1
|
Bossé Y. The airway smooth muscle and the pipe dream of better bronchodilators. Can J Physiol Pharmacol 2025; 103:2-11. [PMID: 39361971 DOI: 10.1139/cjpp-2024-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Research on airway smooth muscle has traditionally focused on its putative detrimental role in asthma, emphasizing on how its shortening narrows the airway lumen, without much consideration about its potential role in subserving the function of the entire respiratory system. New experimental evidence on mice suggests that not only the smooth muscle is required to sustain life postnatally, but its stiffening effect on the lung tissue also protects against excessive airway narrowing and, most importantly, against small airway narrowing heterogeneity and closure. These results suggest that the smooth muscle plays an vital role in the lung periphery, essentially safeguarding alveolar ventilation by preventing small airway closure. These results also shed light on perplexing clinical observations, such as the long-standing doubts about the safety of bronchodilators. Since there seems to be an optimal level of smooth muscle contraction, at least in small airways, the therapeutic goal of maximizing the relaxation of the smooth muscle in asthma needs to be revisited. A bronchodilator with an excessive potency for inhibiting smooth muscle contraction, and that is still potent at concentrations reaching the lung periphery, may foster airway closure and air trapping, resulting in no net gain or even a decline in lung function.
Collapse
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Boucher M, Henry C, Gélinas L, Packwood R, Rojas-Ruiz A, Fereydoonzad L, Graham P, Bossé Y. High throughput screening of airway constriction in mouse lung slices. Sci Rep 2024; 14:20133. [PMID: 39210022 PMCID: PMC11362152 DOI: 10.1038/s41598-024-71170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The level of airway constriction in thin slices of lung tissue is highly variable. Owing to the labor-intensive nature of these experiments, determining the number of airways to be analyzed in order to allocate a reliable value of constriction in one mouse is challenging. Herein, a new automated device for physiology and image analysis was used to facilitate high throughput screening of airway constriction in lung slices. Airway constriction was first quantified in slices of lungs from male BALB/c mice with and without experimental asthma that were inflated with agarose through the trachea or trans-parenchymal injections. Random sampling simulations were then conducted to determine the number of airways required per mouse to quantify maximal constriction. The constriction of 45 ± 12 airways per mouse in 32 mice were analyzed. Mean maximal constriction was 37.4 ± 32.0%. The agarose inflating technique did not affect the methacholine response. However, the methacholine constriction was affected by experimental asthma (p = 0.003), shifting the methacholine concentration-response curve to the right, indicating a decreased sensitivity. Simulations then predicted that approximately 35, 16 and 29 airways per mouse are needed to quantify the maximal constriction mean, standard deviation and coefficient of variation, respectively; these numbers varying between mice and with experimental asthma.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada
| | - Louis Gélinas
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada
| | - Rosalie Packwood
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada
| | - Andrés Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada
| | | | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, Pavillon M, room 2687, 2725, chemin Sainte-Foy, Quebec, Qc, G1V 4G5, Canada.
| |
Collapse
|
3
|
Bayat S, Wild J, Winkler T. Lung functional imaging. Breathe (Sheff) 2023; 19:220272. [PMID: 38020338 PMCID: PMC10644108 DOI: 10.1183/20734735.0272-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France
| | - Jim Wild
- POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Gill R, Rojas‐Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise? Exp Physiol 2023; 108:1080-1091. [PMID: 37341687 PMCID: PMC10988431 DOI: 10.1113/ep091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.
Collapse
Affiliation(s)
- Rebecka Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Andrés Rojas‐Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| |
Collapse
|
5
|
Henry C, Boucher M, Boulay MÈ, Côté A, Boulet LP, Bossé Y. The cumulative effect of methacholine on large and small airways when deep inspirations are avoided. Respirology 2023; 28:226-235. [PMID: 36210352 DOI: 10.1111/resp.14387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Marie-Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
6
|
James AL, Donovan GM, Green FHY, Mauad T, Abramson MJ, Cairncross A, Noble PB, Elliot JG. Heterogeneity of Airway Smooth Muscle Remodeling in Asthma. Am J Respir Crit Care Med 2023; 207:452-460. [PMID: 36399661 DOI: 10.1164/rccm.202111-2634oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rationale: Ventilatory defects in asthma are heterogeneous and may represent the distribution of airway smooth muscle (ASM) remodeling. Objectives: To determine the distribution of ASM remodeling in mild-severe asthma. Methods: The ASM area was measured in nine airway levels in three bronchial pathways in cases of nonfatal (n = 30) and fatal asthma (n = 20) and compared with control cases without asthma (n = 30). Correlations of ASM area within and between bronchial pathways were calculated. Asthma cases with 12 large and 12 small airways available (n = 42) were classified on the basis of the presence or absence of ASM remodeling (more than two SD of mean ASM area of control cases, n = 86) in the large or small airway or both. Measurements and Main Results: ASM remodeling varied widely within and between cases of nonfatal asthma and was more widespread and confluent and more marked in fatal cases. There were weak correlations of ASM between levels within the same or separate bronchial pathways; however, predictable patterns of remodeling were not observed. Using mean data, 44% of all asthma cases were classified as having no ASM remodeling in either the large or small airway despite a three- to 10-fold increase in the number of airways with ASM remodeling and 81% of asthma cases having ASM remodeling in at least one large and small airway. Conclusions: ASM remodeling is related to asthma severity but is heterogeneous within and between individuals and may contribute to the heterogeneous functional defects observed in asthma. These findings support the need for patient-specific targeting of ASM remodeling.
Collapse
Affiliation(s)
- Alan L James
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology and
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Thais Mauad
- Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil; and
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
7
|
Bates JHT, Kaminsky DA, Garrow OJ, Martin FK, Peters U, Tharp WG, Dixon AE. Lung de-recruitment in the allergic asthma of obesity: evidence from an anatomically based inverse model. J Appl Physiol (1985) 2023; 134:356-364. [PMID: 36603046 PMCID: PMC9886348 DOI: 10.1152/japplphysiol.00540.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The increase in asthma associated with the obesity epidemic cannot simply be due to airway hyperresponsiveness from chronic lung compression because chronic lung compression is a feature of obesity in general. We therefore sought to investigate what other factors might be at play in the impaired lung function seen in obese individuals with asthma. We measured respiratory system impedance in four groups-Lean Control, Lean Allergic Asthma, Obese Control, and Obese Allergic Asthma-before and after administration of albuterol. Impedance measurements were fit with an anatomically based computational model of lung mechanics that represents the airway tree as a branching structure with a uniform degree of asymmetry and a fixed radius scaling ratio, γ, between branches of sequential order. The two model parameters that define the airway tree, γ and tracheal radius, varied only modestly between the four study groups, indicating relatively minor differences in airway caliber. In contrast, respiratory system elastance was 57, 34, 143, and 271 cmH2O/L, respectively, for the four groups, suggesting that obesity induced significant lung de-recruitment that was exacerbated by allergic asthma. In addition, when the radii of the individual branches of the airway tree were varied randomly, we found that roughly half the terminal airways had to be closed to have the model fit the data well. We conclude that de-recruitment of small airways is a particular feature of Obese Allergic Asthma, and this can be inferred from respiratory system impedance fit with an anatomically based computational model.NEW & NOTEWORTHY Using a novel anatomically based computational model to interpret oscillometry measurements of impedance, we show that respiratory system elastance is increased in obesity and is increased dramatically in individuals with obese allergic asthma. A significant component of this increased elastance in obese allergic asthma appears to be due to closure of small airways rather than alveolar atelectasis, and this closure is partially mitigated by albuterol. These findings potentially point to nonpharmacological therapies in obese allergic asthma aimed at recruiting closed airways.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David A Kaminsky
- Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Olivia J Garrow
- Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Francesca K Martin
- Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Ubong Peters
- Genentech Inc., Roche Group, South San Francisco, California
| | - W Gabe Tharp
- Department of Anesthesiology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Anne E Dixon
- Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
8
|
Klimenko O, Luu P, Dominelli P, Noggle N, Petrics G, Haverkamp HC. Effect of exercise-induced bronchoconstriction on the configuration of the maximal expiratory flow-volume curve in adults with asthma. Physiol Rep 2023; 11:e15614. [PMID: 36823958 PMCID: PMC9950550 DOI: 10.14814/phy2.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
We determined the effect of exercise-induced bronchoconstriction (EIB) on the shape of the maximal expiratory flow-volume (MEFV) curve in asthmatic adults. The slope-ratio index (SR) was used to quantitate the shape of the MEFV curve. We hypothesized that EIB would be accompanied by increases in SR and thus increased curvilinearity of the MEFV curve. Adult asthmatic ( n = 10) and non-asthmatic control subjects ( n = 9) cycled for 6-8 min at 85% of peak power. Following exercise, subjects remained on the ergometer and performed a maximal forced exhalation every 2 min for a total 20 min. In each MEFV curve, the slope-ratio index (SR) was calculated in 1% volume increments beginning at peak expiratory flow (PEF) and ending at 20% of forced vital capacity (FVC). Baseline spirometry was lower in asthmatics compared to control subjects (FEV1 % predicted, 89.1 ± 14.3 vs. 96.5 ± 12.2% [SD] in asthma vs. control; p < 0.05). In asthmatic subjects, post-exercise FEV1 decreased by 29.9 ± 13.2% from baseline (3.48 ± 0.74 and 2.24 ± 0.59 [SD] L for baseline and post-exercise nadir; p < 0.001). At baseline and at all timepoints after exercise, average SR between 80 and 20% of FVC was larger in asthmatic than control subjects (1.48 ± 0.02 vs. 1.23 ± 0.02 [SD] for asthma vs. control; p < 0.005). This averaged SR did not change after exercise in either subject group. In contrast, post-exercise SR between PEF and 75% of FVC was increased from baseline in subjects with asthma, suggesting that airway caliber heterogeneity increases with EIB. These findings suggest that the SR-index might provide useful information on the physiology of acute airway narrowing that complements traditional spirometric measures.
