultra-low input RNA sequencing. RNAseq detected genes with significantly differential expression in jugular and nodose neurons, which were mostly involved in neural functions. Transcriptional regulators, including Cited1, Hoxb5 and Prdm12 showed distinct expression patterns in the two C-fiber neuronal populations. Common and specific expression of immune receptor proteins was characterized in each neuronal type. The expression of immune receptors that have received little or no attention from vagal sensory biologists is highlighted including receptors for certain chemokines (CXCLs), interleukins (IL-4) and interferons (IFNα, IFNγ). Stimulation of immune receptors with their cognate ligands led to activation of the C-fibers in isolated functional assays.
Collapse
|
34
|
Okubo K, Hashiguchi K, Takeda T, Baba K, Kitagoh H, Miho H, Tomomatsu H, Yamaguchi S, Odani M, Yamamotoya H. A randomized controlled phase II clinical trial comparing ONO-4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy 2017; 72:1565-1575. [PMID: 28378369 PMCID: PMC5638107 DOI: 10.1111/all.13174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Prostaglandin D2 (PGD2 ) is primarily produced by mast cells and is contributing to the nasal symptoms including nasal obstruction and rhinorrhea. OBJECTIVE This study aimed to evaluate the efficacy and safety of a novel PGD2 receptor 1 (DP1) antagonist, ONO-4053, in patients with seasonal allergic rhinitis (SAR). METHODS This study was a multicenter, randomized, double-blind, parallel-group study of patients with SAR. Following a one-week period of placebo run-in, patients who met the study criteria were randomized to either the ONO-4053, leukotriene receptor antagonist pranlukast, or placebo group for a two-week treatment period. A total of 200 patients were planned to be randomly assigned to receive ONO-4053, pranlukast, or placebo in a 2:2:1 ratio. Nasal and eye symptoms were evaluated. RESULTS Both ONO-4053 and pranlukast had higher efficacy than placebo on all nasal and eye symptoms. ONO-4053 outperformed pranlukast in a total of three nasal symptom scores (T3NSS) as well as in individual scores for sneezing, rhinorrhea, and nasal itching. For T3NSS, the Bayesian posterior probabilities that pranlukast was better than placebo and ONO-4053 was better than pranlukast were 70.0% and 81.6%, respectively, suggesting that ONO-4053 has a higher efficacy compared with pranlukast. There was no safety-related issue in this study. CONCLUSIONS We demonstrated that the efficacy of ONO-4053 was greater than that of pranlukast with a similar safety profile. This study indicates the potential of ONO-4053 for use as a treatment for SAR (JapicCTI-142706).
Collapse
Affiliation(s)
- K. Okubo
- Department of OtorhinolaryngologyNippon Medical SchoolTokyoJapan
| | - K. Hashiguchi
- Department of OtorhinolaryngologyFutaba ClinicTokyoJapan
- Medical Corporation ShinanokaiSamoncho ClinicTokyoJapan
| | - T. Takeda
- Department of OtorhinolaryngologyTakeda ClinicSaitamaJapan
| | - K. Baba
- Department of OtorhinolaryngologyTakasaka ClinicSaitamaJapan
| | - H. Kitagoh
- Department of OtorhinolaryngologyKitagoh ClinicKanagawaJapan
| | - H. Miho
- Department of OtorhinolaryngologyMiho ClinicKanagawaJapan
| | - H. Tomomatsu
- Department of OtorhinolaryngologyTomomatsu ClinicTokyoJapan
| | - S. Yamaguchi
- Discovery Research Laboratories IIIOno Pharmaceutical Co., Ltd.OsakaJapan
| | - M. Odani
- Data ScienceOno Pharmaceutical Co., Ltd.OsakaJapan
| | - H. Yamamotoya
- Translational ScienceOno Pharmaceutical Co., Ltd.OsakaJapan
| |
Collapse
|
35
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
37
|
Rumzhum NN, Ammit AJ. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016; 46:397-410. [PMID: 26685098 DOI: 10.1111/cea.12697] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases.
Collapse
Affiliation(s)
- N N Rumzhum
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - A J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Sanak M. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:481-90. [PMID: 27582398 PMCID: PMC5011047 DOI: 10.4168/aair.2016.8.6.481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C4 by platelets that adhere to granulocytes releasing leukotriene A4. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E2 or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E2 is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation.
Collapse
Affiliation(s)
- Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
39
|
Sulaiman I, Lim JCW, Soo HL, Stanslas J. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm Pharmacol Ther 2016; 40:52-68. [PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hon Liong Soo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Hewitt MM, Adams G, Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. J Pharmacol Exp Ther 2016; 357:620-8. [PMID: 27000801 PMCID: PMC4885511 DOI: 10.1124/jpet.115.230383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough.
