1
|
Demchenko A, Balyasin M, Nazarova A, Grigorieva O, Panchuk I, Kondrateva E, Tabakov V, Schagina O, Amelina E, Smirnikhina S. Human Induced Lung Organoids: A Promising Tool for Cystic Fibrosis Drug Screening. Int J Mol Sci 2025; 26:437. [PMID: 39859153 PMCID: PMC11764749 DOI: 10.3390/ijms26020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient in vitro model is needed to screen therapeutic agents under development. This study, on the most common mutation, F508del, investigates the efficacy of human induced pluripotent stem cell-derived lung organoids (hiLOs) from NKX2.1+ lung progenitors and airway basal cells (hiBCs) as a 3D model for CFTR modulator response assessment by a forskolin-induced swelling assay. Weak swelling was observed for hiLOs from NKX2.1+ lung progenitors and hiBCs in response to modulators VX-770/VX-809 and VX-770/VX-661, whereas the VX-770/VX-661/VX-445 combination resulted in the highest swelling response, indicating superior CFTR function restoration. The ROC analysis of the FIS assay results revealed an optimal cutoff of 1.21, with 65.9% sensitivity and 71.8% specificity, and the predictive accuracy of the model was 76.4%. In addition, this study compared the response of hiLOs with the clinical response of patients to therapy and showed similar drug response dynamics. Thus, hiLOs can effectively model the CF pathology and predict patients' specific response to modulators.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 6, 117198 Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Dm. Ulyanova Str., 11, 117292 Moscow, Russia
| | - Aleksandra Nazarova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Olga Grigorieva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Irina Panchuk
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Olga Schagina
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, 11th Parkovaya Str., 32/4, 105077 Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| |
Collapse
|
2
|
Ji Y, Sun Y. Advancements in Organoid Culture Technologies: Current Trends and Innovations. Stem Cells Dev 2024; 33:631-644. [PMID: 39509169 DOI: 10.1089/scd.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Organoids have emerged as valuable tools in investigating disease mechanisms, drug efficacy, and personalized medicine due to their capacity to recapitulate crucial aspects of tissue physiology, including cell-cell interactions, heterogeneity, microenvironmental cues, and drug responses. Despite their broad applicability across various research domains, conventional organoid culture methods are plagued by several limitations that hinder research progress. These limitations include the inability to faithfully recreate tissue microenvironments, immune contexts, and vascular systems. Fortunately, ongoing advancements in organoid culture techniques are addressing these shortcomings. In this review, we provide a comprehensive overview of current mainstream organoid culture protocols. By evaluating these protocols, researchers can identify the most suitable experimental methods, thereby optimizing resource allocation and experimental outcomes.
Collapse
Affiliation(s)
- Yanwei Ji
- College of Life Sciences, Jilin Agricultural University, Changchun City, People's Republic of China
| | - Yang Sun
- College of Life Sciences, Jilin Agricultural University, Changchun City, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Zhang L, Li T, Zhang Z, Shang X, Bai H, Liu Y, Zong X, Shang C, Song D, Zhang X, Fan L, Liu Z. Investigating bacteria-induced inflammatory responses using novel endometrial epithelial gland organoid models. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1490520. [PMID: 39600797 PMCID: PMC11588683 DOI: 10.3389/frph.2024.1490520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The endometrium plays a crucial role in early human pregnancy, particularly in embryo implantation, survival, and growth. However, invasion and infection by pathogens can lead to endometritis, infertility, and poor reproductive outcomes. Understanding the mechanisms of endometritis and its impact on fertility remains limited. An infection model using patient-derived endometrial epithelial gland organoids (EEGOs) was established to advance in vitro studies on endometritis and related infertility. Methods An EEGOs infection model was constructed and characterized from human endometrium, treating the organoids with estrogen and progesterone to observe changes in the proliferative and secretory phases. The organoids were infected with E. coli, and the release of inflammatory cytokines in the supernatant was detected using ELISA. RNA-seq was employed to analyze the differences before and after E. coli treatment, and differential gene mRNA expression was validated using real-time quantitative PCR. Additionally, the effect of E2 in alleviating inflammation was assessed through markers of receptivity (PAEP, LIF, ITGβ), proliferation (Ki67), and barrier repair (ZO-1). Results The constructed human EEGOs exhibited long-term expansion capability, genetic stability, and characteristic hormonal responses, strongly expressing epithelial markers (MUC1, E-Cadherin). After E. coli infection, the expression levels of inflammatory cytokines TNF-α, IL-8, and IFN-γ increased significantly (P < 0.05). RNA-seq indicated that the MAPK signaling pathway was activated post-infection, with increased expression levels of heat shock proteins and transcription factor mRNA. E2 treatment post-infection significantly decreased the mRNA expression of inflammatory genes IL-1β, IL8, IL6 and TNF-α compared to the E. coli infected group (P < 0.05). Additionally, the expression of genes related to receptivity, proliferation, and barrier repair was enhanced in the E2-treated organoids. Conclusions Our findings demonstrate that patient-derived EEGOs are responsive to bacterial infection and are effective models for studying host-pathogen interactions in bacterial infections. These organoids revealed the anti-inflammatory potential of E2 in alleviating E. coli-induced inflammation, providing insights into the mechanisms of endometritis and its impact on infertility. The study supports the use of EEGOs as valuable tools for understanding endometrial health and developing targeted treatments.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Li Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiang Shang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Huihui Bai
- Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaonan Zong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenguang Shang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dan Song
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
4
|
Pion A, Kavanagh E, Joynt AT, Raraigh KS, Vanscoy L, Langfelder-Schwind E, McNamara J, Moore B, Patel S, Merlo K, Temme R, Capurro V, Pesce E, Merlo C, Pedemonte N, Cutting GR, Sharma N. Investigation of CFTR Function in Human Nasal Epithelial Cells Informs Personalized Medicine. Am J Respir Cell Mol Biol 2024; 71:577-588. [PMID: 39012815 PMCID: PMC11568479 DOI: 10.1165/rcmb.2023-0398oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring cystic fibrosis transmembrane conductance regulator (CFTR) variants: 9 with rare variants (Q359R [n = 2], G480S, R334W [n = 5], and R560T) and 1 harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at the air-liquid interface. CFTR function was measured in Ussing chambers at three conditions: baseline, ivacaftor, and elexacaftor + tezacaftor + ivacaftor (ETI). Four participants initiated modulators. Q359R HNEs had 5.4% (% wild-type) baseline CFTR function and 25.5% with ivacaftor. With therapy, sweat [Cl-] decreased and symptoms resolved. G480S HNEs had 4.1% baseline and 32.1% CFTR function with ETI. Clinically, forced expiratory volume in 1 second increased and sweat [Cl-] decreased (119 to 46 mmol/L) with ETI. In vitro cultures derived from 5 participants harboring R334W showed a moderate increase in CFTR function with exposure to modulators. For one of these participants, ETI was begun in vivo; symptoms and forced expiratory volume in 1 second improved. The c.1679G>C (R560T) HNEs had less than 4% baseline CFTR function and no modulator response. RNA analysis confirmed that c.1679G>C completely missplices. A symptomatic patient harboring R117H;7T;TG10/5T;TG12 exhibited reduced CFTR function (17.5%) in HNEs, facilitating a diagnosis of mild CF. HNEs responded to modulators (ivacaftor: 32.8%, ETI: 55.5%), and, since beginning therapy, lung function improved. We reaffirm HNE use for guiding therapeutic approaches, inform predictions on modulator response (e.g., R334W), and closely assess variants that affect splicing (e.g., c.1679G>C). Notably, functional studies in HNEs harboring R117H;7T;TG10/5T;TG12 facilitated a diagnosis of mild CF, suggesting the use for HNE functional studies as a clinical diagnostic test.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John McNamara
- Children’s Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Brooke Moore
- Children’s Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Shivani Patel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Renee Temme
- Genetics Department, Children’s Minnesota, Minneapolis, Minnesota
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
5
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
6
|
Yang Y, Cui J, Kong Y, Hou Y, Ma C. Organoids: new frontiers in tumor immune microenvironment research. Front Immunol 2024; 15:1422031. [PMID: 39136020 PMCID: PMC11317300 DOI: 10.3389/fimmu.2024.1422031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The tumor microenvironment (TME) contains cells that regulate medication response and cancer growth in a major way. Tumor immunology research has been rejuvenated and cancer treatment has been changed by immunotherapy, a rapidly developing therapeutic approach. The growth patterns of tumor cells in vivo and the heterogeneity, complexity, and individuality of tumors produced from patients are not reflected in traditional two-dimensional tumor cell profiles. On the other hand, an in vitro three-dimensional (3D) model called the organoid model is gaining popularity. It can replicate the physiological and pathological properties of the original tissues in vivo. Tumor cells are the source of immune organoids. The TME characteristics can be preserved while preserving the variety of tumors by cultivating epithelial tumor cells with various stromal and immunological components. In addition to having genetic and physical similarities to human diseases and the ability to partially reconstruct the complex structure of tumors, these models are now widely used in research fields including cancer, developmental biology, regenerative mechanisms, drug development, disease modeling, and organ transplantation. This study reviews the function of organoids in immunotherapy and the tumor immune milieu. We also discuss current developments and suggest translational uses of tumor organoids in immuno-oncology research, immunotherapy modeling, and precision medicine.
Collapse
Affiliation(s)
- Yujia Yang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinlei Cui
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
| | - Yajie Kong
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Hou
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Immunology Department of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Corrao F, Kelly-Aubert M, Sermet-Gaudelus I, Semeraro M. Unmet challenges in cystic fibrosis treatment with modulators. Expert Rev Respir Med 2024; 18:145-157. [PMID: 38755109 DOI: 10.1080/17476348.2024.2357210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION 'Highly effective' modulator therapies (HEMTs) have radically changed the Cystic Fibrosis (CF) therapeutic landscape. AREAS COVERED A comprehensive search strategy was undertaken to assess impact of HEMT in life of pwCF, treatment challenges in specific populations such as very young children, and current knowledge gaps. EXPERT OPINION HEMTs are prescribed for pwCF with definite genotypes. The heterogeneity of variants complicates treatment possibilities and around 10% of pwCF worldwide remains ineligible. Genotype-specific treatments are prompting theratyping and personalized medicine strategies. Improvement in lung function and quality of life increase survival rates, shifting CF from a pediatric to an adult disease. This implies new studies addressing long-term efficacy, side effects, emergence of adult co-morbidities and possible drug-drug interactions. More sensitive and predictive biomarkers for both efficacy and toxicity are warranted. As HEMTs cross the placenta and are found in breast milk, studies addressing the potential consequences of treatment during pregnancy and breastfeeding are urgently needed. Finally, although the treatment and expected outcomes of CF have improved dramatically in high- and middle-income countries, lack of access in low-income countries to these life-changing medicines highlights inequity of care worldwide.