Collapse
Affiliation(s)
- Oksana Klimenko
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Peter Luu
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Paolo Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Nathan Noggle
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Gregory Petrics
- Department of Mathematics, Northern Vermont University-Johnson, Johnson, Vermont, USA
| | - Hans Christian Haverkamp
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| |
Collapse
|
9
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
10
|
Boucher M, Henry C, Bossé Y. Force adaptation through the intravenous route in naïve mice. Exp Lung Res 2023; 49:131-141. [PMID: 37477352 DOI: 10.1080/01902148.2023.2237127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Aim of the study: Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine in vivo, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. Materials and Methods: Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. Results: For the elastance of the respiratory system (Ers), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 vs. 61.5 ± 15.1 cmH2O/mL; p = 0.01) and males (33.0 ± 14.3 vs. 166.7 ± 60.6 cmH2O/mL; p = 0.0004), respectively. For the resistance of the respiratory system (Rrs), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 vs. 22.2 ± 4.3 cmH2O·s/mL; p = 0.0003) and males (10.7 ± 3.1 vs. 34.7 ± 7.9 cmH2O·s/mL; p < 0.0001), respectively. Conclusions: As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive versus elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| |
Collapse
|
11
|
Sallé-Lefort S, Miard S, Henry C, Arias-Reyes C, Marcouiller F, Beaulieu MJ, Aubin S, Lechasseur A, Jubinville É, Marsolais D, Morissette MC, Joseph V, Soliz J, Bossé Y, Picard F. Malat1 deficiency prevents hypoxia-induced lung dysfunction by protecting the access to alveoli. Front Physiol 2022; 13:949378. [PMID: 36105289 PMCID: PMC9464821 DOI: 10.3389/fphys.2022.949378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia is common in lung diseases and a potent stimulator of the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1). Herein, we investigated the impact of Malat1 on hypoxia-induced lung dysfunction in mice. Malat1-deficient mice and their wild-type littermates were tested after 8 days of normoxia or hypoxia (10% oxygen). Hypoxia decreased elastance of the lung by increasing lung volume and caused in vivo hyperresponsiveness to methacholine without altering the contraction of airway smooth muscle. Malat1 deficiency also modestly decreased lung elastance but only when tested at low lung volumes and without altering lung volume and airway smooth muscle contraction. The in vivo responsiveness to methacholine was also attenuated by Malat1 deficiency, at least when elastance, a readout sensitive to small airway closure, was used to assess the response. More impressively, in vivo hyperresponsiveness to methacholine caused by hypoxia was virtually absent in Malat1-deficient mice, especially when hysteresivity, a readout sensitive to small airway narrowing heterogeneity, was used to assess the response. Malat1 deficiency also increased the coefficient of oxygen extraction and decreased ventilation in conscious mice, suggesting improvements in gas exchange and in clinical signs of respiratory distress during natural breathing. Combined with a lower elastance at low lung volumes at baseline, as well as a decreased propensity for small airway closure and narrowing heterogeneity during a methacholine challenge, these findings represent compelling evidence suggesting that the lack of Malat1 protects the access to alveoli for air entering the lung.
Collapse
Affiliation(s)
- Sandrine Sallé-Lefort
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Quebec, QC, Canada
| | - Stéphanie Miard
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Cyndi Henry
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Christian Arias-Reyes
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - François Marcouiller
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Marie-Josée Beaulieu
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Sophie Aubin
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Ariane Lechasseur
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - David Marsolais
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mathieu C. Morissette
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Vincent Joseph
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Jorge Soliz
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Ynuk Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- *Correspondence: Ynuk Bossé, ; Frédéric Picard,
| | - Frédéric Picard
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Quebec, QC, Canada
- *Correspondence: Ynuk Bossé, ; Frédéric Picard,
| |
Collapse
|
12
|
Boucher M, Dufour-Mailhot A, Tremblay-Pitre S, Khadangi F, Rojas-Ruiz A, Henry C, Bossé Y. In mice of both sexes, repeated contractions of smooth muscle in vivo greatly enhance the response of peripheral airways to methacholine. Respir Physiol Neurobiol 2022; 304:103938. [PMID: 35716869 DOI: 10.1016/j.resp.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
BALB/c mice from both sexes underwent one of two nebulized methacholine challenges that were preceded by a period of 20 min either with or without tone induced by repeated contractions of the airway smooth muscle. Impedance was monitored throughout and the constant phase model was used to dissociate the impact of tone on conducting airways (RN - Newtonian resistance) versus the lung periphery (G and H - tissue resistance and elastance). The effect of tone on smooth muscle contractility was also tested on excised tracheas. While tone markedly potentiated the methacholine-induced gains in H and G in both sexes, the gain in RN was only potentiated in males. The contractility of female and male tracheas was also potentiated by tone. Inversely, the methacholine-induced gain in hysteresivity (G/H) was mitigated by tone in both sexes. Therefore, the tone-induced muscle hypercontractility impacts predominantly the lung periphery in vivo, but also promotes further airway narrowing in males while protecting against narrowing heterogeneity in both sexes.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Andrés Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada.
| |
Collapse
|
13
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
14
|
Donovan GM, Noble PB. Small airways vs large airways in asthma: time for a new perspective. J Appl Physiol (1985) 2021; 131:1839-1841. [PMID: 34520278 DOI: 10.1152/japplphysiol.00403.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Bourdin A, Charriot J, Boissin C, Ahmed E, Suehs C, De Sevin A, Volpato M, Pahus L, Gras D, Vachier I, Halimi L, Hamerlijnck D, Chanez P. Will the asthma revolution fostered by biologics also benefit adult ICU patients? Allergy 2021; 76:2395-2406. [PMID: 33283296 DOI: 10.1111/all.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Asthma exacerbations are inflammatory events that rarely result in full hospitalization following an ER visit. Unfortunately, certain patients require prolonged support, including occasional external lung support through ECMO or ECCOR (with subsequent further exposure to other life-threatening issues), and some die. In parallel, biologics are revolutionizing severe asthma management, mostly in T2 high patients. METHODS We extensively reviewed the current unmet needs surrounding ICU-admitted asthma exacerbations, with a focus on currently available drugs and the underlying biological processes involved. We explored whether currently available T2-targeting drugs can reasonably be seen as potential players not only for relapse prevention but also as candidate drugs for a faster resolution of such episodes. The patient's perspective was also sought. RESULTS About 30% of asthma exacerbations admitted to the ICU do not resolve within five days. Persistent severe airway obstruction despite massive doses of corticosteroids and maximal pharmacologically induced bronchodilation is the main cause of treatment failure. Previous ICU admission is the main risk factor for such episodes and may eventually be considered as a T2 surrogate marker. Fatal asthma cases are hallmarked by poorly steroid-sensitive T2-inflammation associated with severe mucus plugging. New, fast-acting T2-targeting biologics (already used for preventing asthma exacerbations) have the potential to circumvent steroid sensitivity pathways and decrease mucus plugging. This unmet need was confirmed by patients who reported highly negative, traumatizing experiences. CONCLUSIONS There is room for improvement in the management of ICU-admitted severe asthma episodes. Clinical trials assessing how biologics might improve ICU outcomes are direly needed.
