1
|
O’Farrell HE, Kok HC, Goel S, Chang AB, Yerkovich ST. Endotypes of Paediatric Cough-Do They Exist and Finding New Techniques to Improve Clinical Outcomes. J Clin Med 2024; 13:756. [PMID: 38337450 PMCID: PMC10856076 DOI: 10.3390/jcm13030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic cough is a common symptom of many childhood lung conditions. Given the phenotypic heterogeneity of chronic cough, better characterization through endotyping is required to provide diagnostic certainty, precision therapies and to identify pathobiological mechanisms. This review summarizes recent endotype discoveries in airway diseases, particularly in relation to children, and describes the multi-omic approaches that are required to define endotypes. Potential biospecimens that may contribute to endotype and biomarker discoveries are also discussed. Identifying endotypes of chronic cough can likely provide personalized medicine and contribute to improved clinical outcomes for children.
Collapse
Affiliation(s)
- Hannah E. O’Farrell
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Hing Cheong Kok
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Department of Paediatrics, Sabah Women and Children’s Hospital, Kota Kinabalu 88996, Sabah, Malaysia
| | - Suhani Goel
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Anne B. Chang
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| | - Stephanie T. Yerkovich
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
2
|
Bhatt SP, Agusti A, Bafadhel M, Christenson SA, Bon J, Donaldson GC, Sin DD, Wedzicha JA, Martinez FJ. Phenotypes, Etiotypes, and Endotypes of Exacerbations of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:1026-1041. [PMID: 37560988 PMCID: PMC10867924 DOI: 10.1164/rccm.202209-1748so] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Chronic obstructive pulmonary disease is a major health problem with a high prevalence, a rising incidence, and substantial morbidity and mortality. Its course is punctuated by acute episodes of increased respiratory symptoms, termed exacerbations of chronic obstructive pulmonary disease (ECOPD). ECOPD are important events in the natural history of the disease, as they are associated with lung function decline and prolonged negative effects on quality of life. The present-day therapy for ECOPD with short courses of antibiotics and steroids and escalation of bronchodilators has resulted in only modest improvements in outcomes. Recent data indicate that ECOPD are heterogeneous, raising the need to identify distinct etioendophenotypes, incorporating traits of the acute event and of patients who experience recurrent events, to develop novel and targeted therapies. These characterizations can provide a complete clinical picture, the severity of which will dictate acute pharmacological treatment, and may also indicate whether a change in maintenance therapy is needed to reduce the risk of future exacerbations. In this review we discuss the latest knowledge of ECOPD types on the basis of clinical presentation, etiology, natural history, frequency, severity, and biomarkers in an attempt to characterize these events.
Collapse
Affiliation(s)
- Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alvar Agusti
- Institut Respiratori (Clinic Barcelona), Càtedra Salut Respiratoria (Universitat de Barcelona), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-Barcelona), Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), España
| | - Mona Bafadhel
- Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Don D. Sin
- Centre for Heart Lung Innovation and
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
3
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
4
|