Collapse
Affiliation(s)
- Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- INSERM, Institut Necker Enfants Malades, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM, Institut Necker Enfants Malades, Paris, France
- Centre de Référence Maladies Rares Mucoviscidose et maladies apparentées. Site constitutif, Université de Paris, Paris, France
- European Reference Lung Center, Frankfurt, Germany
- Université Paris Cité, Paris, France
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre Investigation Clinique, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
8
|
Lutsch CT, Feng L, Gómez Hohn A, Brandt L, Tamm S, Janciauskiene S, Stanke F, Jonigk D, Dittrich AM, Braubach P. A Fast Scoring of Human Primary Respiratory Epithelia Grown at Air-Liquid Interface (ALI) to Assess Epithelial Morphology in Research and Personalized Medicine Settings. J Pers Med 2024; 14:109. [PMID: 38248810 PMCID: PMC10817428 DOI: 10.3390/jpm14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND In recent years, increasingly complex ALI protocols involving specialized, albeit laboratory-specific media have been established, while at the same time, many studies compile the data of only a few ALI donors in spite of site-, protocol- and donor-specific differentiation. METHODS We describe a simple morphology scoring protocol using histology material derived from epithelia grown on ALI inserts in parallel to other, more complex readouts. RESULTS Among more than 100 ALI inserts derived from different donors, significant differences in layer score (p = 0.001) and goblet cell score (p = 0.002) were observed when ALI epithelia derived from explanted lung material were compared to trachea-derived ALI cultures. Cortisol withdrawal for the final 2 days of ALI cultures influenced goblet cell density (p = 0.001). CONCLUSIONS While the histology score provides less resolution than FACS- or OMICs- based single cell analyses, the use of a subportion of the ALI epithelia grown on inserts makes it feasible to combine morphology assessment and other readouts of the same insert. This allows us to control for basic ALI morphology in research and personalized medicine settings in order to assess and, if desired, control for the impact of ALI culture protocols, site- and donor-specific influences on outcome of studies of ALI-derived epithelia.
Collapse
Affiliation(s)
- Christopher T. Lutsch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Longhua Feng
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Ana Gómez Hohn
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Lennart Brandt
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Institute of Pathology, School of Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
11
|
Brignoli T, Ferrara S, Bertoni G. Emerging In Vitro Models for the Study of Infection and Pathogenesis of Pseudomonas aeruginosa and Testing of Antibacterial Agents. Methods Mol Biol 2024; 2721:233-239. [PMID: 37819526 DOI: 10.1007/978-1-0716-3473-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Several animal models have been developed to study infection strategies and pathogenesis of Pseudomonas aeruginosa. Some of these models are also used in preclinical and clinical research. However, these models are increasingly showing their limitations, including in recapitulating human diseases such as cystic fibrosis, which is strongly linked to P. aeruginosa infection. The emerging field of human organoids and organs-on-a-chip is expected to provide answers to the need for in vitro modeling of human diseases. Here, we describe the first recent efforts that will hopefully provide the basis for the development of advanced in vitro models for the study of P. aeruginosa infection and pathogenesis and the testing of antibacterial agents.
Collapse
Affiliation(s)
- Tarcisio Brignoli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy.
| |
Collapse
|
12
|
Kleinfelder K, Lotti V, Eramo A, Amato F, Lo Cicero S, Castelli G, Spadaro F, Farinazzo A, Dell’Orco D, Preato S, Conti J, Rodella L, Tomba F, Cerofolini A, Baldisseri E, Bertini M, Volpi S, Villella VR, Esposito S, Zollo I, Castaldo G, Laudanna C, Sorsher EJ, Hong J, Joshi D, Cutting G, Lucarelli M, Melotti P, Sorio C. In silico analysis and theratyping of an ultra-rare CFTR genotype (W57G/A234D) in primary human rectal and nasal epithelial cells. iScience 2023; 26:108180. [PMID: 38026150 PMCID: PMC10660498 DOI: 10.1016/j.isci.2023.108180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Mutation targeted therapy in cystic fibrosis (CF) is still not eligible for all CF subjects, especially for cases carrying rare variants such as the CFTR genotype W57G/A234D (c.169T>G/c.701C>A). We performed in silico analysis of the effects of these variants on protein stability, which we functionally characterized using colonoids and reprogrammed nasal epithelial cells. The effect of mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein was analyzed by western blotting, forskolin-induced swelling (FIS), and Ussing chamber analysis. We detected a residual CFTR function that increases following treatment with the CFTR modulators VX661±VX445±VX770, correlates among models, and is associated with increased CFTR protein levels following treatment with CFTR correctors. In vivo treatment with VX770 reduced sweat chloride concentration to non-CF levels, increased the number of CFTR-dependent sweat droplets, and induced a 6% absolute increase in predicted FEV1% after 27 weeks of treatment indicating the relevance of theratyping with patient-derived cells in CF.