Collapse
Affiliation(s)
- Arnaud Bourdin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Jérémy Charriot
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Clément Boissin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Engi Ahmed
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Carey Suehs
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- Department of Medical Information Univ Montpellier, CHU Montpellier Montpellier France
| | - Arthur De Sevin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Mathilde Volpato
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurie Pahus
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivCNRSEFS, ADES Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Delphine Gras
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Isabelle Vachier
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurence Halimi
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | | | - Pascal Chanez
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| |
Collapse
|
16
|
Konietzke P, Weinheimer O, Wagner WL, Wuennemann F, Hintze C, Biederer J, Heussel CP, Kauczor HU, Wielpütz MO. Optimizing airway wall segmentation and quantification by reducing the influence of adjacent vessels and intravascular contrast material with a modified integral-based algorithm in quantitative computed tomography. PLoS One 2020; 15:e0237939. [PMID: 32813730 PMCID: PMC7437894 DOI: 10.1371/journal.pone.0237939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Quantitative analysis of multi-detector computed tomography (MDCT) plays an increasingly important role in assessing airway disease. Depending on the algorithms used, airway dimensions may be over- or underestimated, primarily if contrast material was used. Therefore, we tested a modified integral-based method (IBM) to address this problem. Methods Temporally resolved cine-MDCT was performed in seven ventilated pigs in breath-hold during iodinated contrast material (CM) infusion over 60s. Identical slices in non-enhanced (NE), pulmonary-arterial (PA), systemic-arterial (SA), and venous phase (VE) were subjected to an in-house software using a standard and a modified IBM. Total diameter (TD), lumen area (LA), wall area (WA), and wall thickness (WT) were measured for ten extra- and six intrapulmonary airways. Results The modified IBM significantly reduced TD by 7.6%, LA by 12.7%, WA by 9.7%, and WT by 3.9% compared to standard IBM on non-enhanced CT (p<0.05). Using standard IBM, CM led to a decrease of all airway parameters compared to NE. For example, LA decreased from 80.85±49.26mm2 at NE, to 75.14±47.96mm2 (-7.1%) at PA (p<0.001), 74.96±48.55mm2 (-7.3%) at SA (p<0.001), and to 78.95±48.94mm2 (-2.4%) at VE (p = 0.200). Using modified IBM, the differences were reduced to -3.1% at PA, -2.9% at SA and -0.7% at VE (p<0.001; p<0.001; p = 1.000). Conclusions The modified IBM can optimize airway wall segmentation and reduce the influence of CM on quantitative CT. This allows a more precise measurement as well as potentially the comparison of enhanced with non-enhanced scans in inflammatory airway disease.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L. Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Hintze
- Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Radiologie Rein-Nahe, Bingen, Germany
| | - Juergen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Aliboni L, Pennati F, Royston TJ, Woods JC, Aliverti A. Simulation of bronchial airway acoustics in healthy and asthmatic subjects. PLoS One 2020; 15:e0228603. [PMID: 32040483 PMCID: PMC7010248 DOI: 10.1371/journal.pone.0228603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
The onset and development of many airway pathologies affect sound propagation throughout the respiratory system; changes in respiratory sounds are detected primarily by auscultation, which is highly skill dependent. The aim of the present study was to compare healthy and asthmatic pulmonary acoustics by applying a 1D model of wave propagation on CT-based patient-specific geometries. High-resolution CT lung images were acquired in five healthy volunteers and five asthmatic patients at total lung capacity (TLC) and functional residual capacity (FRC). Tracheobronchial trees were reconstructed from CT images. Acoustic pressure, impedance and wall radial velocity were measured by simulating acoustic wave propagation of two external, acoustic pressure waves (1 Pa, 200 and 600 Hz) from the trachea level to the 4th generation. In asthmatic patients, acoustic pressure averaged across the last three generations showed a reduction equal to 29.7% (p<0.01) at FRC, at 200 Hz; input and terminal impedance were 34.5% (p<0.05) higher both at FRC and TLC; wall radial velocity was more than 80% (p<0.05) lower in higher generations both at FRC and TLC. Airway differences in asthma alter acoustic parameters at FRC and TLC, with the greatest difference at FRC and 200 Hz. Acoustic wave propagation analysis represents a quantitative approach that has potential to objectively characterize airway differences in individuals with diseases such as asthma.
Collapse
Affiliation(s)
- Lorenzo Aliboni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
- * E-mail:
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Thomas J. Royston
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jason C. Woods
- Department of Pediatrics, Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Physics, Washington University, St Louis, Missouri, United States of America
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
19
|
Bhatawadekar SA, Leary D, de Lange V, Peters U, Fulton S, Hernandez P, McParland C, Maksym GN. Reactance and elastance as measures of small airways response to bronchodilator in asthma. J Appl Physiol (1985) 2019; 127:1772-1781. [PMID: 31647721 DOI: 10.1152/japplphysiol.01131.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bronchodilation alters both respiratory system resistance (Rrs) and reactance (Xrs) in asthma, but how changes in Rrs and Xrs compare, and respond differently in health and asthma, in reflecting the contributions from the large and small airways has not been assessed. We assessed reversibility using spirometry and oscillometry in healthy and asthma subjects. Using a multibranch airway-tree model with the mechanics of upper airway shunt, we compared the effects of airway dilation and small airways recruitment to explain the changes in Rrs and Xrs. Bronchodilator decreased Rrs by 23.0 (19.0)% in 18 asthma subjects and by 13.5 (19.5)% in 18 healthy subjects. Estimated respiratory system elastance (Ers) decreased by 23.2 (21.4)% in asthma, with no significant decrease in healthy subjects. With the use of the model, airway recruitment of 15% across a generation of the small airways could explain the changes in Ers in asthma with no recruitment in healthy subjects. In asthma, recruitment accounted for 40% of the changes in Rrs, with the remaining explained by airway dilation of 6.8% attributable largely to the central airways. Interestingly, the same dilation magnitude explained the changes in Rrs in healthy subjects. Shunt only affected Rrs of the model. Ers was unaltered in health and unaffected by shunt in both groups. In asthma, Ers changed comparably to Rrs and could be attributed to small airways, while the change in Rrs was split between large and small airways. This implies that in asthma Ers sensed through Xrs may be a more effective measure of small airways obstruction and recruitment than Rrs.NEW & NOTEWORTHY This is the first study to quantify to relative contributions of small and large airways to bronchodilator response in healthy subjects and patients with asthma. The response of the central airways to bronchodilator was similar in magnitude in both study groups, whereas the response of the small airways was significant among patients with asthma. These results suggest that low-frequency reactance and derived elastance are both sensitive measures of small airway function in asthma.
Collapse
Affiliation(s)
- S A Bhatawadekar
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - D Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - V de Lange
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - U Peters
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - S Fulton
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - P Hernandez
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C McParland
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Polak AG, Wysoczański D, Mroczka J. Effects of homogeneous and heterogeneous changes in the lung periphery on spirometry results. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:139-145. [PMID: 31046988 DOI: 10.1016/j.cmpb.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The most widespread chronic pulmonary disorders are associated with heterogeneous changes in the lung periphery and spirometry is the most commonly used test to monitor these diseases. So far only a few attempts have been undertaken to investigate the effects of lung inhomogeneity on spirometry results. The aim of this work was to evaluate whether the spirometric curve and indexes are sensitive to parallel peripheral inhomogeneities, and if the level of heterogeneity can be deduced from this test. METHODS To this end, an enhanced computational model for forced expiration, taking into account a heterogeneous structure and properties of the respiratory system, was used. Two main phenomena were mimicked: small airways narrowing and the loss of tissue elastic recoil. Numerical simulations were performed with the model having 76 separate peripheral compartments. For a given degree of mean change, three heterogeneity levels were investigated and compared to the effects of homogeneous alterations. RESULTS All spirometric curves representing different patterns of inhomogeneous constriction, computed for each of the investigated cases, almost coincided with the curve originating from homogeneous changes, regardless of the heterogeneity level. Also the differences between the spirometric indexes obtained for heterogeneous and homogeneous alterations were negligible in comparison to their values. CONCLUSION The main finding is that the spirometry results are insensitive to the level of heterogeneity in the lung periphery and that it is practically impossible to distinguish between the homogeneous or heterogeneous nature of pathological processes occurring in this lung region.
Collapse
Affiliation(s)
- Adam G Polak
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland.
| | - Dariusz Wysoczański
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland
| | - Janusz Mroczka
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland
| |
Collapse
|
21
|
King GG, Farrow CE, Chapman DG. Dismantling the pathophysiology of asthma using imaging. Eur Respir Rev 2019; 28:28/152/180111. [PMID: 30996039 DOI: 10.1183/16000617.0111-2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/01/2019] [Indexed: 11/05/2022] Open
Abstract
Asthma remains an important disease worldwide, causing high burden to patients and healthcare systems and presenting a need for better management and ultimately prevention and cure. Asthma is a very heterogeneous condition, with many different pathophysiological processes. Better measurement of those pathophysiological processes are needed to better phenotype disease, and to go beyond the current, highly limited measurements that are currently used: spirometry and symptoms. Sophisticated three-dimensional lung imaging using computed tomography and ventilation imaging (single photon emission computed tomography and positron emission tomography) and magnetic resonance imaging and methods of lung imaging applicable to asthma research are now highly developed. The body of current evidence suggests that abnormalities in structure and ventilatory function measured by imaging are clinically relevant, given their associations with disease severity, exacerbation risk and airflow obstruction. Therefore, lung imaging is ready for more widespread use in clinical trials and to become part of routine clinical assessment of asthma.
Collapse
Affiliation(s)
- Gregory G King
- Dept of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia .,Woolcock Institute of Medical Research and Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre of Excellence in Severe Asthma, Newcastle, Australia
| | - Catherine E Farrow
- Dept of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Woolcock Institute of Medical Research and Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre of Excellence in Severe Asthma, Newcastle, Australia
| | - David G Chapman
- Woolcock Institute of Medical Research and Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
22
|
Hoshino M, Akitsu K, Ohtawa J. Comparison between montelukast and tiotropium as add-on therapy to inhaled corticosteroids plus a long-acting β 2-agonist in for patients with asthma. J Asthma 2018; 56:995-1003. [PMID: 30212239 DOI: 10.1080/02770903.2018.1514047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: Asthma often remains uncontrolled despite treatment with inhaled corticosteroids (ICS) alone or with ICS plus a long-acting β2-agonist (LABA). The recommended alternative is the addition of either montelukast or tiotropium. The aim of this study was to compare the effects of montelukast and tiotropium on airway inflammation and remodeling in persistent asthma. Methods: Eighty-seven patients with asthma were treated with budesonide and formoterol (640/18 μg); then, the patients were randomly allocated to three groups to receive oral montelukast (10 mg/day), inhaled tiotropium (5 μg/day), or no add-on to the maintenance therapy for 48 weeks. Fractional exhaled nitric oxide (FeNO) and pulmonary function were measured, and quantitative computed tomography was performed. Results: Compared to the maintenance therapy, add-on montelukast significantly decreased FeNO (p < 0.05) and improved airflow obstruction (p < 0.05), whereas airway dimensions remained unchanged. Changes in FeNO were significantly correlated with changes in FEV1 (r = -0.71, p < 0.001). In contrast, the addition of tiotropium significantly decreased airway wall area corrected for body surface area (WA/BSA) (p < 0.05), decreased wall thickness (T/√BSA) (p < 0.05) and improved airflow obstruction (p < 0.05) with no change in FeNO. Changes in WA/BSA and T/√BSA were significantly correlated with the change in percentage predicted FEV1 (r = -0.84, p < 0.001 and r = -0.59, p < 0.01, respectively). Conclusions:Adding either montelukast or tiotropium to ICS/LABA may provide additive benefits with respect to the pulmonary function and airway inflammation or remodeling in patients with asthma.