Collapse
Affiliation(s)
- Matthew M Hewitt
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Gregory Adams
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Stuart B Mazzone
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Nanako Mori
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Li Yu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| |
Collapse
|
41
|
Santini G, Mores N, Malerba M, Mondino C, Macis G, Montuschi P. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 2016; 25:639-52. [PMID: 27094922 DOI: 10.1080/13543784.2016.1175434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION By activating DP1 and DP2 receptors on immune and non-immune cells, prostaglandin D2 (PGD2), a major metabolic product of cyclo-oxygenase pathway released after IgE-mediated mast cell activation, has pro-inflammatory effects, which are relevant to the pathophysiology of allergic airway disease. At least 15 selective, orally active, DP2 receptor antagonists and one DP1 receptor antagonist (asapiprant) are under development for asthma and/or allergic rhinitis. AREAS COVERED In this review, the authors cover the pharmacology of PGD2 and PGD2 receptor antagonists and look at the preclinical, phase I and phase II studies with selective DP1 and DP2 receptor antagonists. EXPERT OPINION Future research should aim to develop once daily compounds and increase the drug clinical potency which, apart from OC000459 and ADC-3680, seems to be relatively low. Further research and development of DP2 receptor antagonists is warranted, particularly in patients with severe uncontrolled asthma, whose management is a top priority. Pediatric studies, which are not available, are required for assessing the efficacy and safety of this novel drug class in children with asthma and allergic rhinitis. Studies on the efficacy of DP2 receptor antagonists in various asthma phenotypes including: smokers, obese subjects, early vs late asthma onset, fixed vs reversible airflow limitation, are required for establishing their pharmacotherapeutic role.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Giuseppe Macis
- d Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
42
|
Nagira Y, Goto K, Tanaka H, Aoki M, Furue S, Inagaki N, Tomita Y, Shichijo M. Prostaglandin D2 Modulates Neuronal Excitation of the Trigeminal Ganglion to Augment Allergic Rhinitis in Guinea Pigs. ACTA ACUST UNITED AC 2016; 357:273-80. [DOI: 10.1124/jpet.115.231225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/02/2016] [Indexed: 01/29/2023]
|
43
|
Rumzhum NN, Patel BS, Prabhala P, Gelissen IC, Oliver BG, Ammit AJ. IL-17A increases TNF-α-induced COX-2 protein stability and augments PGE2 secretion from airway smooth muscle cells: impact on β2 -adrenergic receptor desensitization. Allergy 2016; 71:387-96. [PMID: 26606373 DOI: 10.1111/all.12810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND IL-17A plays an important role in respiratory disease and is a known regulator of pulmonary inflammation and immunity. Recent studies have linked IL-17A with exacerbation in asthma and COPD. We have shown that the enzyme cyclooxygenase-2 (COX-2) and its prostanoid products, prostaglandin E2 (PGE2 ) in particular, are key contributors in in vitro models of infectious exacerbation; however, the impact of IL-17A was not known. METHODS AND RESULTS We address this herein and show that IL-17A induces a robust and sustained upregulation of COX-2 protein and PGE2 secretion from airway smooth muscle (ASM) cells. COX-2 can be regulated at transcriptional, post-transcriptional and/or post-translational levels. We have elucidated the underlying molecular mechanisms responsible for the sustained upregulation of TNF-α-induced COX-2 by IL-17A in ASM cells and show that is not via increased COX-2 gene expression. Instead, TNF-α-induced COX-2 upregulation is subject to regulation by the proteasome, and IL-17A acts to increase TNF-α-induced COX-2 protein stability as confirmed by cycloheximide chase experiments. In this way, IL-17A acts to amplify the COX-2-mediated effects of TNF-α and greatly enhances PGE2 secretion from ASM cells. CONCLUSION As PGE2 is a multifunctional prostanoid with diverse roles in respiratory disease, our studies demonstrate a novel function for IL-17A in airway inflammation by showing for the first time that IL-17A impacts on the COX-2/PGE2 pathway, molecules known to contribute to disease exacerbation.
Collapse
Affiliation(s)
- N. N. Rumzhum
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | - B. S. Patel
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | - P. Prabhala
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | - I. C. Gelissen
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | - B. G. Oliver
- Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- School of Life Sciences; University of Technology; Sydney NSW Australia
| | - A. J. Ammit
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| |
Collapse
|
44
|
Cough in interstitial lung disease. Pulm Pharmacol Ther 2015; 35:122-8. [DOI: 10.1016/j.pupt.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022]
|
45
|
Song WJ, Chang YS. Cough hypersensitivity as a neuro-immune interaction. Clin Transl Allergy 2015; 5:24. [PMID: 26180629 PMCID: PMC4503292 DOI: 10.1186/s13601-015-0069-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cough is an intrinsic protective reflex. However, chronic cough affects a considerable proportion of general population and has a major impact on quality of life. A recent paradigm shift to ‘cough hypersensitivity syndrome’ suggests that chronic cough arises from hypersensitivity of the airway sensory nerves. As cough reflex is determined by interaction of the nervous system with immune system, persistent dysregulation of one or both of these systems may lead to chronic cough hypersensitivity. Here we review the current evidence for the neuro-immune interactions that underlie cough hypersensitivity and discuss future therapeutic strategies.
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul, 110-744 South Korea ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul, 110-744 South Korea ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do South Korea
| |
Collapse
|