Collapse
Affiliation(s)
- Karina Kleinfelder
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Virginia Lotti
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., 80145 Naples, Italy
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessia Farinazzo
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Sara Preato
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Jessica Conti
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Luca Rodella
- Endoscopic Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Francesco Tomba
- Endoscopic Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Angelo Cerofolini
- Endoscopic Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Elena Baldisseri
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Marina Bertini
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Sonia Volpi
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., 80145 Naples, Italy
| | - Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., 80145 Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., 80145 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., 80145 Naples, Italy
| | - Carlo Laudanna
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| | - Eric J. Sorsher
- Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis & Sleep, Emory University, Atlanta, GA 30322, USA
| | - Jeong Hong
- Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis & Sleep, Emory University, Atlanta, GA 30322, USA
| | - Disha Joshi
- Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis & Sleep, Emory University, Atlanta, GA 30322, USA
| | - Garry Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Division of General Pathology, 37134 Verona, Italy
| |
Collapse
|
13
|
Dreano E, Burgel PR, Hatton A, Bouazza N, Chevalier B, Macey J, Leroy S, Durieu I, Weiss L, Grenet D, Stremler N, Ohlmann C, Reix P, Porzio M, Roux Claude P, Rémus N, Douvry B, Montcouquiol S, Cosson L, Mankikian J, Languepin J, Houdouin V, Le Clainche L, Guillaumot A, Pouradier D, Tissot A, Priou P, Mély L, Chedevergne F, Lebourgeois M, Lebihan J, Martin C, Zavala F, Da Silva J, Lemonnier L, Kelly-Aubert M, Golec A, Foucaud P, Marguet C, Edelman A, Hinzpeter A, de Carli P, Girodon E, Sermet-Gaudelus I, Pranke I. Theratyping cystic fibrosis patients to guide elexacaftor/tezacaftor/ivacaftor out-of-label prescription. Eur Respir J 2023; 62:2300110. [PMID: 37696564 DOI: 10.1183/13993003.00110-2023] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.
Collapse
Affiliation(s)
- Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Pierre Régis Burgel
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
- INSERM U1016, Institut Cochin, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Naim Bouazza
- Université Paris-Cité, Paris, France
- Unité de Recherche Clinique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Julie Macey
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU Pellegrin, Bordeaux, France
| | - Sylvie Leroy
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU, Nice, France
| | - Isabelle Durieu
- Centre de Référence Adulte de la Mucoviscidose, Hospices Civils de Lyon, Université de Lyon, Équipe d'Accueil Health Services and Performance Research (HESPER) 7425, Lyon, France
| | - Laurence Weiss
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Strasbourg, France
| | - Dominique Grenet
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Foch, Suresnes, France
| | - Nathalie Stremler
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital de la Timone, Marseille, France
| | - Camille Ohlmann
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Philippe Reix
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Michele Porzio
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Strasbourg, France
| | - Pauline Roux Claude
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Besancon, France
| | - Natacha Rémus
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Benoit Douvry
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Sylvie Montcouquiol
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Clermont Ferrand, France
| | - Laure Cosson
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Tours, France
| | - Julie Mankikian
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Tours, France
| | - Jeanne Languepin
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHU, Limoges, France
| | - Veronique Houdouin
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Laurence Le Clainche
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Anne Guillaumot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nancy, France
| | - Delphine Pouradier
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
| | - Adrien Tissot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nantes, France
| | - Pascaline Priou
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Angers, France
| | - Laurent Mély
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital René Sabran, Hospices Civils de Lyon, Giens, France
| | - Frederique Chedevergne
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Muriel Lebourgeois
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Jean Lebihan
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, Centre de Perharidy, Roscoff, France
| | - Clémence Martin
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | - Flora Zavala
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | | | - Mairead Kelly-Aubert
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Anita Golec
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Christophe Marguet
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Rouen, France
| | - Aleksander Edelman
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Alexandre Hinzpeter
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Emmanuelle Girodon
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, Paris, France
- These three authors contributed equally to this work as co-last authors
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
- These three authors contributed equally to this work as co-last authors
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- These three authors contributed equally to this work as co-last authors
| |
Collapse
|
14
|
Hisert KB, Birket SE, Clancy JP, Downey DG, Engelhardt JF, Fajac I, Gray RD, Lachowicz-Scroggins ME, Mayer-Hamblett N, Thibodeau P, Tuggle KL, Wainwright CE, De Boeck K. Understanding and addressing the needs of people with cystic fibrosis in the era of CFTR modulator therapy. THE LANCET. RESPIRATORY MEDICINE 2023; 11:916-931. [PMID: 37699420 DOI: 10.1016/s2213-2600(23)00324-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.
Collapse
Affiliation(s)
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabelle Fajac
- Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Robert D Gray
- Institution of Regeneration and Repair, Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | | - Nicole Mayer-Hamblett
- Department of Pediatrics, Department of Biostatistics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
15
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
16
|
Bruno SM, Blaconà G, Lo Cicero S, Castelli G, Virgulti M, Testino G, Pierandrei S, Fuso A, Cimino G, Ferraguti G, Eramo A, Lucarelli M. Quantitative Evaluation of CFTR Gene Expression: A Comparison between Relative Quantification by Real-Time PCR and Absolute Quantification by Droplet Digital PCR. Genes (Basel) 2023; 14:1781. [PMID: 37761921 PMCID: PMC10531455 DOI: 10.3390/genes14091781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.