Collapse
Affiliation(s)
- Makoto Hoshino
- a Division of Clinical Allergy, Department of Internal Medicine, Atami Hospital, International University of Health and Welfare , Atami , Japan
| | - Kenta Akitsu
- b Department of Radiology, Atami Hospital, International University of Health and Welfare , Atami , Japan
| | - Junichi Ohtawa
- b Department of Radiology, Atami Hospital, International University of Health and Welfare , Atami , Japan
| |
Collapse
|
23
|
King GG, Thamrin C. Complex lung function in severe asthma: seeing is believing. Eur Respir J 2018; 48:294-6. [PMID: 27478183 DOI: 10.1183/13993003.01120-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Gregory G King
- Woolcock Institute of Medical Research, The University of Sydney, Australia Dept of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia NHMRC Centre of Excellence in Severe Asthma
| | - Cindy Thamrin
- Woolcock Institute of Medical Research, The University of Sydney, Australia
| |
Collapse
|
24
|
Gazzola M, Mailhot-Larouche S, Beucher C, Bossé Y. The underlying physiological mechanisms whereby anticholinergics alleviate asthma. Can J Physiol Pharmacol 2018; 96:433-441. [PMID: 29414243 DOI: 10.1139/cjpp-2017-0448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms whereby anticholinergics improve asthma outcomes, such as lung function, symptoms, and rate of exacerbation, can be numerous. The most obvious is by affecting the contraction of airway smooth muscle (ASM). The acetylcholine released from the cholinergic nerves is the most important bronchoconstrictor that sets the baseline degree of contractile activation of ASM in healthy individuals. Although the degree of ASM's contractile activation can also be fine-tuned by a plethora of other bronchoconstrictors and bronchodilators in asthma, blocking the ceaseless effect of acetylcholine on ASM by anticholinergics reduces, at any given moment, the overall degree of contractile activation. Because the relationships that exist between the degree of contractile activation, ASM force, ASM shortening, airway narrowing, airflow resistance, and respiratory resistance are not linear, small decreases in the contractile activation of ASM can be greatly amplified and thus translate into important benefits to a patient's well-being. Plus, many inflammatory and remodeling features that are often found in asthmatic lungs synergize with the contractile activation of ASM to increase respiratory resistance. This review recalls that the proven effectiveness of anticholinergics in the treatment of asthma could be merely attributed to a small reduction in the contractile activation of ASM.
Collapse
Affiliation(s)
- Morgan Gazzola
- Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada.,Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada
| | - Samuel Mailhot-Larouche
- Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada.,Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada
| | - Clémentine Beucher
- Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada.,Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada
| | - Ynuk Bossé
- Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada.,Quebec Heart and Lung Institute, affiliated with Université Laval, Quebec City, Quebec G1V 4G5, Canada
| |
Collapse
|
25
|
Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol (1985) 2017; 123:876-883. [PMID: 28705995 DOI: 10.1152/japplphysiol.00307.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876-883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.-High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.NEW & NOTEWORTHY There is a surprising lack of studies examining the reproducibility of high-resolution CT in asthma. The current study examined reproducibility of airway measurements. In stable well-controlled asthmatic subjects, it is possible to reproducibly image airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland; .,Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland.,Division of Pulmonary Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Environmental Health and Engineering, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert J Henderson
- Department of Epidemiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elizabeth A Sugar
- Department of Biostatistics, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Janet T Holbrook
- Department of Epidemiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert A Wise
- Division of Pulmonary Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
26
|
Mailhot-Larouche S, Lachance M, Bullone M, Henry C, Dandurand RJ, Boulet LP, Laviolette M, King GG, Farah CS, Bossé Y. Assessment of Airway Distensibility by the Forced Oscillation Technique: Reproducible and Potentially Simplifiable. Front Physiol 2017; 8:223. [PMID: 28446881 PMCID: PMC5388760 DOI: 10.3389/fphys.2017.00223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
A non-invasive index of airway distensibility is required to track airway remodeling over time. The forced oscillation technique (FOT) provides such an index by measuring the change in respiratory system conductance at 5 Hz over the corresponding change in lung volume (ΔGrs5/ΔVL). To become useful clinically, this method has to be reproducible and easy to perform. The series of breathing maneuvers required to measure distensibility would be greatly facilitated if the difficulty of breathing below functional residual capacity (FRC) could be precluded and the number of maneuvers could be reduced. The distensibility at lung volumes below FRC is also reduced by several confounders, suggesting that excluding data points below FRC should provide a better surrogate for airway remodeling. The objectives of this study were to investigate the reproducibility of airway distensibility measured by FOT and to assess whether the method could be simplified to increase feasibility. Distensibility was measured at three separate occasions in 13 healthy volunteers. At each visit, three deflationary maneuvers were performed, each consisting of tidal breathing from total lung capacity (TLC) to residual volume by slowly decreasing the end-expiratory volume on each subsequent breath. Distensibility was calculated by using either all data points from TLC to residual volume (RV) or only data points from TLC to FRC for either all three or only the first two deflationary maneuvers. Intra-class correlation coefficients (ICC) were used to assess reproducibility and Bland-Altman analyses were used to assess the level of agreement between the differently calculated values of distensibility. The results indicate that distensibility calculated using all data points is reproducible (ICC = 0.64). Using data points from TLC to FRC slightly improved reproducibility (ICC = 0.68) and increased distensibility by 19.4%, which was expected as distensibility above FRC should not be affected by confounders. Using only data points within the first two maneuvers did not affect reproducibility when tested between TLC and FRC (ICC = 0.66). We conclude that a valuable measure of airway distensibility could potentially be obtained with only two deflationary maneuvers that do not require breathing below FRC. This simplified method would increase feasibility without compromising reproducibility.
Collapse
Affiliation(s)
| | - Mélanie Lachance
- Department of Medicine, Quebec Heart and Lung Institute, Université LavalQuebec, QC, Canada
| | - Michela Bullone
- Department of Veterinary Science, University of TurinTurin, Italy
| | - Cyndi Henry
- Department of Medicine, Quebec Heart and Lung Institute, Université LavalQuebec, QC, Canada
| | - Ronald J Dandurand
- Meakins-Christie Laboratories, FOT Unit, Centre for Innovative Medicine, Montreal Chest Institute, McGill University Health Centre and McGill UniversityMontreal, QC, Canada
| | - Louis-Philippe Boulet
- Department of Medicine, Quebec Heart and Lung Institute, Université LavalQuebec, QC, Canada
| | - Michel Laviolette
- Department of Medicine, Quebec Heart and Lung Institute, Université LavalQuebec, QC, Canada
| | - Gregory G King
- Woolcock Institute of Medical ResearchSydney, NSW, Australia.,Sydney Medical School, University of SydneySydney, NSW, Australia.,Department of Respiratory Medicine, Royal North Shore HospitalSydney, NSW, Australia
| | - Claude S Farah
- Woolcock Institute of Medical ResearchSydney, NSW, Australia.,Sydney Medical School, University of SydneySydney, NSW, Australia.,Department of Respiratory Medicine, Concord HospitalSydney, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Ynuk Bossé
- Department of Medicine, Quebec Heart and Lung Institute, Université LavalQuebec, QC, Canada
| |
Collapse
|
27
|
Sheikh K, Guo F, Capaldi DPI, Ouriadov A, Eddy RL, Svenningsen S, Parraga G. Ultrashort echo time MRI biomarkers of asthma. J Magn Reson Imaging 2016; 45:1204-1215. [PMID: 27731948 DOI: 10.1002/jmri.25503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To develop and assess ultrashort echo-time (UTE) magnetic resonance imaging (MRI) biomarkers of lung function in asthma patients. MATERIALS AND METHODS Thirty participants including 13 healthy volunteers and 17 asthmatics provided written informed consent to UTE and pulmonary function tests in addition to hyperpolarized-noble-gas 3T MRI and computed tomography (CT) for asthmatics only. The difference in MRI signal-intensity (SI) across four lung volumes (full-expiration, functional-residual-capacity [FRC], FRC+1L, and full-inspiration) was determined on a voxel-by-voxel basis to generate dynamic proton-density (DPD) maps. MRI ventilation-defect-percent (VDP), UTE SI, and DPD values as well as CT radiodensity were determined for whole lung and individual lobes. RESULTS Mean SI at full-expiration (P < 0.01), FRC (P < 0.05), and DPD (P < 0.01) were greater in healthy volunteers compared to asthmatics. In asthmatics, UTE SI at full-expiration and DPD were correlated with FEV1 /FVC (SI r = 0.73/P = 0.002; DPD r = 0.75/P = 0.003), RV/TLC (SI r = -0.57/P = 0.02), or RV (DPD r = -0.62/P = 0.02), CT radiodensity (SI r = 0.83/P = 0.006; DPD r = 0.71/P = 0.01), and lobar VDP (SI rs = -0.33/P = 0.02; DPD rs = -0.47/P = 0.01). CONCLUSION In patients with asthma, UTE SI and dynamic proton-density were related to pulmonary function measurements, whole lung and lobar VDP, as well as CT radiodensity. Thus, UTE MRI biomarkers may reflect ventilation heterogeneity and/or gas-trapping in asthmatics using conventional equipment, making this approach potentially amenable for clinical use. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:1204-1215.
