1
|
Nasiri MJ, Zangiabadian M, Arabpour E, Amini S, Khalili F, Centis R, D'Ambrosio L, Denholm JT, Schaaf HS, van den Boom M, Kurhasani X, Dalcolmo MP, Al-Abri S, Chakaya J, Alffenaar JW, Akkerman O, Silva DR, Muňoz-Torrico M, Seaworth B, Pontali E, Saderi L, Tiberi S, Zumla A, Migliori GB, Sotgiu G. Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis. Int J Infect Dis 2022; 124 Suppl 1:S90-S103. [PMID: 35245659 PMCID: PMC9731904 DOI: 10.1016/j.ijid.2022.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multidrug-resistant tuberculosis (MDR-TB) is a life-threatening condition needing long poly-chemotherapy regimens. As no systematic reviews/meta-analysis is available to comprehensively evaluate the role of delamanid (DLM), we evaluated its effectiveness and safety. METHODS We reviewed the relevant scientific literature published up to January 20, 2022. The pooled success treatment rate with 95% confidence intervals (CI) was assessed using a random-effect model. We assessed studies for quality and bias, and considered P<0.05 to be statistically significant. RESULTS After reviewing 626 records, we identified 25 studies that met the inclusion criteria, 22 observational and 3 experimental, with 1276 and 411 patients, respectively. In observational studies the overall pooled treatment success rate of DLM-containing regimens was 80.9% (95% CI 72.6-87.2) with no evidence of publication bias (Begg's test; P >0.05). The overall pooled treatment success rate in DLM and bedaquiline-containing regimens was 75.2% (95% CI 68.1-81.1) with no evidence of publication bias (Begg's test; P >0.05). In experimental studies the pooled treatment success rate of DLM-containing regimens was 72.5 (95% CI 44.2-89.8, P <0.001, I2: 95.1%) with no evidence of publication bias (Begg's test; P >0.05). CONCLUSIONS In MDR-TB patients receiving DLM, culture conversion and treatment success rates were high despite extensive resistance with limited adverse events.
Collapse
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Zangiabadian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Arabpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sirus Amini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalili
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | | | - Justin T. Denholm
- Victorian Tuberculosis Program, Melbourne Health, Victoria, Australia,Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - H. Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin van den Boom
- World Health Organization Regional Office for the Eastern Mediterranean Region, Cairo, Egypt
| | | | | | - Seif Al-Abri
- Directorate General for Disease Surveillance and Control, Ministry of Health, Muscat, Oman
| | - Jeremiah Chakaya
- Department of Medicine, dermatology and therapeutics, Kenyatta University, Nairobi, Kenya,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jan-Willem Alffenaar
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, NSW, Australia,School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia
| | - Onno Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands,University of Groningen, University Medical Center Groningen, Tuberculosis center Beatrixoord, Haren, the Netherlands
| | - Denise Rossato Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcela Muňoz-Torrico
- Tuberculosis clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Barbara Seaworth
- Department of Medicine University of Texas Health Science Center, Tyler, Texas
| | - Emanuele Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - Laura Saderi
- Unità di Epidemiologia Clinica e Statistica Medica, Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italia
| | - Simon Tiberi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom,National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy,Address for correspondence: Giovanni Battista Migliori, Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Via Roncaccio 16, Tradate, Varese, 21049, Italy.
| | - Giovanni Sotgiu
- Unità di Epidemiologia Clinica e Statistica Medica, Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italia
| |
Collapse
|
2
|
Mondoni M, Saderi L, Sotgiu G. Novel treatments in multidrug-resistant tuberculosis. Curr Opin Pharmacol 2021; 59:103-115. [PMID: 34186381 DOI: 10.1016/j.coph.2021.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The management of multidrug-resistant tuberculosis (TB) is associated with low treatment success, high mortality and failure rates. New drugs and novel short-therapeutic regimens have only recently helped overcome these obstacles. We carried out a narrative literature review aimed at summarizing the scientific evidence on the recent therapeutic advances in the field of drug-resistant TB. Experimental and observational studies on novel (i.e. bedaquiline, delamanid, pretomanid) drugs and novel regimens and the main pharmacological characteristics of the newest compounds are described. We also highlight the main scientific evidence on therapeutic strategies complementary to standard chemotherapy (i.e. new approaches to drug delivery, host-directed therapy, surgery, new collapse therapy, rehabilitation, and palliative care).
Collapse
Affiliation(s)
- Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy.
| |
Collapse
|
3
|
Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid. Microorganisms 2021; 9:microorganisms9051074. [PMID: 34067732 PMCID: PMC8156326 DOI: 10.3390/microorganisms9051074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug-resistant (MDR) tuberculosis (TB) has been emerging at an alarming rate over the last few years. It has been estimated that about 3% of all pediatric TB is MDR, meaning about 30,000 cases each year. Although most children with MDR-TB can be successfully treated, up to five years ago effective treatment was associated with a high incidence of severe adverse effects and patients with extensively drug-resistant (XDR) TB had limited treatment options and no standard regimen. The main objective of this manuscript is to discuss our present knowledge of the management of MDR- and XDR-TB in children, focusing on the characteristics and available evidence on the use of two promising new drugs: bedaquiline and delamanid. PubMed was used to search for all of the studies published up to November 2020 using key words such as "bedaquiline" and "delamanid" and "children" and "multidrug-resistant tuberculosis" and "extensively drug-resistant tuberculosis". The search was limited to articles published in English and providing evidence-based data. Although data on pediatric population are limited and more studies are needed to confirm the efficacy and safety of bedaquiline and delamanid, their use in children with MDR-TB/XDR-TB appears to have good tolerability and efficacy. However, more evidence on these new anti-TB drugs is needed to better guide their use in children in order to design effective shorter regimens and reduce adverse effects, drug interactions, and therapeutic failure.