Collapse
Affiliation(s)
- Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Mariarita Virgulti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giancarlo Testino
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| |
Collapse
|
17
|
Lo Cicero S, Castelli G, Blaconà G, Bruno SM, Sette G, Pigliucci R, Villella VR, Esposito S, Zollo I, Spadaro F, Maria RD, Biffoni M, Cimino G, Amato F, Lucarelli M, Eramo A. L1077P CFTR pathogenic variant function rescue by Elexacaftor-Tezacaftor-Ivacaftor in cystic fibrosis patient-derived air-liquid interface (ALI) cultures and organoids: in vitro guided personalized therapy of non-F508del patients. Respir Res 2023; 24:217. [PMID: 37674160 PMCID: PMC10483775 DOI: 10.1186/s12931-023-02516-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.
Collapse
Affiliation(s)
- Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Pigliucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli'-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Baharara H, Kesharwani P, Johnston TP, Sahebkar A. Therapeutic potential of phytochemicals for cystic fibrosis. Biofactors 2023; 49:984-1009. [PMID: 37191383 DOI: 10.1002/biof.1960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The aim of this review was to review and discuss various phytochemicals that exhibit beneficial effects on mutated membrane channels, and hence, improve transmembrane conductance. These therapeutic phytochemicals may have the potential to decrease mortality and morbidity of CF patients. Four databases were searched using keywords. Relevant studies were identified, and related articles were separated. Google Scholar, as well as gray literature (i.e., information that is not produced by commercial publishers), were also checked for related articles to locate/identify additional studies. The relevant databases were searched a second time to ensure that recent studies were included. In conclusion, while curcumin, genistein, and resveratrol have demonstrated effectiveness in this regard, it should be emphasized that coumarins, quercetin, and other herbal medicines also have beneficial effects on transporter function, transmembrane conductivity, and overall channel activity. Additional in vitro and in vivo studies should be conducted on mutant CFTR to unequivocally define the mechanism by which phytochemicals alter transmembrane channel function/activity, since the results of the studies evaluated in this review have a high degree of heterogenicity and discrepancy. Finally, continued research be undertaken to clearly define the mechanism(s) of action and the therapeutic effects that therapeutic phytochemicals have on the symptoms observed in CF patients in an effort to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - AmirHossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Scotney E, Fleming L, Saglani S, Sonnappa S, Bush A. Advances in the pathogenesis and personalised treatment of paediatric asthma. BMJ MEDICINE 2023; 2:e000367. [PMID: 37841968 PMCID: PMC10568124 DOI: 10.1136/bmjmed-2022-000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 10/17/2023]
Abstract
The diversity of pathology of severe paediatric asthma demonstrates that the one-size-fits-all approach characterising many guidelines is inappropriate. The term "asthma" is best used to describe a clinical syndrome of wheeze, chest tightness, breathlessness, and sometimes cough, making no assumptions about underlying pathology. Before personalising treatment, it is essential to make the diagnosis correctly and optimise basic management. Clinicians must determine exactly what type of asthma each child has. We are moving from describing symptom patterns in preschool wheeze to describing multiple underlying phenotypes with implications for targeting treatment. Many new treatment options are available for school age asthma, including biological medicines targeting type 2 inflammation, but a paucity of options are available for non-type 2 disease. The traditional reliever treatment, shortacting β2 agonists, is being replaced by combination inhalers containing inhaled corticosteroids and fast, longacting β2 agonists to treat the underlying inflammation in even mild asthma and reduce the risk of asthma attacks. However, much decision making is still based on adult data extrapolated to children. Better inclusion of children in future research studies is essential, if children are to benefit from these new advances in asthma treatment.
Collapse
Affiliation(s)
- Elizabeth Scotney
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Samatha Sonnappa
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| |
Collapse
|
20
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
21
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
22
|
Regard L, Martin C, Da Silva J, Burgel PR. CFTR Modulators: Current Status and Evolving Knowledge. Semin Respir Crit Care Med 2023; 44:186-195. [PMID: 36535667 DOI: 10.1055/s-0042-1758851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past decade, the medical management of people with cystic fibrosis (pwCF) has changed with the development of small molecules that partially restore the function of the defective CF transmembrane conductance regulator (CFTR) protein and are called CFTR modulators. Ivacaftor (IVA), a CFTR potentiator with a large effect on epithelial ion transport, was the first modulator approved in pwCF carrying gating mutations. Because IVA was unable to restore sufficient CFTR function in pwCF with other mutations, two CFTR correctors (lumacaftor and tezacaftor) were developed and used in combination with IVA in pwCF homozygous for F508del, the most common CFTR variant. However, LUM/IVA and TEZ/IVA were only moderately effective in F508del homozygous pwCF and had no efficacy in those with F508del and minimal function mutations. Elexacaftor, a second-generation corrector, was thus developed and combined to tezacaftor and ivacaftor (ELX/TEZ/IVA) to target pwCF with at least one F508del variant, corresponding to approximately 85% of pwCF. Both IVA and ELX/TEZ/IVA are considered highly effective modulator therapies (HEMTs) in eligible pwCF and are now approved for nearly 90% of the CF population over 6 years of age. HEMTs are responsible for rapid improvement in respiratory manifestations, including improvement in symptoms and lung function, and reduction in the rate of pulmonary exacerbations. The impact of HEMT on extrapulmonary manifestations of CF is less well established, although significant weight gain and improvement in quality of life have been demonstrated. Recent clinical trials and real-world studies suggest that benefits of HEMT could even prove greater when used earlier in life (i.e., in younger children and infants). This article shortly reviews the past 10 years of development and use of CFTR modulators. Effects of HEMT on extrapulmonary manifestations and on CF demographics are also discussed.