Collapse
Affiliation(s)
- Khadija Sheikh
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Fumin Guo
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Dante P I Capaldi
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Alexei Ouriadov
- Robarts Research Institute, The University of Western Ontario, London, Canada
| | - Rachel L Eddy
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Sarah Svenningsen
- Robarts Research Institute, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada.,Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | | |
Collapse
|
28
|
Brown RH, Togias A. Measurement of intraindividual airway tone heterogeneity and its importance in asthma. J Appl Physiol (1985) 2016; 121:223-32. [PMID: 27103654 PMCID: PMC4967252 DOI: 10.1152/japplphysiol.00545.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/20/2016] [Indexed: 11/22/2022] Open
Abstract
While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolution computed tomography at baseline and after maximum bronchodilation with albuterol. Airway tone was defined as the percent difference in airway diameter after albuterol at total lung capacity compared with baseline. The amount of airway tone in each airway varied both within and between subjects. The average airway tone did not differ significantly between the two groups (P = 0.09), but the intraindividual airway tone heterogeneity did (P = 0.016). Intraindividual airway tone heterogeneity was strongly correlated with airway tone (r = 0.78, P < 0.0001). Also, it was negatively correlated with the magnitude of the distension of the airways from functional residual capacity to total lung capacity at both baseline (r = −0.49, P = 0.03) and after maximum bronchodilation (r = −0.51, P = 0.02) in the asthma, but not the healthy group. However, we did not find any relationship between intraindividual airway tone heterogeneity and conventional lung function outcomes. Intraindividual airway tone heterogeneity appears to be an important characteristic of airway pathophysiology in asthma.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Environmental Health Sciences, Division of Physiology, Johns Hopkins University, Baltimore, Maryland; Department of Radiology, Johns Hopkins University, Baltimore, Maryland; and
| | - Alkis Togias
- Department of Medicine, Divisions of Allergy and Clinical Immunology and Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
Plantier L, Pradel A, Delclaux C. [Mechanisms of non-specific airway hyperresponsiveness: Methacholine-induced alterations in airway architecture]. Rev Mal Respir 2016; 33:735-743. [PMID: 26916468 DOI: 10.1016/j.rmr.2015.10.742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Multiple mechanisms drive non-specific airway hyperresponsiveness in asthma. At the organ level, methacholine inhalation induces a complex bronchomotor response involving both bronchoconstriction and, to some extent, paradoxical bronchodilatation. This response is heterogeneous both serially, along a single bronchial axis, and in parallel, among lung regions. The bronchomotor response to methacholine induces contraction of distal airways as well as focal airway closure in select lung territories, leading to anatomically defined ventilation defects and decreased vital capacity. In addition, loss of the bronchoprotector and bronchodilator effects of deep inspirations is a key contributor to airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- L Plantier
- Service de physiologie-explorations fonctionnelles, hôpital Bichat Claude-Bernard, DHU fibrosis, inflammation, remodeling in cardiovascular, respiratory and renal diseases (FIRE), AP-HP, 75018 Paris, France; Université Paris Diderot, PRES Sorbonne Paris Cité, 75013 Paris, France; Inserm UMR 1152, physiopathologie et épidémiologie des maladies respiratoires, 75018 Paris, France; Inserm UMR 1100, service de pneumologie, centre d'étude des pathologies respiratoires, université François-Rabelais, hôpital Bretonneau, 37000 Tours, France.
| | - A Pradel
- Service d'explorations fonctionnelles respiratoires, hôpital de la Salpêtrière, AP-HP, 75013 Paris, France
| | - C Delclaux
- Service de physiologie-explorations fonctionnelles, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Université Paris Descartes, 75006 Paris, France; Centre d'investigation clinique 9201, hôpital européen Georges-Pompidou, AP-HP, Inserm, 75908 Paris, France; Inserm UMR 1141, service de physiologie pédiatrique, hôpital Robert-Debré, AP-HP, 75019 Paris, France
| |
Collapse
|
30
|
Glapiński J, Mroczka J, Polak AG. Analysis of the method for ventilation heterogeneity assessment using the Otis model and forced oscillations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 122:330-340. [PMID: 26363677 DOI: 10.1016/j.cmpb.2015.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Increased heterogeneity of the lung disturbs pulmonary gas exchange. During bronchoconstriction, inflammation of lung parenchyma or acute respiratory distress syndrome, inhomogeneous lung ventilation can become bimodal and increase the risk of ventilator-induced lung injury during mechanical ventilation. A simple index sensitive to ventilation heterogeneity would be very useful in clinical practice. In the case of bimodal ventilation, the index (H) can be defined as the ratio between the longer and shorter time constant characterising regions of contrary mechanical properties. These time constants can be derived from the Otis model fitted to input impedance (Zin) measured using forced oscillations. In this paper we systematically investigated properties of the aforementioned approach. The research included both numerical simulations and real experiments with a dual-lung simulator. Firstly, a computational model mimicking the physical simulator was derived and then used as a forward model to generate synthetic flow and pressure signals. These data were used to calculate the input impedance and then the Otis inverse model was fitted to Zin by means of the Levenberg-Marquardt (LM) algorithm. Finally, the obtained estimates of model parameters were used to compute H. The analysis of the above procedure was performed in the frame of Monte Carlo simulations. For each selected value of H, forward simulations with randomly chosen lung parameters were repeated 1000 times. Resulting signals were superimposed by additive Gaussian noise. The estimated values of H properly indicated the increasing level of simulated inhomogeneity, however with underestimation and variation increasing with H. The main factor responsible for the growing estimation bias was the fixed starting vector required by the LM algorithm. Introduction of a correction formula perfectly reduced this systematic error. The experimental results with the dual-lung simulator confirmed potential of the proposed procedure to properly deduce the lung heterogeneity level. We conclude that the heterogeneity index H can be used to assess bimodal ventilation imbalances in cases when this phenomenon dominates lung properties, however future analyses, including the impact of lung tissue viscoelasticity and distributed airway or tissue inhomogeneity on H estimates, as well as studies in the time domain, are advisable.
Collapse
Affiliation(s)
- Jarosław Glapiński
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland.
| | - Janusz Mroczka
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland
| | - Adam G Polak
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
31
|
Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure. PLoS One 2015; 10:e0143550. [PMID: 26599006 PMCID: PMC4658077 DOI: 10.1371/journal.pone.0143550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022] Open
Abstract
Mechanisms driving alteration of lung function in response to inhalation of a methacholine aerosol are incompletely understood. To explore to what extent large and small airways contribute to airflow limitation and airway closure in this context, volumetric capnography was performed before (n = 93) and after (n = 78) methacholine provocation in subjects with an intermediate clinical probability of asthma. Anatomical dead space (VDaw), reflecting large airway volume, and the slope of the alveolar capnogram (slope3), an index of ventilation heterogeneity linked to small airway dysfunction, were determined. At baseline, VDaw was positively correlated with lung volumes, FEV1 and peak expiratory flow, while slope3 was not correlated with any lung function index. Variations in VDaw and slope3 following methacholine stimulation were correlated to a small degree (R2 = -0.20). Multivariate regression analysis identified independent associations between variation in FEV1 and variations in both VDaw (Standardized Coefficient-SC = 0.66) and Slope3 (SC = 0.35). By contrast, variation in FVC was strongly associated with variations in VDaw (SC = 0.8) but not Slope3. Thus, alterations in the geometry and/or function of large and small airways were weakly correlated and contributed distinctly to airflow limitation. While both large and small airways contributed to airflow limitation as assessed by FEV1, airway closure as assessed by FVC reduction mostly involved the large airways.
Collapse
|
32
|
Auger L, Mailhot-Larouche S, Tremblay F, Poirier M, Farah C, Bossé Y. The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness. Expert Rev Respir Med 2015; 10:19-27. [PMID: 26561333 DOI: 10.1586/17476348.2016.1111764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contractile capacity of airway smooth muscle is not fixed but modulated by an impressive number of extracellular inflammatory mediators. Targeting the transient component of airway hyperresponsiveness ascribed to this contractile lability of ASM is a quest of great promises in order to alleviate asthma symptoms during inflammatory flares. However, owing to the plethora of mediators putatively involved and the molecular heterogeneity of asthma, it is more likely that many mediators conspire to increase the contractile capacity of ASM, each of which contributing to a various extent and in a time-varying fashion in individuals suffering from asthma. The task of identifying a common mend for a tissue rendered hypercontractile by imponderable assortments of inflammatory mediators is puzzling.