Huang JTJ, Cant E, Keir HR, Barton AK, Kuzmanova E, Shuttleworth M, Pollock J, Finch S, Polverino E, Bottier M, Dicker AJ, Shoemark A, Chalmers JD. Endotyping Chronic Obstructive Pulmonary Disease, Bronchiectasis, and the "Chronic Obstructive Pulmonary Disease-Bronchiectasis Association". Am J Respir Crit Care Med 2022; 206:417-426. [PMID: 35436182 DOI: 10.1164/rccm.202108-1943oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Bronchiectasis and chronic obstructive pulmonary disease (COPD) are two disease entities with overlapped clinical features, and codiagnosis frequently occurs (termed the "COPD-bronchiectasis association"). Objectives: To investigate the sputum microbiome and proteome in patients with bronchiectasis, COPD, and the COPD-bronchiectasis association with the aim of identifying endotypes that may inform treatment. Methods: Sputum microbiome and protein profiling were carried out using 16S rRNA amplicon sequencing and a label-free proteomics workflow, respectively, in a cohort comprising patients with COPD (n = 43), bronchiectasis (n = 30), and the COPD-bronchiectasis association (n = 48). Results were validated in an independent cohort of 91 patients (n = 28-31 each group) using targeted measurements of inflammatory markers, mucins, and bacterial culture. Measurements and Main Results: Principal component analysis of sputum microbiome and protein profiles showed a partial separation between the COPD and the "COPD-bronchiectasis association" group. Further analyses revealed that patients with the "COPD-bronchiectasis association" had a higher abundance of proteobacteria, higher expression of mucin-5AC and proteins from the "neutrophil degranulation" pathway compared to those with COPD. In contrast, patients with COPD had an elevated expression of mucin-5B and several peptidase inhibitors, higher abundance of common commensal taxa, and a greater microbiome diversity. The profiles of "COPD-bronchiectasis association" and bronchiectasis groups were largely overlapping. Five endotypes were proposed with differential inflammatory, mucin, and microbiological features. The key features related to the "COPD-bronchiectasis association" were validated in an independent cohort. Conclusions: Neutrophilic inflammation, differential mucin expression, and Gram-negative infection are dominant traits in patients with the "COPD-bronchiectasis association."
Collapse
Affiliation(s)
| | - Erin Cant
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | | | | | - Morven Shuttleworth
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Simon Finch
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mathieu Bottier
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| |
Collapse
|
5
|
Calverley PMA, Martinez FJ, Vestbo J, Jenkins CR, Wise R, Lipson DA, Cowans NJ, Yates J, Crim C, Celli BR. International Differences in the Frequency of Chronic Obstructive Pulmonary Disease Exacerbations Reported in Three Clinical Trials. Am J Respir Crit Care Med 2022; 206:25-33. [PMID: 35363593 PMCID: PMC9954323 DOI: 10.1164/rccm.202111-2630oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) are an important endpoint in multinational clinical treatment trials, but the observed event rate is often lower than anticipated and appears to vary between countries. Objectives: We investigated whether systematic differences in national exacerbation rates might explain this observed variation. Methods: We reviewed data from three large multicenter international randomized trials conducted over an 18-year period with different designs and clinical severities of COPD, comparing bronchodilator and/or inhaled corticosteroids with bronchodilators alone and/or placebo. Exacerbations were defined by antibiotic and/or oral corticosteroid use (moderate) or need for hospitalization (severe). We calculated crude exacerbation rates in the 30 countries contributing 30 or more patients to at least two trials. We grouped data by exacerbation rate based on their first study contribution. Measurements and Main Results: For the 29,756 patients in 41 countries analyzed, the mean exacerbation rate was two- to threefold different between the highest and lowest tertiles of the recruiting nations. These differences were not explained by demographic features, study protocol, or reported exacerbation history at enrollment. Of the 18 countries contributing to all trials, half of those in the highest and half in the lowest tertiles of exacerbation history remained in these groups across trials. Severe exacerbations showed a different rank order internationally. Conclusions: Countries contributing to COPD trials differ consistently in their reporting of healthcare-defined exacerbations. These differences help explain why large studies have been needed to show differences between treatments that decrease exacerbation risk.