Collapse
Affiliation(s)
- Lucile Regard
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Clémence Martin
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Jennifer Da Silva
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| |
Collapse
|
23
|
Stanke F, Pallenberg ST, Tamm S, Hedtfeld S, Eichhorn EM, Minso R, Hansen G, Welte T, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Dittrich AM. Changes in cystic fibrosis transmembrane conductance regulator protein expression prior to and during elexacaftor-tezacaftor-ivacaftor therapy. Front Pharmacol 2023; 14:1114584. [PMID: 36778025 PMCID: PMC9911415 DOI: 10.3389/fphar.2023.1114584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background: Defects in expression, maturation or function of the epithelial membrane glycoprotein CFTR are causative for the progressive disease cystic fibrosis. Recently, molecular therapeutics that improve CFTR maturation and functional defects have been approved. We aimed to verify whether we could detect an improvement of CFTR protein expression and maturation by triple therapy with elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA). Methods: Rectal suction biopsies of 21 p.Phe508del homozygous or compound heterozygous CF patients obtained pre- and during treatment with ELX/TEZ/IVA were analyzed by CFTR Western blot that was optimized to distinguish CFTR glycoisoforms. Findings: CFTR western immunoblot analysis revealed that-compared to baseline-the levels of CFTR protein increased by at least twofold in eight out of 12 patients upon treatment with ELX/TEZ/IVA compared to baseline (p < 0.02). However, polydispersity of the mutant CFTR protein was lower than that of the fully glycosylated wild type CFTR Golgi isoform, indicating an incompletely glycosylated p.Phe508el CFTR protein isoform C* in patients with CF which persists after ELX/TEZ/IVA treatment. Interpretation: Treatment with ELX/TEZ/IVA increased protein expression by facilitating the posttranslational processing of mutant CFTR but apparently did not succeed in generating the polydisperse spectrum of N-linked oligosaccharides that is characteristic for the wild type CFTR band C glycoisoform. Our results caution that the lower amounts or immature glycosylation of the C* glycoisoform observed in patients' biomaterial might not translate to fully restored function of mutant CFTR necessary for long-term provision of clinical benefit.
Collapse
Affiliation(s)
- Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,*Correspondence: Frauke Stanke,
| | - Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Silke Hedtfeld
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ella M. Eichhorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Standards of care for CFTR variant-specific therapy (including modulators) for people with cystic fibrosis. J Cyst Fibros 2023; 22:17-30. [PMID: 36916675 DOI: 10.1016/j.jcf.2022.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis (CF) has entered the era of variant-specific therapy, tailored to the genetic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators, the first variant-specific therapy available, have transformed the management of CF. The latest standards of care from the European CF Society (2018) did not include guidance on variant-specific therapy, as CFTR modulators were becoming established as a novel therapy. We have produced interim standards to guide healthcare professionals in the provision of variant-specific therapy for people with CF. Here we provide evidence-based guidance covering the spectrum of care, established using evidence from systematic reviews and expert opinion. Statements were reviewed by key stakeholders using Delphi methodology, with agreement (≥80%) achieved for all statements after one round of consultation. Issues around accessibility are discussed and there is clear consensus that all eligible people with CF should have access to variant-specific therapy.
Collapse
|
25
|
Organoid Technology and Its Role for Theratyping Applications in Cystic Fibrosis. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010004. [PMID: 36670555 PMCID: PMC9856584 DOI: 10.3390/children10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Cystic fibrosis (CF) is a autosomal recessive, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. Although symptom management is important to avoid complications, the approval of CFTR modulator drugs in the clinic has demonstrated significant improvements by targeting the primary molecular defect of CF and thereby preventing problems related to CFTR deficiency or dysfunction. CFTR modulator therapies have positively changed the patients' quality of life, especially for those who start their use at the onset of the disease. Due to early diagnosis with the implementation of newborn screening programs and considerable progress in the treatment options, nowadays pediatric mortality was dramatically reduced. In any case, the main obstacle to treat CF is to predict the drug response of patients due to genetic complexity and heterogeneity. Advances in 3D culture systems have led to the extrapolation of disease modeling and individual drug response in vitro by producing mini organs called "organoids" easily obtained from nasal and rectal mucosa biopsies. In this review, we focus primarily on patient-derived intestinal organoids used as in vitro model for CF disease. Organoids combine high-validity of outcomes with a high throughput, thus enabling CF disease classification, drug development and treatment optimization in a personalized manner.