Collapse
|
4
|
Franke MF, Khan P, Hewison C, Khan U, Huerga H, Seung KJ, Rich ML, Zarli K, Samieva N, Oyewusi L, Nair P, Mudassar M, Melikyan N, Lenggogeni P, Lecca L, Kumsa A, Khan M, Islam S, Hussein K, Docteur W, Chumburidze N, Berikova E, Atshemyan H, Atwood S, Alam M, Ahmed S, Bastard M, Mitnick CD. Culture Conversion in Patients Treated with Bedaquiline and/or Delamanid. A Prospective Multicountry Study. Am J Respir Crit Care Med 2021; 203:111-119. [PMID: 32706644 PMCID: PMC7781121 DOI: 10.1164/rccm.202001-0135oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Bedaquiline and delamanid offer the possibility of more effective and less toxic treatment for multidrug-resistant (MDR) tuberculosis (TB). With this treatment, however, some patients remain at high risk for an unfavorable treatment outcome. The endTB Observational Study is the largest multicountry cohort of patients with rifampin-resistant TB or MDR-TB treated in routine care with delamanid- and/or bedaquiline-containing regimens according to World Health Organization guidance. Objectives: We report the frequency of sputum culture conversion within 6 months of treatment initiation and the risk factors for nonconversion. Methods: We included patients with a positive baseline culture who initiated a first endTB regimen before April 2018. Two consecutive negative cultures collected 15 days or more apart constituted culture conversion. We used generalized mixed models to derive marginal predictions for the probability of culture conversion in key subgroups. Measurements and Main Results: A total of 1,109 patients initiated a multidrug treatment containing bedaquiline (63%), delamanid (27%), or both (10%). Of these, 939 (85%) experienced culture conversion within 6 months. In adjusted analyses, patients with HIV had a lower probability of conversion (0.73; 95% confidence interval [CI], 0.62–0.84) than patients without HIV (0.84; 95% CI, 0.79–0.90; P = 0.03). Patients with both cavitary disease and highly positive sputum smear had a lower probability of conversion (0.68; 95% CI, 0.57–0.79) relative to patients without either (0.89; 95% CI, 0.84–0.95; P = 0.0004). Hepatitis C infection, diabetes mellitus or glucose intolerance, and baseline resistance were not associated with conversion. Conclusions: Frequent sputum conversion in patients with rifampin-resistant TB or MDR-TB who were treated with bedaquiline and/or delamanid underscores the need for urgent expanded access to these drugs. There is a need to optimize treatment for patients with HIV and extensive disease.
Collapse
Affiliation(s)
- Molly F Franke
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts.,Partners In Health, Boston, Massachusetts
| | - Palwasha Khan
- Interactive Research and Development, Karachi, Pakistan
| | - Cathy Hewison
- Medical Department, Doctors Without Borders, Paris, France
| | - Uzma Khan
- Interactive Research and Development, Karachi, Pakistan
| | - Helena Huerga
- Field Epidemiology Department, Epicentre, Paris, France
| | - Kwonjune J Seung
- Partners In Health, Boston, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael L Rich
- Partners In Health, Boston, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Khin Zarli
- Medical Department, Doctors Without Borders, Yangon, Myanmar
| | - Nazgul Samieva
- Medical Department, Doctors Without Borders, Bishkek, Kyrgyzstan
| | | | - Parvati Nair
- Medical Department, Doctors Without Borders, Minsk, Belarus
| | | | - Nara Melikyan
- Field Epidemiology Department, Epicentre, Paris, France
| | | | | | | | - Munira Khan
- Interactive Research and Development, Johannesburg, South Africa
| | | | - Kerow Hussein
- Medical Department, Doctors Without Borders, Nairobi, Kenya
| | | | | | | | - Hakob Atshemyan
- Medical Department, Doctors Without Borders, Yerevan, Armenia
| | | | - Manzurul Alam
- Interactive Research and Development, Dhaka, Bangladesh
| | - Saman Ahmed
- Interactive Research and Development, Karachi, Pakistan
| | | | - Carole D Mitnick
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts.,Partners In Health, Boston, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Peraman R, Sure SK, Dusthackeer VNA, Chilamakuru NB, Yiragamreddy PR, Pokuri C, Kutagulla VK, Chinni S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:56. [PMID: 33686369 PMCID: PMC7928709 DOI: 10.1186/s43094-021-00196-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the various strategies undertaken in the clinical practice, the mortality rate due to antibiotic-resistant microbes has been markedly increasing worldwide. In addition to multidrug-resistant (MDR) microbes, the "ESKAPE" bacteria are also emerging. Of course, the infection caused by ESKAPE cannot be treated even with lethal doses of antibiotics. Now, the drug resistance is also more prevalent in antiviral, anticancer, antimalarial and antifungal chemotherapies. MAIN BODY To date, in the literature, the quantum of research reported on the discovery strategies for new antibiotics is remarkable but the milestone is still far away. Considering the need of the updated strategies and drug discovery approaches in the area of drug resistance among researchers, in this communication, we consolidated the insights pertaining to new drug development against drug-resistant microbes. It includes drug discovery void, gene paradox, transposon mutagenesis, vitamin biosynthesis inhibition, use of non-conventional media, host model, target through quorum sensing, genomic-chemical network, synthetic viability to targets, chemical versus biological space, combinational approach, photosensitization, antimicrobial peptides and transcriptome profiling. Furthermore, we optimally briefed about antievolution drugs, nanotheranostics and antimicrobial adjuvants and then followed by twelve selected new feasible drug targets for new drug design against drug resistance. Finally, we have also tabulated the chemical structures of potent molecules against antimicrobial resistance. CONCLUSION It is highly recommended to execute the anti-drug resistance research as integrated approach where both molecular and genetic research needs to be as integrative objective of drug discovery. This is time to accelerate new drug discovery research with advanced genetic approaches instead of conventional blind screening.
Collapse
Affiliation(s)
- Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Sathish Kumar Sure
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - V. N. Azger Dusthackeer
- grid.417330.20000 0004 1767 6138ICMR-National Institute of Research in Tuberculosis, Chennai, Tamilnadu India
| | - Naresh Babu Chilamakuru
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Padmanabha Reddy Yiragamreddy
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Chiranjeevi Pokuri
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Vinay Kumar Kutagulla
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Santhivardhan Chinni
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| |
Collapse
|
6
|
Population Pharmacokinetic Analysis of Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2020; 65:AAC.01202-20. [PMID: 33106258 PMCID: PMC7927850 DOI: 10.1128/aac.01202-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
A population pharmacokinetic (PopPK) model of delamanid in patients with pulmonary multidrug-resistant tuberculosis (MDR-TB) was developed using data from four delamanid clinical trials. The final PopPK data set contained 20,483 plasma samples from 744 patients with MDR-TB receiving an optimized background regimen (OBR). Delamanid PK was adequately described for all observed dosing regimens and subpopulations by a two-compartment model with first-order elimination and absorption, an absorption lag time, and decreased relative bioavailability with increasing dose. Relative bioavailabilities of 200-mg and higher doses (250 and 300 mg) were 76% and 58% of a 100-mg dose, respectively. Relative bioavailability was 26% higher after evening doses than morning doses and 9% higher in outpatient settings than inpatient settings. The rate of absorption was higher, and lag time was shorter, following a morning dose than an evening dose. Relative bioavailabilities in patients in Northeast Asian and Southeast Asian regions were 53% and 40% higher, respectively, than in patients in non-Asian regions. Apparent clearance was higher (to the power of -0.892) in patients with hypoalbuminemia (albumin levels of <3.4 g/dl). Coadministration of efavirenz in patients with HIV increased delamanid clearance by 35%. Delamanid exposure was not affected by age (18 to 64 years), mild or moderate renal impairment, anti-TB antibiotic resistance status, HIV status, or markers of hepatic dysfunction or by concomitant administration of OBR, lamivudine, tenofovir, pyridoxine, CYP3A4 inhibitors and inducers, or antacids. Model evaluation suggested reasonable model fit and predictive power, indicating that the model should prove reliable to derive PK metrics for subsequent PK/PD analyses.