Collapse
Affiliation(s)
- Peter M. A. Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Fernando J. Martinez
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, the University of Manchester, Manchester, United Kingdom;,Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Christine R. Jenkins
- The George Institute for Global Health, Sydney, New South Wales, Australia;,University of New South Wales, Sydney, New South Wales, Australia
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David A. Lipson
- Respiratory Clinical Sciences, GlaxoSmithKline plc., Collegeville, Pennsylvania;,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Julie Yates
- Research and Development, GlaxoSmithKline plc., Research Triangle Park, Durham, North Carolina; and
| | - Courtney Crim
- Research and Development, GlaxoSmithKline plc., Research Triangle Park, Durham, North Carolina; and
| | - Bartolome R. Celli
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Joean O, Welte T. Vaccination and modern management of chronic obstructive pulmonary disease - a narrative review. Expert Rev Respir Med 2022; 16:605-614. [PMID: 35713962 DOI: 10.1080/17476348.2022.2092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) carries a tremendous societal and individual burden, posing significant challenges for public health systems worldwide due to its high morbidity and mortality. Due to aging and multimorbidity but also in the wake of important progress in deciphering the heterogeneous disease endotypes, an individualized approach to the prevention and management of COPD is necessary. AREAS COVERED This article tackles relevant immunization strategies that are available or still under development with a focus on the latest evidence but also controversies around different regional immunization approaches. Further, we present the crossover between chronic lung inflammation and lung microbiome disturbance as well as its role in delineating COPD endotypes. Moreover, the article attempts to underline endotype-specific treatment approaches. Lastly, we highlight non-pharmacologic prevention and management programs in view of the challenges and opportunities of the COVID-19 era. EXPERT OPINION Despite the remaining challenges, personalized medicine has the potential to offer tailored approaches to prevention and therapy and promises to improve the care of patients living with COPD.
Collapse
Affiliation(s)
- Oana Joean
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease, Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
7
|
Yu F, Huang Q, Ye Y, Zhang L. Effectiveness of Proton-Pump Inhibitors in Chronic Obstructive Pulmonary Disease: A Meta-Analysis of Randomized Controlled Trials. Front Med (Lausanne) 2022; 9:841155. [PMID: 35252272 PMCID: PMC8890488 DOI: 10.3389/fmed.2022.841155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although several randomized controlled trials (RCTs) have been published in recent years, the role of proton-pump inhibitors (PPI) in patients with chronic obstructive pulmonary disease (COPD) remains controversial. This preliminary meta-analysis was conducted to evaluate the clinical efficacy of PPI in patients with COPD. Methods RCTs related to PPI in the treatment of patients with a definite diagnosis of COPD were enrolled in this meta-analysis. PubMed, Embase, Cochrane Library, CNKI, Wanfang and VIP databases were retrieved to identify eligible studies from database establishment to September 22, 2021. Two researchers independently screened the articles, extracted the data and evaluated the risk of bias in the included studies independently. The study complied with PRISMA 2020 guideline for this study. The meta-analysis was performed using RevMan 5.3. Heterogeneity among studies was tested using the I2 test. The results were presented as risk ratios (RRs) with 95% confidence intervals (CIs). Results A total of 15 RCTs, including 1,684 patients, were enrolled. The meta-analysis revealed that PPI plus conventional treatment was superior to conventional treatment with respect to the case fatality rate (RR = 0.30; 95% CI, 0.18–0.52; P < 0.001), the incidence of gastrointestinal bleeding (RR = 0.23; 95% CI, 0.14–0.38; P < 0.001), the incidence of other adverse reactions (RR = 0.33; 95% CI, 0.28–0.39; P < 0.001) and the number of acute exacerbations [mean difference (MD) = −1.17; 95% CI, 1.75 to −0.60: P < 0.001] in patients with COPD. No significant differences were found in clinical efficacy (RR = 1.08; 95% CI, 0.95–1.22; P = 0.25), FEV1/FVC (MD = 3.94; 95% CI, −8.70 to 16.58; P = 0.54) and nosocomial infection rate (RR = 1.31; 95% CI, 0.57–3.00; P = 0.52) between the two groups. Discussion This comprehensive meta-analysis suggested that PPI treatment for COPD may reduce the case fatality rate, incidence of gastrointestinal bleeding and other adverse reactions and number of acute exacerbations. However, the present meta-analysis also has some limitations of the evidence, such as the high risk of bias of the included studies, and predominance of included studies from China, which may result in publication bias. Therefore, further large-scale RCTs are needed to confirm our findings. Systematic Trial Registration Identifier: CRD42022301304.