Collapse
|
26
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
27
|
Britto CJ, Ratjen F, Clancy JP. Emerging Approaches to Monitor and Modify Care in the Era of Cystic Fibrosis Transmembrane Conductance Regulators. Clin Chest Med 2022; 43:631-646. [PMID: 36344071 DOI: 10.1016/j.ccm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As we characterize the clinical benefits of highly effective modulator therapy (HEMT) in the cystic fibrosis (CF) population, our paradigm for treating and monitoring disease continues to evolve. More sensitive approaches are necessary to detect early disease and clinical progression. This article reviews evolving strategies to assess disease control and progression in the HEMT era. This article also explores developments in pulmonary function monitoring, advanced respiratory imaging, tools for the collection of patient-reported outcomes, and their application to profile individual responses, guide therapeutic decisions, and improve the quality of life of people with CF.
Collapse
Affiliation(s)
- Clemente J Britto
- Yale Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine.
| | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, University of Toronto Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1X8, Canada
| | | |
Collapse
|
28
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
29
|
Darwish T, Al-Khulaifi A, Ali M, Mowafy R, Arredouani A, Doi SA, Emara MM. Assessing the consistency of iPSC and animal models in cystic fibrosis modelling: A meta-analysis. PLoS One 2022; 17:e0272091. [PMID: 35944004 PMCID: PMC9362911 DOI: 10.1371/journal.pone.0272091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/12/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a hereditary autosomal recessive disorder caused by a range of mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. This gene encodes the CFTR protein, which acts as a chloride channel activated by cyclic AMP (cAMP). This meta-analysis aimed to compare the responsiveness of induced pluripotent stem cells (iPSCs) to cAMP analogues to that of commonly used animal models. METHODS Databases searched included PubMed, Scopus, and Medline from inception to January 2020. A total of 8 and 3 studies, respectively, for animal models and iPSCs, were analyzed. Studies were extracted for investigating cAMP-stimulated anion transport by measuring the short circuit current (Isc) of chloride channels in different animal models and iPSC systems We utilized an inverse variance heterogeneity model for synthesis. RESULTS Our analysis showed considerable heterogeneity in the mean Isc value in both animal models and iPSCs studies (compared to their WT counterparts), and both suffer from variable responsiveness based on the nature of the underlying model. There was no clear advantage of one over the other. CONCLUSIONS Studies on both animal and iPSCs models generated considerable heterogeneity. Given the potential of iPSC-derived models to study different diseases, we recommend paying more attention to developing reproducible models of iPSC as it has potential if adequately developed.
Collapse
Affiliation(s)
- Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Azhar Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Menatalla Ali
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Rana Mowafy
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Suhail A. Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Amatngalim GD, Rodenburg LW, Aalbers BL, Raeven HH, Aarts EM, Sarhane D, Spelier S, Lefferts JW, Silva IA, Nijenhuis W, Vrendenbarg S, Kruisselbrink E, Brunsveld JE, van Drunen CM, Michel S, de Winter-de Groot KM, Heijerman HG, Kapitein LC, Amaral MD, van der Ent CK, Beekman JM. Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia. Life Sci Alliance 2022; 5:e202101320. [PMID: 35922154 PMCID: PMC9351388 DOI: 10.26508/lsa.202101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1<i>β</i> and interleukin-1<i>β</i>, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis.
Collapse
Affiliation(s)
- Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bente L Aalbers
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette Hm Raeven
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen M Aarts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dounia Sarhane
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sacha Spelier
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Juliet W Lefferts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Iris Al Silva
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Wilco Nijenhuis
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Sacha Vrendenbarg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Harry G Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Magarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
31
|
Current state of CFTR modulators for treatment of Cystic Fibrosis. Curr Opin Pharmacol 2022; 65:102239. [DOI: 10.1016/j.coph.2022.102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022]
|
32
|
Rossi R, De Angelis ML, Xhelili E, Sette G, Eramo A, De Maria R, Cesta Incani U, Francescangeli F, Zeuner A. Lung Cancer Organoids: The Rough Path to Personalized Medicine. Cancers (Basel) 2022; 14:3703. [PMID: 35954367 PMCID: PMC9367558 DOI: 10.3390/cancers14153703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.
Collapse
Affiliation(s)
- Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Eljona Xhelili
- Department of Surgical Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ursula Cesta Incani
- Division of Oncology, University and Hospital Trust of Verona (AOUI), Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| |
Collapse
|
33
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
34
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
35
|
Vazquez-Armendariz AI, Barroso MM, El Agha E, Herold S. 3D In Vitro Models: Novel Insights into Idiopathic Pulmonary Fibrosis Pathophysiology and Drug Screening. Cells 2022; 11:1526. [PMID: 35563831 PMCID: PMC9099957 DOI: 10.3390/cells11091526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often lethal interstitial lung disease of unknown aetiology. IPF is characterised by myofibroblast activation, tissue stiffening, and alveolar epithelium injury. As current IPF treatments fail to halt disease progression or induce regeneration, there is a pressing need for the development of novel therapeutic targets. In this regard, tri-dimensional (3D) models have rapidly emerged as powerful platforms for disease modelling, drug screening and discovery. In this review, we will touch on how 3D in vitro models such as hydrogels, precision-cut lung slices, and, more recently, lung organoids and lung-on-chip devices have been generated and/or modified to reveal distinct cellular and molecular signalling pathways activated during fibrotic processes. Markedly, we will address how these platforms could provide a better understanding of fibrosis pathophysiology and uncover effective treatment strategies for IPF patients.