Collapse
|
7
|
Cumulative Fraction of Response for Once- and Twice-Daily Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2020; 65:AAC.01207-20. [PMID: 33106263 PMCID: PMC7927872 DOI: 10.1128/aac.01207-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0–24/MIC), with a PDT of 252. Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0–24/MIC), with a PDT of 252. Second, in the hollow-fiber system model of tuberculosis, plasma-equivalent PDTs were identified as an AUC0–24/MIC of 195 in log-phase bacteria and 201 in pH 5.8 cultures. Third, delamanid plasma AUC0–24/MIC and sputum bacterial decline data from two early bactericidal activity trials identified a clinical PDT of AUC0–24/MIC of 171. Finally, the CFRs for the currently approved 100-mg BID dose were determined to be above 95% in two MDR-TB clinical trials. The CFR for the 200-mg QD dose, evaluated in a trial in which delamanid was administered as 100 mg BID for 8 weeks plus 200 mg QD for 18 weeks, was 89.3% based on the mouse PDT and >90% on the other PDTs. QTcF (QTc interval corrected for heart rate by Fridericia’s formula) prolongation was approximately 50% lower for the 200 mg QD dose than the 100 mg BID dose. In conclusion, while CFRs of 100 mg BID and 200 mg QD delamanid were close to or above 90% in patients with MDR-TB, more-convenient once-daily dosing of delamanid is feasible and likely to have less effect on QTcF prolongation.
Collapse
|
8
|
Ghosh S, Breitscheidel L, Lazarevic N, Martin A, Hafkin J, Hittel N. Compassionate use of delamanid in adults and children for drug-resistant tuberculosis: 5-year update. Eur Respir J 2020; 57:13993003.02483-2020. [PMID: 33243846 DOI: 10.1183/13993003.02483-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although delamanid has been approved for the treatment of multidrug-resistant TB (MDR-TB) in numerous regions, in areas where it is not yet registered it can be accessed as part of salvage therapy (in particular for those patients with limited treatment options) via the Otsuka compassionate use programme. Here we present the analysis of interim treatment outcomes by 24 weeks of more than 200 MDR-TB patients globally who received delamanid under this programme. METHODS We evaluated treatment efficacy with respect to culture negativity at 24 weeks, as well as the safety profile of delamanid, in an MDR-TB patient cohort treated under compassionate use between 2014 and 2019. RESULTS Among patients who received delamanid as part of a multidrug regimen, 123 (61%) out of 202 had extensively drug-resistant TB (XDR-TB), 66 (33%) out of 202 had HIV co-infection and 34 (17%) out of 202 were children aged between 6 and 17 years. Of those patients who were culture positive at delamanid treatment initiation and who completed 24 weeks of delamanid treatment in combination with other anti-tuberculosis (TB) drugs, culture negativity was achieved in 116 (79%) out of 147 cases. The corresponding rates of culture negativity for patients with XDR-TB and HIV co-infection, as well as the paediatric subgroup were 69 (77%) out of 90, 44 (92%) out of 48 and 20 (80%) out of 25, respectively. QT interval prolongation was the most frequently observed serious adverse event and was reported in 8% of patients receiving delamanid. Overall, treatment safety outcomes did not reveal any new or unidentified risks. CONCLUSIONS The use of delamanid combined with other active drugs has the potential to achieve high rates of culture negativity in difficult-to-treat drug-resistant TB cases, with a favourable safety profile.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Hafkin
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | | |
Collapse
|
9
|
Guglielmetti L, Chiesi S, Eimer J, Dominguez J, Masini T, Varaine F, Veziris N, Ader F, Robert J. Bedaquiline and delamanid for drug-resistant tuberculosis: a clinician's perspective. Future Microbiol 2020; 15:779-799. [PMID: 32700565 DOI: 10.2217/fmb-2019-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant tuberculosis (TB) represents a substantial threat to the global efforts to control this disease. After decades of stagnation, the treatment of drug-resistant TB is undergoing major changes: two drugs with a new mechanism of action, bedaquiline and delamanid, have been approved by stringent regulatory authorities and are recommended by the WHO. This narrative review summarizes the evidence, originating from both observational studies and clinical trials, which is available to support the use of these drugs, with a focus on special populations. Areas of uncertainty, including the use of the two drugs together or for prolonged duration, are discussed. Ongoing clinical trials are aiming to optimize the use of bedaquiline and delamanid to shorten the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Lorenzo Guglielmetti
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,Médecins Sans Frontières, France
| | - Sheila Chiesi
- Department of Infectious Diseases, 'GB Rossi' Hospital, Verona, Italy.,University of Verona, Verona, Italy
| | - Johannes Eimer
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jose Dominguez
- Research Institute Germans Trias i Pujol, CIBER Respiratory Diseases, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,APHP, Département de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Hôpitaux Universitaires de l'Est Parisien, F-75012, Paris, France
| | - Florence Ader
- Département des Maladies infectieuses et tropicales, Hospices Civils de Lyon, F-69004, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Jérôme Robert
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France
| |
Collapse
|
10
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
11
|
Chandramohan Y, Padmanaban V, Bethunaickan R, Tripathy S, Swaminathan S, Ranganathan UD. In vitro interaction profiles of the new antitubercular drugs bedaquiline and delamanid with moxifloxacin against clinical Mycobacterium tuberculosis isolates. J Glob Antimicrob Resist 2019; 19:348-353. [PMID: 31226332 DOI: 10.1016/j.jgar.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/17/2019] [Accepted: 06/08/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The emergence of drug-resistant tuberculosis (TB) poses a serious challenge to existing anti-TB therapies. Hence, there is a direct need for identification of new drugs and effective combination regimens. METHODS In this study, minimum inhibitory concentrations (MICs) of the anti-TB drugs bedaquiline (BDQ), delamanid (DEL) and moxifloxacin (MFX) were evaluated using a resazurin microtiter assay (REMA) against five drug-resistant clinicalMycobacterium tuberculosis (MTB) isolates as well as the drug-susceptible reference strain H37Rv. In addition, their fractional inhibitory concentration indices (FICIs) were evaluated using a REMA-based calorimetric chequerboard assay to assess their interaction profiles against the MTB isolates. RESULTS The FICI indicated that BDQ acted synergistically with DEL against isoniazid (INH)-monoresistant, rifampicin (RIF)-monoresistant and extensively drug-resistant (XDR) clinical MTB isolates. In addition, the combination of DEL acted synergistically with MFX against INH-monoresistant, RIF-monoresistant and XDR clinical MTB isolates. Moreover, the combination of BDQ and MFX showed a synergistic effect against RIF-monoresistant and pre-XDR clinical MTB isolates. DEL at 0.125×MIC (i.e. 0.015μg/mL) used in combination with BDQ at 0.25×MIC (i.e. 0.015μg/mL) had a stronger bactericidal effect against the XDR-TB clinical isolate than DEL alone at 1×MIC (i.e. 0.125μg/mL). CONCLUSION Synergistic and additive effects between these two-drug combinations offer an attractive chemotherapeutic regimen against drug-resistant clinical MTB isolates.