Collapse
Affiliation(s)
- Laurence Auger
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Samuel Mailhot-Larouche
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Francis Tremblay
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Mathilde Poirier
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Claude Farah
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Ynuk Bossé
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| |
Collapse
|
33
|
Bhatawadekar SA, Leary D, Maksym GN. Modelling resistance and reactance with heterogeneous airway narrowing in mild to severe asthma. Can J Physiol Pharmacol 2015; 93:207-14. [PMID: 25730711 DOI: 10.1139/cjpp-2014-0436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventilation heterogeneity is an important marker of small airway dysfunction in asthma. The frequency dependence of respiratory system resistance (Rrs) from oscillometry is used as a measure of this heterogeneity. However, this has not been quantitatively assessed or compared with other outcomes from oscillometry, including respiratory system reactance (Xrs) and the associated elastance (Ers). Here, we used a multibranch model of the human lung, including an upper airway shunt, to match previously reported respiratory mechanics in mild to severe asthma. We imposed heterogeneity by narrowing a proportion of the peripheral airways to account for patient Ers at 5 Hz, and then narrowed central airways to account for the remaining Rrs at 18 Hz. The model required >75% of the small airways to be occluded to reproduce severe asthma. While the model produced frequency dependence in Rrs, it was upward-shifted below 5 Hz compared with in-vivo results, indicating that other factors, including more distributed airway narrowing or central airway wall compliance, are required. However, Ers quantitatively reflected the imposed heterogeneity better than the frequency dependence of Rrs, independent of the frequency range for the estimation, and thus was a more robust measure of small-airway function. Thus, Ers appears to have greater potential as a clinical measure of early small-airway disease in asthma.
Collapse
Affiliation(s)
- Swati A Bhatawadekar
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, Halifax, NS B3H 4R2, Canada
| | | | | |
Collapse
|
34
|
Comparison of a New Integral-Based Half-Band Method for CT Measurement of Peripheral Airways in COPD With a Conventional Full-Width Half-Maximum Method Using Both Phantom and Clinical CT Images. J Comput Assist Tomogr 2015; 39:428-36. [PMID: 25700223 DOI: 10.1097/rct.0000000000000218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To compare a new integral-based half-band method (IBHB) and a conventional full-width half-maximum (FWHM) method in measuring peripheral airway dimensions at airway phantoms and thin-section computed tomography of chronic obstructive pulmonary disease (COPD). METHODS The IBHB was validated and compared using airway phantoms and 50 patients with COPD. Airway parameters (wall area percentage [WA%], mean lumen radius, and mean wall thickness) were measured at fourth to sixth generations of the right apical bronchus. Matched results from 2 methods were compared and correlated with forced expiratory volume (FEV) in 1 second (FEV1), FEV1 / forced vital capacity (FVC), and global initiative for chronic obstructive lung disease (GOLD) stage. Linear regression analysis was performed using airway dimensions and emphysema index. RESULTS The IBHB generated more accurate measurements at phantom study. Measured airway parameters by both methods at thin-section computed tomography study were significantly different (all P < 0.05, paired t test). The IBHB method-measured WA% and wall thickness were significantly smaller. Mean WA% with IBHB also showed better correlation than that with FWHM (FEV1, r = -0.52 vs -0.28; FEV1 / FVC, r = -0.41 vs r = -0.20; GOLD, 0.52 vs 0.33, respectively). Linear regression analysis revealed fifth-generation WA% measured by IBHB was an independent variable, and addition to emphysema index increased predictability (FEV1, r = 0.63; FEV1 / FVC, r = 0.61; GOLD, r = 0.70). CONCLUSIONS The new IBHB measured peripheral airway dimensions differently than FWHM and showed better correlations with functional parameters in COPD.
Collapse
|
35
|
McLaughlin RA, Noble PB, Sampson DD. Optical coherence tomography in respiratory science and medicine: from airways to alveoli. Physiology (Bethesda) 2015; 29:369-80. [PMID: 25180266 DOI: 10.1152/physiol.00002.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optical coherence tomography is a rapidly maturing optical imaging technology, enabling study of the in vivo structure of lung tissue at a scale of tens of micrometers. It has been used to assess the layered structure of airway walls, quantify both airway lumen caliber and compliance, and image individual alveoli. This article provides an overview of the technology and reviews its capability to provide new insights into respiratory disease.
Collapse
Affiliation(s)
- Robert A McLaughlin
- Optical & Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Australia;
| | - Peter B Noble
- School of Anatomy, Physiology & Human Biology, and Centre for Neonatal Research & Education, School of Paediatrics and Child Health, The University of Western Australia, Crawley, Australia; and
| | - David D Sampson
- Optical & Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| |
Collapse
|
36
|
Regional bronchodilator response assessed by computed tomography in chronic obstructive pulmonary disease. Eur J Radiol 2015; 84:1196-201. [PMID: 25805332 DOI: 10.1016/j.ejrad.2015.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The reliability of CT assessment of regional bronchodilation is not universally accepted. In this study, using our proprietary 3D-CT software, we first examined airway inner luminal area (Ai) before and after inhalation of SFC in a group of COPD patients and then evaluated the same parameters for two sets of CT data obtained from clinically stable subjects with no intervention. METHODS We conducted CT at deep inspiration and pulmonary function tests before and one week after inhalation of SFC in 23 COPD patients. As a non-intervention group, we used two sets of CT data obtained with one-year interval in another group of subjects who demonstrated stable pulmonary function (n=8). We measured Ai at the mid-portions of 3rd to 6th generation in 8 bronchi of the right lung, a total of 32 identical sites before and after intervention. RESULTS The average bronchodilation at all sites (ΔAi%: 28.2 ± 4.1 (SE)%) (r=0.65, p<0.001) and that of each generation significantly correlated with % improvement of FEV1 (ΔFEV1%), which increased from 1.40 ± 0.10 L to 1.58 ± 0.10 L. When subjects were classified into two groups in terms of mean ΔFEV1%, even the poor responders (ΔFEV1% <14% above baseline, n=13) displayed significantly larger ΔAi% compared with the non-intervention group (19.1 ± 4.6% versus 2.1 ± 3.9%). Inter-observer variability for overall ΔAi% was within acceptable levels. CONCLUSIONS CT can reliably detect the regional bronchodilation in 3rd to 6th generation airways when ΔFEV1 is as small as 180 ml on average. This study was registered in the UMIN Clinical Trials Registry (UMIN-CTR) system (http://www.umin.ac.jp/. No. UMIN 000002668).
Collapse
|
37
|
Kaminsky DA, Daud A, Chapman D. Relationship between the baseline alveolar volume-to-total lung capacity ratio and airway responsiveness. Respirology 2014; 19:1046-51. [PMID: 24995907 PMCID: PMC4162905 DOI: 10.1111/resp.12347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Ventilation heterogeneity (VH) has been linked to airway responsiveness (AR) based on various measures of VH involving inert gas washout, forced oscillation and lung imaging. We explore whether VH at baseline, as measured by the simple ratio of single breath alveolar volume to plethysmographically determined total lung capacity (VA/TLC), would correlate with AR as measured by methacholine challenge testing. METHODS We analysed data from spirometry, lung volumes, diffusing capacity and methacholine challenge to derive the VA/TLC and the dose-response slope (DRS) of forced expiratory volume in 1 s (DRS-FEV1) during methacholine challenge from 136 patients. We separated out airway closure versus narrowing by examining the DRS for forced vital capacity (DRS-FVC) and the DRS for FEV1/FVC (DRS-FEV1/FVC), respectively. Similarly, we calculated the DRS for sGaw (DRS-sGaw) as another measure of airway narrowing. We performed statistical analysis using Spearman rank correlation and multifactor linear regression using a backward stepwise modelling procedure. RESULTS We found that the DRS-FEV1 correlated with baseline VA/TLC (rho = -0.26, P < 0.01), and VA/TLC and FEV1 were independently associated with DRS-FEV1 (R(2) = 0.14, P = 0.01). In addition, VA/TLC was associated with both airway narrowing and closure in response to methacholine. CONCLUSIONS These results confirm that baseline VA/TLC is associated with AR, and reflects both airway closure and airway narrowing following methacholine challenge.
Collapse
Affiliation(s)
- David A. Kaminsky
- Vermont Lung Center, Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine Given D-213, 89 Beaumont Avenue, Burlington, VT, USA
| | - Anees Daud
- University of Vermont College of Medicine, Burlington, VT, USA
| | - David Chapman
- Vermont Lung Center, Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine Given D-213, 89 Beaumont Avenue, Burlington, VT, USA
- Woolcock Institute of Medical Research, University of Sydney, NSW, Australia
| |
Collapse
|
38
|
Rosner SR, Ram-Mohan S, Paez-Cortez JR, Lavoie TL, Dowell ML, Yuan L, Ai X, Fine A, Aird WC, Solway J, Fredberg JJ, Krishnan R. Airway contractility in the precision-cut lung slice after cryopreservation. Am J Respir Cell Mol Biol 2014; 50:876-81. [PMID: 24313705 DOI: 10.1165/rcmb.2013-0166ma] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An emerging tool in airway biology is the precision-cut lung slice (PCLS). Adoption of the PCLS as a model for assessing airway reactivity has been hampered by the limited time window within which tissues remain viable. Here we demonstrate that the PCLS can be frozen, stored long-term, and then thawed for later experimental use. Compared with the never-frozen murine PCLS, the frozen-thawed PCLS shows metabolic activity that is decreased to an extent comparable to that observed in other cryopreserved tissues but shows no differences in cell viability or in airway caliber responses to the contractile agonist methacholine or the relaxing agonist chloroquine. These results indicate that freezing and long-term storage is a feasible solution to the problem of limited viability of the PCLS in culture.