Collapse
Affiliation(s)
- Fei Yu
- The First People's Hospital of Hefei, Hefei, China
| | - Qihui Huang
- The First People's Hospital of Hefei, Hefei, China
| | - Yousheng Ye
- The First People's Hospital of Hefei, Hefei, China
| | - Lin Zhang
- The First People's Hospital of Hefei, Hefei, China
| |
Collapse
|
8
|
Tiew PY, Mac Aogáin M, Chotirmall SH. The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2022; 28:121-133. [PMID: 34839338 DOI: 10.1097/mcp.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
9
|
Inhaled Corticosteroids and the Lung Microbiome in COPD. Biomedicines 2021; 9:biomedicines9101312. [PMID: 34680429 PMCID: PMC8533282 DOI: 10.3390/biomedicines9101312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
The Global Initiative for Chronic Obstructive Lung Disease 2021 Report recommends inhaled corticosteroid (ICS)-containing regimens as part of pharmacological treatment in patients with chronic obstructive lung disease (COPD) and frequent exacerbations, particularly with eosinophilic inflammation. However, real-world studies reveal overprescription of ICS in COPD, irrespective of disease presentation and inflammatory endotype, leading to increased risk of side effects, mainly respiratory infections. The optimal use of ICS in COPD therefore remains an area of intensive research, and additional biomarkers of benefit and risk are needed. Although the interplay between inflammation and infection in COPD is widely acknowledged, the role of the microbiome in shaping lower airway inflammation has only recently been explored. Next-generation sequencing has revealed that COPD disease progression and exacerbation frequency are associated with changes in the composition of the lung microbiome, and that the immunosuppressive effects of ICS can contribute to potentially deleterious airway microbiota changes by increasing bacterial load and the abundance of potentially pathogenic taxa such as Streptococcus and Haemophilus. Here, we explore the relationship between microbiome, inflammation, ICS use and disease phenotype. This relationship may inform the benefit:risk assessment of ICS use in patients with COPD and lead to more personalised pharmacological management.
Collapse
|
10
|
Beghé B, Cerri S, Fabbri LM, Marchioni A. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci 2021; 22:ijms22179292. [PMID: 34502194 PMCID: PMC8430914 DOI: 10.3390/ijms22179292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Aging and smoking are associated with the progressive development of three main pulmonary diseases: chronic obstructive pulmonary disease (COPD), interstitial lung abnormalities (ILAs), and idiopathic pulmonary fibrosis (IPF). All three manifest mainly after the age of 60 years, but with different natural histories and prevalence: COPD prevalence increases with age to >40%, ILA prevalence is 8%, and IPF, a rare disease, is 0.0005–0.002%. While COPD and ILAs may be associated with gradual progression and mortality, the natural history of IPF remains obscure, with a worse prognosis and life expectancy of 2–5 years from diagnosis. Acute exacerbations are significant events in both COPD and IPF, with a much worse prognosis in IPF. This perspective discusses the paradox of the striking pathological and pathophysiologic responses on the background of the same main risk factors, aging and smoking, suggesting two distinct pathophysiologic processes for COPD and ILAs on one side and IPF on the other side. Pathologically, COPD is characterized by small airways fibrosis and remodeling, with the destruction of the lung parenchyma. By contrast, IPF almost exclusively affects the lung parenchyma and interstitium. ILAs are a heterogenous group of diseases, a minority of which present with the alveolar and interstitial abnormalities of interstitial lung disease.