Collapse
Affiliation(s)
- Yuvaraj Chandramohan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Venkatesan Padmanaban
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Ramalingam Bethunaickan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India; Pathology and Microbiology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Srikanth Tripathy
- National Institute for Research in Tuberculosis, Chetpet, Chennai 600 031, India
| | - Soumya Swaminathan
- Indian Council of Medical Research, Ansari Nagar East, New Delhi 110029, India
| | - Uma Devi Ranganathan
- Department of Immunology, National Institute for Research in Tuberculosis, No. 1 Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
12
|
Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2019; 7:249-259. [PMID: 30630778 DOI: 10.1016/s2213-2600(18)30426-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Delamanid is one of two recently approved drugs for the treatment of multidrug-resistant tuberculosis. We aimed to evaluate the safety and efficacy of delamanid in the first 6 months of treatment. METHODS This randomised, double-blind, placebo-controlled, phase 3 trial was done at 17 sites in seven countries (Estonia, Latvia, Lithuania, Moldova, Peru, the Philippines, and South Africa). We enrolled eligible adults (>18 years) with pulmonary multidrug-resistant tuberculosis to receive, in combination with an optimised background regimen developed according to WHO and national guidelines, either oral delamanid (100 mg twice daily) for 2 months followed by 200 mg once daily for 4 months or placebo (same regimen). Patients were centrally randomised (2:1) and stratified by risk category for delayed sputum culture conversion. Primary outcomes were the time to sputum culture conversion over 6 months and the difference in the distribution of time to sputum culture conversion over 6 months between the two groups, as assessed in the modified intention-to-treat population. The trial is registered at ClinicalTrials.gov, number NCT01424670. FINDINGS Between Sept 2, 2011, and Nov 27, 2013, we screened 714 patients, of whom 511 were randomly assigned (341 to delamanid plus optimised background regimen [delamanid group] and 170 to placebo plus optimised background regimen [placebo group]) and formed the safety analysis population. 327 patients were culture-positive for multidrug-resistant tuberculosis at baseline and comprised the efficacy analysis population (226 in the delamanid group and 101 in the placebo group). Median time to sputum culture conversion did not differ between the two groups (p=0·0562; modified Peto-Peto), with 51 days (IQR 29-98) in the delamanid group and 57 days (43-85) in the placebo group; the hazard ratio was 1·17 (95% CI 0·91-1·51, p=0·2157). 501 (98·0%) of 511 patients had at least one treatment-emergent adverse event. 136 (26·6%) of 511 patients had at least one serious treatment-emergent adverse event; the incidence was similar between treatment groups (89 [26·1%] of 341 patients for delamanid and 47 [27·6%] of 170 for placebo). Deaths related to treatment-emergent adverse events were similar between groups (15 [4·4%] of 341 for delamanid and six [3·5%] of 170 for placebo). No deaths were considered to be related to delamanid. INTERPRETATION The reduction in median time to sputum culture conversion over 6 months was not significant in the primary analysis. Delamanid was well tolerated with a highly characterised safety profile. Further evaluation of delamanid is needed to determine its role in a rapidly evolving standard of care. FUNDING Otsuka Pharmaceutical.