Collapse
Affiliation(s)
- Sonia R Rosner
- 1 Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hoshino M, Ohtawa J, Akitsu K. Increased C-reactive protein is associated with airway wall thickness in steroid-naive asthma. Ann Allergy Asthma Immunol 2014; 113:37-41. [PMID: 24824230 DOI: 10.1016/j.anai.2014.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/28/2014] [Accepted: 04/18/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Asthma is characterized by chronic airway inflammation and remodeling. Levels of serum high-sensitivity C-reactive protein (hs-CRP) reflect airway eosinophilic inflammation. However, the relation between hs-CRP and the development of airway wall thickening remains unknown. OBJECTIVE To evaluate whether serum hs-CRP is associated with airway geometry in asthma. METHODS Forty-eight steroid-naive patients with asthma, 51 patients with asthma treated with inhaled corticosteroids, and 38 aged-matched healthy controls were studied cross-sectionally. Serum hs-CRP levels, lung function, and inflammatory cell counts in sputum were measured. Quantitative computed tomographic analysis of the apical segment of the right upper lobe was performed. RESULTS Serum hs-CRP levels were significantly elevated in steroid-naive patients with asthma compared with controls and steroid-treated patients with asthma and were associated with airflow limitation. In steroid-naive patients, serum hs-CRP levels were correlated with airway wall thickness (r = 0.88, P < .001) and sputum eosinophil percentage (r = 0.75, P < .001). Multivariate analysis showed a significant association between hs-cRP levels and forced expiratory volume in 1 second (percentage predicted; R(2) = 0.65, P = .001). CONCLUSION Serum hs-CRP may be a useful systemic biomarker of airway eosinophilia in steroid-naive asthma and has potential utility as a marker for the development of airway wall thickening. TRIAL REGISTRATION University Hospital Medical Information Network (www.umin.ac.jp/ctr/index/htm); identifier, UMIN000006724.
Collapse
Affiliation(s)
- Makoto Hoshino
- Department of Respiratory Medicine, Atami Hospital, International University of Health and Welfare, Atami, Japan.
| | - Junichi Ohtawa
- Department of Radiology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| | - Kenta Akitsu
- Department of Radiology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| |
Collapse
|
40
|
Singer F, Abbas C, Yammine S, Casaulta C, Frey U, Latzin P. Abnormal small airways function in children with mild asthma. Chest 2014; 145:492-499. [PMID: 24091465 DOI: 10.1378/chest.13-0784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Small airways disease is a hallmark in adults with persistent asthma, but little is known about small airways function in children with mild asthma and normal spirometry. We assessed ventilation heterogeneity, a marker of small airways function, with an easy tidal breath single-breath washout (SBW) technique in school-aged children with mild asthma and normal FEV1 and healthy age-matched control subjects. METHODS The primary outcome was the double-tracer gas phase III slope (SDTG), an index of ventilation heterogeneity in acinar airways derived from the tidal double-tracer gas SBW test. The second outcome was the nitrogen phase III slope (SN2), an index of global ventilation heterogeneity derived from the tidal nitrogen SBW test using pure oxygen. Triplicate SBW and spirometry tests were performed in healthy children (n=35) and children with asthma (n=31) at baseline and in children with asthma after bronchodilation. RESULTS Acinar (SDTG) but not global (SN2) ventilation heterogeneity was significantly increased in asthma despite normal FEV1. Of the 31 children with asthma, abnormal results were found for SDTG (≤-2 z scores) in 11; forced expiratory flow, midexpiratory phase (FEF25%-75%) in three; and FEV1 in zero. After bronchodilation, SDTG, SN2, FEF25%-75%, and FEV1 significantly changed (mean [95% CI] change from baseline, 36% [15%-56%], 38% [18%-58%], 17% [9-25%], and 6% [3%-9%], respectively). CONCLUSIONS Abnormal acinar ventilation heterogeneity in one-third of the children suggests that small airways disease may be present despite rare and mild asthma symptoms and normal spirometry. The easy tidal SBW technique has considerable potential as a clinical and research outcome in children with asthma.
Collapse
Affiliation(s)
- Florian Singer
- University Children's Hospital Zurich, Zurich; University Children's Hospital Bern, Bern
| | | | - Sophie Yammine
- University Children's Hospital Bern, Bern; University Children's Hospital Basel, Basel, Switzerland
| | | | - Urs Frey
- University Children's Hospital Zurich, Zurich; University Children's Hospital Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital Bern, Bern; University Children's Hospital Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Li X, Naidoo P, Guy P, Finlay P, Foo SW, Hamza K, Bardin P. Lung-volume controlled computerised tomography in real-life acute severe asthma. J Asthma 2013; 51:282-7. [DOI: 10.3109/02770903.2013.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Abstract
In this article, we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally, the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, that is, that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma, and vasculature is often referred to as "interdependence." This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it attenuates the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema.
Collapse
Affiliation(s)
- Peter D Paré
- University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
43
|
Noble PB, Jones RL, Cairncross A, Elliot JG, Mitchell HW, James AL, McFawn PK. Airway narrowing and bronchodilation to deep inspiration in bronchial segments from subjects with and without reported asthma. J Appl Physiol (1985) 2013; 114:1460-71. [PMID: 23493364 DOI: 10.1152/japplphysiol.01489.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study presents preliminary findings on how structural/functional abnormalities of the airway wall relate to excessive airway narrowing and reduced bronchodilatory response to deep inspiration (DI) in subjects with a history of asthma. Bronchial segments were acquired from subjects undergoing surgery, mostly to remove pulmonary neoplasms. Subjects reported prior doctor-diagnosed asthma ( n = 5) or had no history of asthma ( n = 8). In vitro airway narrowing in response to acetylcholine was assessed to determine maximal bronchoconstriction and sensitivity, under static conditions and during simulated tidal and DI maneuvers. Fixed airway segments were sectioned for measurement of airway wall dimensions, particularly the airway smooth muscle (ASM) layer. Airways from subjects with a history of asthma had increased ASM ( P = 0.014), greater maximal airway narrowing under static conditions ( P = 0.003), but no change in sensitivity. Maximal airway narrowing was positively correlated with the area of the ASM layer ( r = 0.58, P = 0.039). In tidally oscillating airways, DI produced bronchodilation in airways from the control group ( P = 0.0001) and the group with a history of asthma ( P = 0.001). While bronchodilation to DI was reduced with increased airway narrowing ( P = 0.02; r = −0.64)), when the level of airway narrowing was matched, there was no difference in magnitude of bronchodilation to DI between groups. Results suggest that greater ASM mass in asthma contributes to exaggerated airway narrowing in vivo. In comparison, the airway wall in asthma may have a normal response to mechanical stretch during DI. We propose that increased maximal airway narrowing and the reduced bronchodilatory response to DI in asthma are independent.
Collapse
Affiliation(s)
- Peter B. Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Robyn L. Jones
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Alvenia Cairncross
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - John G. Elliot
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Howard W. Mitchell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Alan L. James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia; and
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Peter K. McFawn
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Svenningsen S, Kirby M, Starr D, Leary D, Wheatley A, Maksym GN, McCormack DG, Parraga G. Hyperpolarized (3) He and (129) Xe MRI: differences in asthma before bronchodilation. J Magn Reson Imaging 2013; 38:1521-30. [PMID: 23589465 DOI: 10.1002/jmri.24111] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/12/2013] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To compare hyperpolarized helium-3 ((3) He) and xenon-129 ((129) Xe) MRI in asthmatics before and after salbutamol inhalation. MATERIALS AND METHODS Seven asthmatics provided written informed consent and underwent spirometry, plethysmography, and MRI before and after salbutamol inhalation. (3) He and (129) Xe ventilation defect percent (VDP) and ventilation coefficient of variation (COV) were measured. To characterize the airways spatially related to ventilation defects, wall area percent (WA%) and lumen area (LA) were evaluated for two subjects who had thoracic x-ray computed tomography (CT) acquired 1 year before MRI. RESULTS Before salbutamol inhalation, (129) Xe VDP (8 ± 5%) was significantly greater than (3) He VDP (6 ± 5%, P = 0.003). Post-salbutamol, there was a significant improvement in both (129) Xe (5 ± 4%, P < 0.0001) and (3) He (4 ± 3%, P = 0.001) VDP, and the improvement in (129) Xe VDP was significantly greater (P = 0.008). (129) Xe MRI COV (Pre: 0.309 ± 0.028, Post: 0.296 ± 0.036) was significantly greater than (3) He MRI COV (Pre: 0.282 ± 0.018, Post: 0.269 ± 0.024), pre- (P < 0.0001) and post-salbutamol (P < 0.0001) and the decrease in COV post-salbutamol was significant ((129) Xe, P = 0.002; (3) He, P < 0.0001). For a single asthmatic, a sub-segmental (129) Xe MRI ventilation defect that was visible only before salbutamol inhalation but not visible using (3) He MRI was spatially related to a remodeled fourth generation sub-segmental airway (WA% = 78%, LA = 2.9 mm(2) ). CONCLUSION In asthma, hyperpolarized (129) Xe MRI may help reveal ventilation abnormalities before bronchodilation that are not observed using hyperpolarized (3) He MRI.