Collapse
Affiliation(s)
- Bianca Beghé
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
- Correspondence:
| | - Stefania Cerri
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| | - Leonardo M. Fabbri
- Department of Translational Medicine and Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Alessandro Marchioni
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| |
Collapse
|
11
|
Chakrabarti A, Mar JS, Choy DF, Cao Y, Rathore N, Yang X, Tew GW, Li O, Woodruff PG, Brightling CE, Grimbaldeston M, Christenson SA, Bafadhel M, Rosenberger CM. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis. ERJ Open Res 2021; 7:00836-2020. [PMID: 34350278 PMCID: PMC8326681 DOI: 10.1183/23120541.00836-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/09/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction COPD exacerbations are heterogeneous and can be triggered by bacterial, viral, or noninfectious insults. Exacerbations are also heterogeneous in neutrophilic or eosinophilic inflammatory responses. A noninvasive peripheral biomarker of COPD exacerbations characterised by bacterial/neutrophilic inflammation is lacking. Granulocyte-colony stimulating factor (G-CSF) is a key cytokine elevated during bacterial infection and mediates survival, proliferation, differentiation and function of neutrophils. Objective We hypothesised that high peripheral G-CSF would be indicative of COPD exacerbations with a neutrophilic and bacterial phenotype associated with microbial dysbiosis. Methods Serum G-CSF was measured during hospitalised exacerbation (day 0 or D0) and after 30 days of recovery (Day30 or D30) in 37 subjects. In a second cohort, serum and sputum cytokines were measured in 59 COPD patients during stable disease, at exacerbation, and at 2-weeks and 6-weeks following exacerbation. Results Serum G-CSF was increased during exacerbation in a subset of patients. These exacerbations were enriched for bacterial but not viral or type-2 biologies. The median serum G-CSF level was 1.6-fold higher in bacterial exacerbation compared to nonbacterial exacerbation (22 pg·mL−1versus 13 pg·mL−1, p=0.0007). Serum G-CSF classified bacterial exacerbations with an area under the curve (AUC) for the receiver operating characteristic (ROC) curve equal to 0.76. Exacerbations with a two-fold or greater increase in serum G-CSF were characterised by neutrophilic inflammation, with increased sputum and blood neutrophils, and high sputum interleukin (IL)-1β, IL-6 and serum amyloid A1 (SAA1) levels. These exacerbations were preceded by dysbiosis, with decreased microbiome diversity and enrichment of respiratory pathogens such as Haemophilus and Moraxella. Furthermore, serum G-CSF at exacerbation classified neutrophilic-dysbiotic exacerbations (AUC for the ROC curve equal to 0.75). Conclusions High serum G-CSF enriches for COPD exacerbations characterised by neutrophilic inflammation with underlying bacterial dysbiosis. Noninvasive biomarkers to characterise #AECOPD subtypes are limited. High serum G-CSF enriches for COPD exacerbations associated with bacterial infection and neutrophilic inflammation preceded by lung microbial dysbiosis.https://bit.ly/3rck3M6
Collapse
Affiliation(s)
| | - Jordan S Mar
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - David F Choy
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Yi Cao
- Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Nisha Rathore
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Xiaoying Yang
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Gaik W Tew
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Olga Li
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | | | | | | | | | - Mona Bafadhel
- Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
Frent S, Calarasu C, Suska K, Gashynova K, Keir H. ERS International Congress 2020: highlights from the Respiratory Infections assembly. ERJ Open Res 2021; 7:00091-2021. [PMID: 33898612 PMCID: PMC8053904 DOI: 10.1183/23120541.00091-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022] Open
Abstract
In the coronavirus disease 2019 (COVID-19) pandemic year 2020, the 30th European Respiratory Society (ERS) International Congress took place for the first time in a fully virtual format. Despite the challenging nature of the task to create and deliver an online event of this size and scope, it turned out to be a great success, welcoming over 33 000 delegates to the specially designed online platform and offering more than 450 scientific and educational sessions. Somewhat predictably, this year's ERS International Congress dedicated a full day to the topic of COVID-19, highlighting that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a respiratory disease that is particularly important this year. In this article, the Early Career Members of the Assembly 10 (Respiratory Infections and Tuberculosis) review some of the most interesting sessions including presentations and posters on respiratory infections and tuberculosis that were deemed as important. This is a comprehensive summary of several interesting sessions from #ERSCongress 2020 including presentations and posters on respiratory infections and tuberculosis that were deemed as importanthttps://bit.ly/2OtrYXH