Collapse
|
13
|
Krutikov M, Bruchfeld J, Migliori GB, Borisov S, Tiberi S. New and repurposed drugs. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10021517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Hafkin J, Hittel N, Martin A, Gupta R. Compassionate use of delamanid in combination with bedaquiline for the treatment of multidrug-resistant tuberculosis. Eur Respir J 2018; 53:13993003.01154-2018. [DOI: 10.1183/13993003.01154-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/12/2018] [Indexed: 11/05/2022]
|
15
|
Lardizabal AA, Khan AN, Bamrah Morris S, Goswami ND. Notes from the Field: Acquisition of Delamanid Under a Compassionate Use Program for Extensively Drug-Resistant Tuberculosis - United States, 2017. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2018; 67:996-997. [PMID: 30188880 PMCID: PMC6132180 DOI: 10.15585/mmwr.mm6735a6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb) 2018; 111:20-30. [DOI: 10.1016/j.tube.2018.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
17
|
Javaid A, Ahmad N, Afridi AK, Basit A, Khan AH, Ahmad I, Atif M. Validity of Time to Sputum Culture Conversion to Predict Cure in Patients with Multidrug-Resistant Tuberculosis: A Retrospective Single-Center Study. Am J Trop Med Hyg 2018; 98:1629-1636. [PMID: 29611497 DOI: 10.4269/ajtmh.17-0936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To evaluate the predictive value of time to sputum culture conversion (SCC) in predicting cure and factors associated with time to SCC and cure in multidrug-resistant tuberculosis (MDR-TB) patients, a retrospective study was conducted at programmatic management unit of drug resistant tuberculosis (TB), Peshawar. A total of 428 pulmonary MDR-TB patients enrolled at the study site from January 1, 2012 to August 31, 2014 were followed until treatment outcome was recorded. Survival analysis using Cox proportional hazards model and multivariate binary logistic regression were, respectively, used to identify factors associated with time to SCC and cure. A P value < 0.05 was considered statistically significant. Overall, 90.9% patients achieved SCC, and 76.9% were cured. Previous use of second-line drugs (SLDs) (hazard ratio [HR] = 0.637; 95% confidence interval [CI] = 0.429-0.947), ofloxacin resistance (HR = 0.656; 95% CI = 0.522-0.825) and lung cavitation (HR = 0.744; 95% CI = 0.595-0.931) were significantly associated with time to SCC. In predicting cure, sensitivities of SCC at 2, 4, and 6 months were 64.1% (95% CI = 58.69-69.32), 93.0% (95% CI = 89.69-95.52), and 97.6% (95% CI = 95.27-98.94), respectively, whereas specificities were 67.7% (95% CI = 57.53-76.73), 51.5% (95% CI = 41.25-61.68), and 44.4% (95% CI = 34.45-54.78), respectively. Furthermore, patients' age of 41-60 (odds ratio [OR] = 0.202; 95% CI = 0.067-0.605) and > 60 years (OR = 0.051; 95% CI = 0.011-0.224), body weight > 40 kg (OR = 2.950; 95% CI = 1.462-5.952), previous SLD use (OR = 0.277; 95% CI = 0.097-0.789), lung cavitation (OR = 0.196; 95% CI = 0.103-0.371) and ofloxacin resistance (OR = 0.386; 95% CI = 0.198-0.749) were significantly associated with cure. Association of SCC with cure was substantially stronger at 6 months (OR = 32.10; 95% CI = 14.34-71.85) than at 4 months (OR = 14.13; 95% CI = 7.92-25.21). However in predicting treatment outcomes, the combined sensitivity and specificity of SCC at 4 months was comparable to SCC at 6 months. Patients with risk factors for delayed SCC were also at high risk of unsuccessful outcomes.
Collapse
Affiliation(s)
- Arshad Javaid
- Khyber Medical University, Peshawar, Pakistan.,Programmatic Management Unit of Drug-Resistant Tuberculosis, Lady Reading Hospital, Peshawar, Pakistan
| | - Nafees Ahmad
- Faculty of Pharmacy and Health Sciences, University of Baluchistan,Quetta, Pakistan
| | - Afsar Khan Afridi
- Programmatic Management Unit of Drug-Resistant Tuberculosis, Lady Reading Hospital, Peshawar, Pakistan
| | - Anila Basit
- Department of Pulmonology, Postgraduate Medical Institute, Peshawar, Pakistan
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Izaz Ahmad
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Atif
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017. [PMID: 29523322 DOI: 10.1016/j.tube.2017.12.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Delamanid, a bicyclic nitroimidazooxazole, is effective against M. tuberculosis. Previous studies have shown that resistance to a bicyclic nitroimidazooxazine, PA-824, is caused by mutations in an F420-dependent bio-activation pathway. We investigated whether the same mechanisms are responsible for resistance to delamanid. Spontaneous resistance frequencies were determined using M. bovis BCG Tokyo (BCG) and M. tuberculosis H37Rv. F420 high-performance liquid chromatography (HPLC) elution patterns of homogenates of delamanid-resistant BCG colonies and two previously identified delamanid-resistant M. tuberculosis clinical isolates were examined, followed by sequencing of genes in the F420-dependent bio-activation pathway. Spontaneous resistance frequencies to delamanid were similar to those of isoniazid and PA-824. Four distinct F420 HPLC elution patterns were observed, corresponding to colonies with mutations on fgd1, fbiA, fbiB, and fbiC with no change in the ddn mutants from the wildtype. Complementation with the wildtype sequence of the mutated gene restored susceptibility. The two delamanid-resistant clinical isolates had ddn mutations and the wildtype F420 HPLC elution pattern. In conclusion, delamanid-resistant bacilli have mutations in one of the 5 genes in the F420-dependent bio-activation pathway with distinct F420 HPLC elution patterns. Both genetic and phenotypic changes may be considered in the development of a rapid susceptibility test for delamanid.
Collapse
Affiliation(s)
- Mamoru Fujiwara
- Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | | | - Norimitsu Hariguchi
- Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | - Yongge Liu
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD, USA.
| | - Makoto Matsumoto
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., San Francisco, CA, USA.
| |
Collapse
|
19
|
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb) 2017; 109:17-27. [PMID: 29559117 DOI: 10.1016/j.tube.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Despite the low expensive and effective four-drug treatment regimen (isoniazid, rifampicin, pyrazinamide and ethambutol) was introduced 40 years ago, TB continues to cause considerable morbidity and mortality worldwide. In 2015, the WHO estimated a total of 10.4 million new tuberculosis (TB) cases worldwide. Currently, the increased number of multidrug-resistant (MDR-TB), extensively-drug resistant (XDR-TB) and in some recent reports, totally drug-resistant TB (TDR-TB) cases raises concerns about this disease. MDR-TB and XDR-TB have lower cure rates and higher mortality levels due to treatment problems. Novel drugs and regimens for all forms of TB have emerged in recent years. Moreover, scientific interest has recently increased in the field of host-directed therapies (HDTs) in order to identify new treatments for MDR-TB. In this review, we offer an update on the discovery of new drugs for TB therapy with a glance at molecular mechanisms leading to drug resistance in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michel Drancourt
- Institut Hospital-Universitaire (IHU) Mediterranée Infection, AP-HM, Marseille, France; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohsen Heidary
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Hafkin J, Hittel N, Martin A, Gupta R. Early outcomes in MDR-TB and XDR-TB patients treated with delamanid under compassionate use. Eur Respir J 2017; 50:50/1/1700311. [PMID: 28751415 PMCID: PMC5898945 DOI: 10.1183/13993003.00311-2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/24/2017] [Indexed: 11/26/2022]
Abstract