Collapse
Affiliation(s)
- Sarah Svenningsen
- Imaging Research Laboratories, Robarts Research Institute, London, Canada; Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Costella S, Kirby M, Maksym GN, McCormack DG, Paterson NAM, Parraga G. Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology 2013; 17:1237-46. [PMID: 22889229 DOI: 10.1111/j.1440-1843.2012.02250.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Spirometry is insensitive to small airway abnormalities in asthma. Our objective was to evaluate regional lung structure and function using hyperpolarized (3)He magnetic resonance imaging (MRI) before, during and after a methacholine challenge (MCh). METHODS Twenty-five asthmatics (mean age = 34 ± 11 years) and eight healthy volunteers (HV) (mean age = 33 ± 11 years) underwent spirometry, plethysmography and hyperpolarized (3)He MRI prior to a MCh. MRI was repeated following the MCh and again 25 min after salbutamol administration. (3)He MRI gas distribution was quantified using semiautomated segmentation of the ventilation defect percent (VDP). Tissue microstructure was measured using the (3)He apparent diffusion coefficient (ADC). Analysis of variance with repeated measures was used to evaluate changes at each time point as well as to determine interactions between regions of interest (ROI) and subject group. Pearson's correlations were performed to evaluate associations between (3)He MRI measurements and established clinical measures. RESULTS In asthmatics, but not HV, whole-lung ADC was increased post-MCh (P < 0.01). In asthmatics only, ADC was increased post-MCh in posterior ROI (P < 0.01) and all ROI in the superior-inferior direction (P < 0.01). VDP was increased in posterior and inferior ROI (P < 0.001). There was a correlation between VDP and specific airway resistance (r = 0.74, P < 0.0001), dyspnoea score (r = 0.66, P < 0.01) and fractional exhaled nitric oxide (r = 0.45, P < 0.05). CONCLUSIONS We evaluated the regional pulmonary response to methacholine and salbutamol using (3)He MRI and showed heterogeneous VDP and ADC consistent with bronchoconstriction and gas trapping, respectively, post-MCh. These regional alterations resolved post-salbutamol.
Collapse
Affiliation(s)
- Stephen Costella
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Montesantos S, Katz I, Fleming J, Majoral C, Pichelin M, Dubau C, Piednoir B, Conway J, Texereau J, Caillibotte G. Airway morphology from high resolution computed tomography in healthy subjects and patients with moderate persistent asthma. Anat Rec (Hoboken) 2013; 296:852-66. [PMID: 23564729 DOI: 10.1002/ar.22695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/29/2013] [Accepted: 03/01/2013] [Indexed: 01/09/2023]
Abstract
Models of the human respiratory tract developed in the past were based on measurements made on human tracheobronchial airways of healthy subjects. With the exception of a few morphometric characteristics such as the bronchial wall thickness (WT), very little has been published concerning the effects of disease on the tree structure and geometrical features. In this study, a commercial software package was used to segment the airway tree of seven healthy and six moderately persistent asthmatic patients from high resolution computed tomography images. The process was assessed with regards to the treatment of the images of the asthmatic group. The in vivo results for the bronchial length, diameter, WT, branching, and rotation angles are reported and compared per generation for different lobes. Furthermore, some popular mathematical relationships between these morphometric characteristics were examined in order to verify their validity for both groups. Our results suggest that, even though some relationships agree very well with previously published data, the compartmentalization of airways into lobes and the presence of disease may significantly affect the tree geometry, while the tree structure and airway connectivity is only slightly affected by the disease.
Collapse
Affiliation(s)
- Spyridon Montesantos
- Medical Gases Group, Air Liquide Santé International, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Downie SR, Salome CM, Verbanck S, Thompson BR, Berend N, King GG. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma. J Appl Physiol (1985) 2013; 114:770-7. [DOI: 10.1152/japplphysiol.01198.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The forced oscillation technique (FOT) and multiple-breath nitrogen washout (MBNW) are noninvasive tests that are potentially sensitive to peripheral airways, with MBNW indexes being especially sensitive to heterogeneous changes in ventilation. The objective was to study methacholine-induced changes in the lung periphery of asthmatic patients and determine how changes in FOT variables of respiratory system reactance (Xrs) and resistance (Rrs) and frequency dependence of resistance (Rrs5-Rrs19) can be linked to changes in ventilation heterogeneity. The contributions of air trapping and airway closure, as extreme forms of heterogeneity, were also investigated. Xrs5, Rrs5, Rrs19, Rrs5-Rrs19, and inspiratory capacity (IC) were calculated from the FOT. Ventilation heterogeneity in acinar and conducting airways, and trapped gas (percent volume of trapped gas at functional residual capacity/vital capacity), were calculated from the MBNW. Measurements were repeated following methacholine. Methacholine-induced airway closure (percent change in forced vital capacity) and hyperinflation (change in IC) were also recorded. In 40 mild to moderate asthmatic patients, increase in Xrs5 after methacholine was predicted by increases in ventilation heterogeneity in acinar airways and forced vital capacity ( r2 = 0.37, P < 0.001), but had no correlation with ventilation heterogeneity in conducting airway increase or IC decrease. Increases in Rrs5 and Rrs5-Rrs19 after methacholine were not correlated with increases in ventilation heterogeneity, trapped gas, hyperinflation, or airway closure. Increased reactance in asthmatic patients after methacholine was indicative of heterogeneous changes in the lung periphery and airway closure. By contrast, increases in resistance and frequency dependence of resistance were not related to ventilation heterogeneity or airway closure and were more indicative of changes in central airway caliber than of heterogeneity.
Collapse
Affiliation(s)
- Sue R. Downie
- Woolcock Institute of Medical Research, Glebe, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, New South Wales, Australia
- Cooperative Research Centre for Asthma, Glebe, Sydney, New South Wales, Australia
| | - Cheryl M. Salome
- Woolcock Institute of Medical Research, Glebe, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, New South Wales, Australia
- Cooperative Research Centre for Asthma, Glebe, Sydney, New South Wales, Australia
| | - Sylvia Verbanck
- Respiratory Division, Academic Hospital, Vrije Universiteit Brussels, Brussels, Belgium
| | - Bruce R. Thompson
- Cooperative Research Centre for Asthma, Glebe, Sydney, New South Wales, Australia
- Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia; and
| | - Norbert Berend
- Woolcock Institute of Medical Research, Glebe, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, New South Wales, Australia
- Cooperative Research Centre for Asthma, Glebe, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Gregory G. King
- Woolcock Institute of Medical Research, Glebe, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, New South Wales, Australia
- Cooperative Research Centre for Asthma, Glebe, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Wongviriyawong C, Harris RS, Greenblatt E, Winkler T, Venegas JG. Peripheral resistance: a link between global airflow obstruction and regional ventilation distribution. J Appl Physiol (1985) 2012; 114:504-14. [PMID: 23123354 DOI: 10.1152/japplphysiol.00273.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airflow obstruction and heterogeneities in airway constriction and ventilation distribution are well-described prominent features of asthma. However, the mechanistic link between these global and regional features has not been well defined. We speculate that peripheral airway resistance (R(p)) may provide such a link. Structural and functional parameters are estimated from PET and HRCT images of asthmatic (AS) and nonasthmatic (NA) subjects measured at baseline (BASE) and post-methacholine challenge (POST). Conductances of 35 anatomically defined proximal airways are estimated from airway geometry obtained from high-resolution computed tomography (HRCT) images. Compliances of sublobar regions subtended by 19 most distal airways are estimated from changes in regional gas volume between two lung volumes. Specific ventilations (sV) of these sublobar regions are evaluated from 13NN-washout PET scans. For each pathway connecting the trachea to sublobar region, values of R(p) required to explain the sV distribution and global airflow obstruction are computed. Results show that R(p) is highly heterogeneous within each subject, but has average values consistent with global values in the literature. The contribution of R(p) to total pathway resistance (R(T)) increased substantially for POST (P < 0.0001). The fraction R(p)/R(T) was higher in AS than NA at POST (P < 0.0001) but similar at BASE (range: 0.960-0.997, median: 0.990). For POST, R(p)/R(T) range was 0.979-0.999 (NA) and 0.981-0.995 (AS). This approach allows for estimations of peripheral airway resistance within anatomically defined sublobar regions in vivo human lungs and may be used to evaluate peripheral effects of therapy in a subject specific manner.
Collapse
Affiliation(s)
- C Wongviriyawong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
49
|
The importance of imaging and physiology measurements in assessing the delivery of peripherally targeted aerosolized drugs. Ther Deliv 2012; 3:1329-45. [DOI: 10.4155/tde.12.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Considerable recent effort has been directed towards developing new aerosol formulations and delivery devices that can target drugs to the lung periphery. In order to determine the efficacy of targeted drug therapy, it is essential that the peripheral lung region be adequately assessed. Imaging of the airways structure and pathology has greatly advanced in the last decade and this rate of growth is accelerating as new technologies become available. Lung imaging continues to play an important role in the study of the peripheral airways and, when combined with state-of-the-art lung function measurements and computational modeling, can be a powerful tool for investigating the effects of inhaled medication. This article focuses on recent strategies in imaging and physiological measurements of the lungs that allow the assessment of inhaled medication delivered to the periphery and discusses how these methods may help to further optimize and refine future aerosol delivery technology.
Collapse
|
50
|
Bossé Y. Asthmatic airway hyperresponsiveness: the ants in the tree. Trends Mol Med 2012; 18:627-33. [PMID: 23062358 DOI: 10.1016/j.molmed.2012.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/28/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
Abstract
Airways from asthmatics have a propensity to narrow excessively in response to spasmogens (i.e., contractile agonists), a feature called airway hyperresponsiveness (AHR). AHR is an important contributor to asthma symptoms because the degree of responsiveness dictates the amount of airway narrowing that occurs in response to inflammation-derived spasmogens produced endogenously following exposure to environmental triggers, such as allergens, viruses, or pollutants. The smooth muscle encircling the airways is responsible for responsiveness because it constricts the airway lumen when commanded to contract by spasmogens. However, whether AHR seen in asthmatics is due to stronger muscle is equivocal. In this opinion article, I propose that environmental triggers and other inflammatory molecules released during asthma attacks contribute to AHR by increasing muscle force.
Collapse
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, G1V 4G5, Canada.
| |
Collapse
|