Collapse
Affiliation(s)
- Stefan Frent
- Dept of Pulmonology, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Cristina Calarasu
- Dept of Medical Specialities, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Kseniia Suska
- State Institution "Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine", Dnipro, Ukraine
| | - Kateryna Gashynova
- State Institution "Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine", Dnipro, Ukraine
| | - Holly Keir
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
13
|
MacDonald MI, Bardin PG. Contemporary Concise Review 2020: Chronic obstructive pulmonary disease. Respirology 2021; 26:493-500. [PMID: 33749929 DOI: 10.1111/resp.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Martin I MacDonald
- Monash Lung and Sleep, Monash Health, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Lung Research Laboratory, Hudson Institute, Melbourne, VIC, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Lung Research Laboratory, Hudson Institute, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Mathioudakis AG, Vanfleteren LEGW, Lahousse L, Higham A, Allinson JP, Gotera C, Visca D, Singh D, Spanevello A. Current developments and future directions in COPD. Eur Respir Rev 2020; 29:29/158/200289. [PMID: 33268439 PMCID: PMC9488623 DOI: 10.1183/16000617.0289-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
The European Respiratory Society journals publish respiratory research and policy documents of the highest quality, offering a platform for the exchange and promotion of scientific knowledge. In this article, focusing on COPD, the third leading cause of death globally, we summarise novel research highlights focusing on the disease's underlying mechanisms, epidemiology and management, with the aim to inform and inspire respiratory clinicians and researchers. Current developments and future directions in COPD: a critical summary of some of the most recent ground-breaking research studies and policy documents from @ERSpublicationshttps://bit.ly/3oW0xDM
Collapse
Affiliation(s)
- Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK .,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Lowie E G W Vanfleteren
- COPD Center, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Lies Lahousse
- Dept of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK.,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James P Allinson
- The Royal Brompton Hospital and The National Heart and Lung Institute, Imperial College London, London, UK
| | - Carolina Gotera
- Dept of Pneumology, IIS-Fundación Jiménez Díaz, ISCIII-CIBERES, Madrid, Spain
| | - Dina Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK.,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| | - Antonio Spanevello
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| |
Collapse
|
15
|
Tiew PY, Jaggi TK, Chan LLY, Chotirmall SH. The airway microbiome in COPD, bronchiectasis and bronchiectasis-COPD overlap. CLINICAL RESPIRATORY JOURNAL 2020; 15:123-133. [PMID: 33063421 DOI: 10.1111/crj.13294] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To review the airway microbiome in chronic obstructive pulmonary disease (COPD), bronchiectasis and bronchiectasis-COPD overlap (BCO). DATA SOURCE AND STUDY SELECTION Relevant studies were selected from PubMed, Google scholar, EMBASE and Web of Science. All studies involving human microbiomes, published in the English language, and using the search terms "COPD", "Chronic Obstructive Pulmonary Disease", "Bronchiectasis", "BCO" or "Bronchiectasis and COPD overlap", AND "microbiome", "mycobiome" or "metagenomics" were included. RESULTS Despite variability in sampling methods and specimen types used, microbiome composition remains relatively comparable in COPD and bronchiectasis with prominence of Proteobacteria, Firmicutes and Bacteroidetes. Alterations to airway microbiomes occur in association to disease severity and/or exacerbations in COPD and bronchiectasis. Decreased alpha diversity and Haemophilus-predominant microbiomes are associated with poorer survival in COPD, while, in bronchiectasis, Pseudomonas-predominant microbiomes demonstrate high exacerbation frequency and greater symptom burden while Aspergillus-dominant mycobiome profiles associate with exacerbations. The role of the microbiome in BCO remains understudied. CONCLUSION Use of next-generation sequencing has revolutionised our detection and understanding of the airway microbiome in chronic respiratory diseases such as COPD and bronchiectasis. Targeted amplicon sequencing reveals important associations between the respiratory microbiome and disease outcome while metagenomics may elucidate functional pathways. How best to apply this information into patient care, monitoring and treatment, however, remains challenging and necessitates further study.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Tavleen K Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|