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) remain significant global health challenges, with an annual incidence of approximately 480 000 and 46 000 cases, respectively [1]. Treatment outcomes in MDR-TB patients remain poor overall (52% success) and outcomes in XDR-TB patients are even more dismal (28% success) [1–3]. To improve these outcomes, new drugs are needed [4]. Delamanid, a nitroimidazooxazole agent that has been included in the guidelines for MDR-TB treatment by the World Health Organization (WHO), has been shown to improve two-month sputum culture conversion (SCC) and long-term treatment outcomes, when added to an optimised background regimen (OBR) in MDR-TB patients [5–7]. As part of a global access initiative, Otsuka Pharmaceutical Co., Ltd. in coordination with the European Respiratory Society (ERS)/WHO TB Consilium, and Médecins Sans Frontières/Partners in Health (MSF-PIH) established its first Compassionate Use (CU) programme in February 2014 to provide patients with very limited treatment options access to delamanid. We present here early safety and efficacy outcomes of patients enrolled in this effort. Early data from the CU programme show delamanid may be effective in MDR/XDR-TB with few treatment optionshttp://ow.ly/tA6Y30cs2Yg
Collapse
Affiliation(s)
- Jeffrey Hafkin
- Otsuka Pharmaceutical Development and Commercialization Inc., Rockville, MD, USA
| | | | | | - Rajesh Gupta
- Otsuka Pharmaceutical Development and Commercialization Inc., Rockville, MD, USA
| |
Collapse
|
21
|
Monedero I, Bhavaraju R, Mendoza-Ticona A, Sánchez-Montalvá A. The paradigm shift to end tuberculosis. Are we ready to assume the changes? Expert Rev Respir Med 2017; 11:565-579. [PMID: 28562103 DOI: 10.1080/17476348.2017.1335599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is the number one infectious disease killer and exemplifies the most neglected of them. Drug-susceptible TB presents with high mortality especially in atypical forms, disproportionally affecting immunosuppressed and vulnerable populations. The drug-resistant TB (DR-TB) epidemic, a world crisis, is sustained and increased through person-to-person transmission in households and the community. TB diagnostics and treatment in recent years are highly evolving fields. New rapid molecular tests are changing the perspectives in diagnosis and resistance screening. Also, new drugs and shorter regimens for DR-TB are appearing. For the first time in recent history, a large number of randomized control trials are incoming. Areas covered: This article reviews most TB advances including new diagnostic tests, drugs, and regimens and outlines upcoming drug trials while disclosing the potential gaps the in development of patient-centered systems and current organizational challenges leading to a delay in the uptake of these innovations. Expert commentary: Innovations are occurring, but not many are implemented on a wide scale in developing countries. TB health systems and staff are not getting updated in parallel. More efforts and funds are needed not only to implement current novelties but also to research for future solutions to eliminate TB.
Collapse
Affiliation(s)
- Ignacio Monedero
- a TB-HIV Department. International Union against Tuberculosis and Lung Disease (The Union) , Paris , France
| | - Rajita Bhavaraju
- b Global Tuberculosis Institute, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Alberto Mendoza-Ticona
- a TB-HIV Department. International Union against Tuberculosis and Lung Disease (The Union) , Paris , France.,c Clinical Research Department , Asociación Civil IMPACTA , Lima , Peru
| | - Adrián Sánchez-Montalvá
- d Infectious diseases department, Tropical Medicine Unit, PROCIS (International Health Program of the Catalan Health Institute) , Vall d'Hebron University Hospital,Universistat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
22
|
Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis 2017; 56:181-184. [DOI: 10.1016/j.ijid.2016.10.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
|
23
|
|
24
|
Sotgiu G, Tiberi S, Centis R, D'Ambrosio L, Fuentes Z, Zumla A, Migliori GB. Applicability of the shorter 'Bangladesh regimen' in high multidrug-resistant tuberculosis settings. Int J Infect Dis 2016; 56:190-193. [PMID: 27816662 DOI: 10.1016/j.ijid.2016.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022] Open
Abstract
In spite of the recent introduction of two new drugs (delamanid and bedaquiline) and a few repurposed compounds to treat multidrug-resistant and extensively drug-resistant tuberculosis (MDR- and XDR-TB), clinicians are facing increasing problems in designing effective regimens in severe cases. Recently a 9 to 12-month regimen (known as the 'Bangladesh regimen') proved to be effective in treating MDR-TB cases. It included an initial phase of 4 to 6 months of kanamycin, moxifloxacin, prothionamide, clofazimine, pyrazinamide, high-dose isoniazid, and ethambutol, followed by 5 months of moxifloxacin, clofazimine, pyrazinamide, and ethambutol. However, recent evidence from Europe and Latin America identified prevalences of resistance to the first-line drugs in this regimen (ethambutol and pyrazinamide) exceeding 60%, and of prothionamide exceeding 50%. Furthermore, the proportions of resistance to the two most important pillars of the regimen - quinolones and kanamycin - were higher than 40%. Overall, only 14 out of 348 adult patients (4.0%) were susceptible to all of the drugs composing the regimen, and were therefore potentially suitable for the 'shorter regimen'. A shorter, cheaper, and well-tolerated MDR-TB regimen is likely to impact the number of patients treated and improve adherence if prescribed to the right patients through the systematic use of rapid MTBDRsl testing.
Collapse
Affiliation(s)
- Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Medical Education and Professional Development Unit, AOU Sassari, Sassari, Italy
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, Royal London Hospital, London, UK
| | - Rosella Centis
- Maugeri Institute, IRCCS, Care and Research Institute, Via Roncaccio 16, 21049, Tradate, Italy
| | - Lia D'Ambrosio
- Maugeri Institute, IRCCS, Care and Research Institute, Via Roncaccio 16, 21049, Tradate, Italy; Public Health Consulting Group, Lugano, Switzerland
| | - Zhenia Fuentes
- Department of Pulmonology Hospital Jose Ignacio Baldo, Caracas, Capital District, Venezuela
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
25
|
Dheda K, Chang KC, Guglielmetti L, Furin J, Schaaf HS, Chesov D, Esmail A, Lange C. Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis. Clin Microbiol Infect 2016; 23:131-140. [PMID: 27756712 DOI: 10.1016/j.cmi.2016.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Globally there is a burgeoning epidemic of drug monoresistant tuberculosis (TB), multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Almost 20% of all TB strains worldwide are resistant to at least one major TB drug, including isoniazid. In several parts of the world there is an increasing incidence of MDR-TB, and alarmingly, almost a third of MDR-TB cases globally are resistant to either a fluoroquinolone or aminoglycoside. This trend cannot be ignored because drug-resistant TB is associated with greater morbidity compared to drug-susceptible TB, accounts for almost 25% of global TB mortality, is extremely costly to treat, consumes substantial portions of budgets allocated to national TB programmes in TB-endemic countries and is a major threat to healthcare workers, who are already in short supply in resource-poor settings. Even more worrying is the growing epidemic of resistance beyond XDR-TB, including resistance to newer drugs such as bedaquiline and delamanid, as well as the increasing prevalence of programmatically incurable TB in countries like South Africa, Russia, India and China. These developments threaten to reverse the gains already made against TB. SOURCES Articles related to MDR-TB and XDR-TB found on PubMed in all languages up to September 2016, published reviews, and files of the authors. AIM AND CONTENT To review the clinical management of adults and children with MDR- and XDR-TB with a particular emphasis on the utility of newer and repurposed drugs such as linezolid, bedaquiline and delamanid, as well as management of MDR- and XDR-TB in special situations such as in HIV-infected persons and in children. IMPLICATIONS This review informs on the prevention, diagnosis, and clinical management of MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- K Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, South Africa.