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany; (M.M.B.); (E.E.A.); (S.H.)
| | | | | | | |
Collapse
|
36
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
37
|
Baeza‐Trinidad R, Garcia‐Guerreros S. Novel cystic fibrosis transmembrane conductance regulator variant in a cystic fibrosis patient. Intern Med J 2022; 52:508-509. [DOI: 10.1111/imj.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
|
38
|
Haq I, Almulhem M, Soars S, Poulton D, Brodlie M. Precision Medicine Based on CFTR Genotype for People with Cystic Fibrosis. Pharmgenomics Pers Med 2022; 15:91-104. [PMID: 35153502 PMCID: PMC8828078 DOI: 10.2147/pgpm.s245603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic condition that is caused by variants in the cystic fibrosis transmembrane conductance regulator gene. This causes multisystem disease due to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel at the apical surface of epithelia. Until recently, treatment was directed at managing the downstream effects in affected organs, principally improving airway clearance and treating infection in the lungs and improving malabsorption in the gastrointestinal tract. Care delivered by multidisciplinary teams has yielded incremental improvements in outcomes. However, the development of small-molecule CFTR modulator drugs over the last decade has heralded a new era of CF therapeutics. Modulators target the underlying defect and improve CFTR function. Either monotherapy or a combination of modulators is used depending on the specific genotype and class of CFTR disease-causing variants that an individual has. Both ivacaftor and the ivacaftor/tezacaftor/elexacaftor combination have been demonstrated to be associated with clinically very significant benefits in randomised trials and have rapidly been made available as part of standard care in many countries. CFTR modulators represent one of the best examples of precision medicine to date. They are expensive, however, and equity of access to them worldwide remains an issue. Studies and approvals are also ongoing for children under the age of 6 years for ivacaftor/tezacaftor/elexacaftor. Furthermore, no modulators are available for around 10% of the people with CF. In this review, we firstly summarise the genetics, pathophysiology and clinical problems associated with CF. We then discuss the development of CFTR modulators and key clinical trials to support their use along with other potential future therapeutic approaches.
Collapse
Affiliation(s)
- Iram Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Maryam Almulhem
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simone Soars
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Poulton
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Paediatrics, Ninewells Hospital, NHS Tayside, Dundee, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Correspondence: Malcolm Brodlie, Paediatric Respiratory Medicine, Level 3, Clinical Resource Building, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK, Tel +44 191 2336161, Email
| |
Collapse
|
39
|
Catellani C, Cirillo F, Graziano S, Montanini L, Marmiroli N, Gullì M, Street ME. MicroRNA global profiling in cystic fibrosis cell lines reveals dysregulated pathways related with inflammation, cancer, growth, glucose and lipid metabolism, and fertility: an exploratory study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022133. [PMID: 35775757 PMCID: PMC9335447 DOI: 10.23750/abm.v93i3.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIM Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways. METHODS We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls. RESULTS In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling. CONCLUSIONS CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy, These authors contributed equally to this work
| | - Francesca Cirillo
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, These authors contributed equally to this work
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Luisa Montanini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
40
|
Abstract
When a child with severe asthma (asthma defined clinically for the purposes of this review as wheeze, breathlessness, and chest tightness sometimes with cough) does not respond to treatment, it is important to be sure that an alternative or additional diagnosis is not being missed. In school age children, the next step is a detailed protocolized assessment to determine the nature of the problem, whether within the airway or related to co-morbidities or social/environmental factors, in order to personalize the treatment. For example, those with refractory difficult asthma due to persistent non-adherence may benefit from using budesonide and formoterol combined in a single inhaler [single maintenance and reliever treatment (SMART)] as both a reliever and preventer. For those with steroid-resistant Type 2 airway inflammation, the use of biologicals such as omalizumab and mepolizumab should be considered, but for mepolizumab at least, there is a paucity of pediatric data. Protocols are less well developed in preschool asthma, where steroid insensitive disease is much more common, but the use of two simple measurements, aeroallergen sensitization, and peripheral blood eosinophil count, allows the targeted use of inhaled corticosteroids (ICSs). There is also increasing evidence that chronic airway infection may be important in preschool wheeze, increasing the possibility that targeted antibiotics may be beneficial. Asthma in the first year of life is not driven by Type 2 inflammation, so beyond avoiding prescribing ICSs, no evidence based recommendations can be made. In the future, we urgently need to develop objective biomarkers, especially of risk, so that treatment can be targeted effectively; we need to address the scandal of the lack of data in children compared with adults, precluding making evidence-based therapeutic decisions and move from guiding treatment by phenotypes, which will change as the environment changes, to endotype based therapy.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, London, United Kingdom.,Imperial Centre for Paediatrics and Child Health, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
41
|
Reeves SR. Primary nasal epithelial cells from patients with cystic fibrosis hold promise for guiding precision medicine and expanding treatment. Eur Respir J 2021; 58:2102735. [PMID: 34857588 DOI: 10.1183/13993003.02735-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Stephen R Reeves
- Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|