| | - K C Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China
| | - L Guglielmetti
- Sanatorium, Centre Hospitalier de Bligny, Briis-sous-Forges, France; Sorbonne Université, Université Pierre et Marie Curie-Paris 6, CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Team E13 (Bactériologie), Paris, France
| | - J Furin
- Harvard Medical School, Department of Global Health, and Social Medicine, Boston, MA, USA
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - D Chesov
- Department of Pneumology and Allergology, State University of Medicine and Pharmacy 'Nicolae Testemitanu', Chisinau, Republic of Moldova
| | - A Esmail
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, South Africa
| | - C Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research (DZIF), Research Center Borstel, Borstel, Germany; International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany; Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia; German Center for Infection Research, Clinical Tuberculosis Center, Borstel, Germany
| |
Collapse
|
26
|
Rendon A, Centis R, D'Ambrosio L, Migliori GB. WHO strategies for the management of drug-resistant tuberculosis. Arch Bronconeumol 2016; 53:95-97. [PMID: 27717622 DOI: 10.1016/j.arbres.2016.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Adrián Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias, Hospital Universitario de Monterrey, Monterrey, Nuevo León, México
| | - Rosella Centis
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italia
| | - Lia D'Ambrosio
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italia; Public Health Consulting Group, Lugano, Suiza
| | - Giovanni Battista Migliori
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italia.
| |
Collapse
|
27
|
Rendon A, Tiberi S, Scardigli A, D'Ambrosio L, Centis R, Caminero JA, Migliori GB. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives. J Thorac Dis 2016; 8:2666-2671. [PMID: 27867538 DOI: 10.21037/jtd.2016.10.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adrian Rendon
- Center for Research, Prevention and Treatment of Respiratory Infections, University Hospital Dr José Eleuterio Gonzalez, Monterrey, N.L., Mexico;; Latin American Thoracic Association (ALAT)
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, London, UK
| | - Anna Scardigli
- The Global Fund to Fight Aids, Tuberculosis and Malaria, Geneva, Switzerland
| | - Lia D'Ambrosio
- Maugeri Institute, IRCCS, Tradate, Italy;; Public Health Consulting Group, Lugano, Switzerland
| | | | - Jose A Caminero
- Pneumology Department, University Hospital of Gran Canaria "Dr. Negrin", Las Palmas Gran Canaria, Spain
| | | |
Collapse
|
28
|
Matteelli A, Centis R, D'Ambrosio L, Sotgiu G, Tadolini M, Pontali E, Spanevello A, Migliori GB. WHO strategies for the programmatic management of drug-resistant tuberculosis. Expert Rev Respir Med 2016; 10:991-1002. [PMID: 27276361 DOI: 10.1080/17476348.2016.1199278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Adequate management of drug-resistant tuberculosis (TB), including multidrug- (MDR) and extensively drug-resistant (XDR-) TB are within the priorities of the newly launched World Health Organization's End TB and Elimination Strategies. AREAS COVERED This manuscript presents the evidence on the MDR- /XDR-TB epidemiology and discusses how the five recommended priority actions can be applied at the programmatic level to tackle the epidemic: 1) prevent development of MDR-TB thorough high quality treatment of drug- susceptible TB; 2) expand rapid testing and detection of drug-resistant TB; 3) provide immediate access to effective treatment and proper care; 4) prevent transmission through infection control; 5) increase political commitment and financing. A non-systematic review using Pubmed was carried out in addition to additional relevant information taken from the abstracts of international scientific conferences. Expert commentary: Current and future control of MDR-TB significantly relies on the correct use of new diagnostics and new drugs from one side, and on the consistent application of the five core interventions at the programmatic level. In addition, it is mandatory to tackle the social determinants and socio-economic barriers favouring the MDR-TB, otherwise it will not be possible to reach the planned goals as well as TB Elimination.
Collapse
Affiliation(s)
- Alberto Matteelli
- a Clinic of Infectious and Tropical Diseases , University of Brescia and Brescia Spedali Civili General Hospital , Brescia , Italy
| | - Rosella Centis
- b World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases , Fondazione S. Maugeri, Care and Research Institute , Tradate , Italy
| | - Lia D'Ambrosio
- b World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases , Fondazione S. Maugeri, Care and Research Institute , Tradate , Italy
- c Public Health Consulting Group , Lugano , Switzerland
| | - Giovanni Sotgiu
- d Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences , University of Sassari, Research, Medical Education and Professional Development Unit, AOU , Sassari , Italy
| | - Marina Tadolini
- e Section of Infectious Diseases, Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Emanuele Pontali
- f Department of Infectious Diseases , Galliera Hospital , Genova , Italy
| | - Antonio Spanevello
- g Pneumology Unit , Fondazione Maugeri, IRCCS , Tradate , Italy
- h Department of Clinical and Experimental Medicine , University of Insubria , Varese , Italy
| | - Giovanni Battista Migliori
- b World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases , Fondazione S. Maugeri, Care and Research Institute , Tradate , Italy
| |
Collapse
|
29
|
Gualano G, Capone S, Matteelli A, Palmieri F. New Antituberculosis Drugs: From Clinical Trial to Programmatic Use. Infect Dis Rep 2016; 8:6569. [PMID: 27403268 PMCID: PMC4927937 DOI: 10.4081/idr.2016.6569] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/05/2023] Open
Abstract
Treatment of multidrug-resistant tuberculosis (MDR-TB) cases is challenging because it relies on second-line drugs that are less potent and more toxic than those used in the clinical management of drug-susceptible TB. Moreover, treatment outcomes for MDR-TB are generally poor compared to drug sensitive disease, highlighting the need for of new drugs. For the first time in more than 50 years, two new anti-TB drugs were approved and released. Bedaquiline is a first-in-class diarylquinoline compound that showed durable culture conversion at 24 weeks in phase IIb trials. Delamanid is the first drug of the nitroimidazole class to enter clinical practice. Similarly to bedaquiline results of phase IIb studies showed increased sputum-culture conversion at 2 months and better final treatment outcomes in patients with MDR-TB. Among repurposed drugs linezolid and carbapenems may represent a valuable drug to treat cases of MDR and extensively drug-resistant TB. The recommended regimen for MDR-TB is the combination of at least four drugs to which M. tuberculosis is likely to be susceptible for the duration of 20 months. Drugs are chosen with a stepwise selection process through five groups on the basis of efficacy, safety, and cost. Clinical phase III trials on new regimen are ongoing that could prove transformative against MDR-TB, by being shorter (six months), simpler (an all-oral regimen) and safer than current standard therapy. It is fundamental that the adoption of the new drugs is done responsibly to avoid inappropriate use. Concentration of in-patient MDR-TB treatment in specialized centers could be considered in countries with low numbers of cases in order to provide appropriate clinical case management and to prevent emergence of drug resistance.
Collapse
Affiliation(s)
- Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases L. Spallanzani , Rome
| | - Susanna Capone
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV and TB Elimination, University of Brescia , Italy
| | - Alberto Matteelli
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV and TB Elimination, University of Brescia , Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases L. Spallanzani , Rome
| |
Collapse
|
30
|
Tadolini M, Lingtsang RD, Tiberi S, Enwerem M, D'Ambrosio L, Sadutshang TD, Centis R, Migliori GB. First case of extensively drug-resistant tuberculosis treated with both delamanid and bedaquiline. Eur Respir J 2016; 48:935-8. [PMID: 27288039 PMCID: PMC5007220 DOI: 10.1183/13993003.00637-2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 11/05/2022]
Abstract
The European Respiratory Journal has recently discussed delamanid and bedaquiline and their use in difficult-to-treat cases affected by multidrug-resistant tuberculosis (MDR-TB) or extensively drug-resistant (XDR-TB) [1–4]. The use of delamanid or bedaquiline is particularly important when four active drugs cannot be identified and included in a regimen, as per World Health Organization (WHO) guidelines [1–6]. Recently a debate has been initiated around the report of a severe, almost untreatable, XDR-TB case who could not access both new drugs simultaneously [7–10] due to concerns about possible additive toxicity (cardiotoxicity), as well as the lack of evidence and specific guidance on their combined use [10–13]. Report of the first case, concerns and challenges of treatment of severe XDR-TB with both delamanid and bedaquilinehttp://ow.ly/WzeB3004Cmo
Collapse
Affiliation(s)
- Marina Tadolini
- Unit of Infectious Diseases, Dept of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy These authors contributed equally
| | | | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, London, UK These authors contributed equally
| | - Martin Enwerem
- Amity Health Consortium, Johannesburg, South Africa These authors contributed equally
| | - Lia D'Ambrosio
- Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy Public Health Consulting Group, Lugano, Switzerland These authors contributed equally
| | | | - Rosella Centis
- Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | | |
Collapse
|
31
|
MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration. Antimicrob Agents Chemother 2016; 60:3316-22. [PMID: 26976868 DOI: 10.1128/aac.03014-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB.
Collapse
|
32
|
Yew WW, Koh WJ. Emerging strategies for the treatment of pulmonary tuberculosis: promise and limitations? Korean J Intern Med 2016; 31:15-29. [PMID: 26767853 PMCID: PMC4712419 DOI: 10.3904/kjim.2016.31.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023] Open
Abstract
A worsening scenario of drug-resistant tuberculosis has increased the need for new treatment strategies to tackle this worldwide emergency. There is a pressing need to simplify and shorten the current 6-month treatment regimen for drug-susceptible tuberculosis. Rifamycins and fluoroquinolones, as well as several new drugs, are potential candidates under evaluation. At the same time, treatment outcomes of patients with drug-resistant tuberculosis should be improved through optimizing the use of fluoroquinolones, repurposed agents and newly developed drugs. In this context, the safety and tolerance of new therapeutic approaches must be addressed.
Collapse
Affiliation(s)
- Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong
- Correspondence to Wing Wai Yew, M.D. Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Tel: +852-2252-8884 Fax: +852-2635-4977 E-mail:
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Delamanid in multidrug-resistant tuberculosis: a guide to its use in the EU. DRUGS & THERAPY PERSPECTIVES 2015. [DOI: 10.1007/s40267-015-0251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Caminero JA, Scardigli A. Classification of antituberculosis drugs: a new proposal based on the most recent evidence. Eur Respir J 2015; 46:887-93. [DOI: 10.1183/13993003.00432-2015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res 2015; 1:00010-2015. [PMID: 27730131 PMCID: PMC5005131 DOI: 10.1183/23120541.00010-2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/06/2022] Open
Abstract
Over 480 000 cases of multidrug-resistant (MDR) tuberculosis (TB) occur every year globally, 9% of them being affected by extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. The treatment of MDR/XDR-TB is unfortunately long, toxic and expensive, and the success rate largely unsatisfactory (<20% among cases with resistance patterns beyond XDR). The aim of this review is to summarise the available evidence-based updated international recommendations to manage MDR/XDR-TB, and to update the reader on the role of newly developed drugs (delamanid, bedaquiline and pretomanid) as well as repurposed drugs (linezolid and meropenem clavulanate, among others) used to treat these conditions within new regimens. A nonsystematic review based on historical trials results as well as on recent literature and World Health Organization (WHO) guidelines has been performed, with special focus on the approach to managing MDR/XDR-TB. The new, innovative global public health interventions, recently approved by WHO and known as the “End TB Strategy”, support the vision of a TB-free world with zero death, disease and suffering due to TB. Adequate, universally accessed treatment is a pre-requisite to reach TB elimination. New shorter, cheap, safe and effective anti-TB regimens are necessary to boost TB elimination. The new WHO post-2015 End TB Strategy will support the efforts that research on new drugs and regimens requireshttp://ow.ly/LnJER
Collapse
Affiliation(s)
- Lia D'Ambrosio
- WHO Collaborating Centre for Tuberculosis & Lung Diseases, Fondazione S. Maugeri, IRCCS, Tradate, Italy; These authors contributed equally
| | - Rosella Centis
- WHO Collaborating Centre for Tuberculosis & Lung Diseases, Fondazione S. Maugeri, IRCCS, Tradate, Italy; These authors contributed equally
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari - Research, Medical Education and Professional Development Unit, AOU Sassari, Sassari, Italy
| | - Emanuele Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - Antonio Spanevello
- Pneumology Unit, Fondazione Maugeri, IRCCS, Tradate, Italy; Dept of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | | |
Collapse
|