1
|
Pastore D, Lupia C, D'Amato M, Bruni A, Garofalo E, Longhini F, Gallelli L, Vatrella A, Pelaia G, Pelaia C. Emerging biological treatments for asthma. Expert Opin Emerg Drugs 2025:1-11. [PMID: 39873193 DOI: 10.1080/14728214.2025.2460529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life. AREAS COVERED This review aims to describe current biological therapies for severe asthma, highlighting emerging ones. Several studies have confirmed the beneficial effects of currently available monoclonal antibodies targeting immunoglobulin E (IgE), interleukin-5 (IL-5) or its receptor, and interleukin-4 (IL-4)/interleukin-13 (IL-13) receptors (IL-4R/IL-13R). However, patients with T2-low asthma are not eligible for the above biological therapies. EXPERT OPINION New treatments are now moving toward targeting the upstream pathways of asthma pathogenesis, coordinated by innate cytokines such as alarmins. These key proinflammatory mediators orchestrate the activation of complex cellular networks including both innate and adaptive immune responses. Alarmins include thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and interleukin-33 (IL-33), which are released from injured airway epithelial cells. TSLP and the other alarmins are suitable targets of biological therapies which are effective for add-on treatment of type 2 asthma. Moreover, anti-alarmin monoclonal antibodies can be also beneficial for patients with T2-low, poorly controlled severe asthma.
Collapse
Affiliation(s)
- Daniela Pastore
- Department of Health Sciences,University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Chiara Lupia
- Department of Health Sciences,University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Maria D'Amato
- Department of Respiratory Medicine, "V. Monaldi University Hospital, Naples, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences,University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences,University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Domvri K, Tsiouprou I, Bakakos P, Steiropoulos P, Katsoulis K, Kostikas K, Antoniou KM, Papaioannou AI, Rovina N, Katsaounou P, Papamitsou T, Pastelli N, Tryfon S, Fouka E, Papakosta D, Loukides S, Porpodis K. Effect of mepolizumab in airway remodeling in patients with late-onset severe asthma with an eosinophilic phenotype. J Allergy Clin Immunol 2025; 155:425-435. [PMID: 39521278 DOI: 10.1016/j.jaci.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Clinical trials and real-world experience have provided evidence for the clinical benefits of mepolizumab, an anti-IL-5 biologic, in severe asthma. However, limited data exist regarding the impact of mepolizumab on airway remodeling. OBJECTIVE We sought to investigate the effect of mepolizumab on airway structural remodeling in patients treated for severe asthma in routine clinical care. METHODS The MESILICO (Efficacy of Mepolizumab in patients with latE-onset Severe eosInophiLic asthma and fIxed obstruCtiOn) study is a multicenter study involving 8 pulmonology departments in Greece. This study focused on patients who initiated mepolizumab for severe asthma with an eosinophilic phenotype and had late-onset disease with obstructive patterns (impaired reversibility). Forty-seven patients were recruited, of whom 41 were enrolled in the bronchoscopy substudy. The findings were related to clinical outcome. RESULTS After 12 months, mepolizumab treatment was associated with significant improvements in lung function and Asthma Control Test score, along with a significant decrease in severe exacerbation events (P < .001). Thirty-four of the 41 participants (83%) had paired biopsies for comparative analysis. There was a significant reduction from baseline in sub-basement membrane thickness, airway smooth muscle area, airway smooth muscle layer thickness, extent of epithelial damage, and number of tissue eosinophils (all P < .001). The extent of reduction in airway smooth muscle layer thickness positively correlated with the submucosal eosinophil reduction (r = 0.599; P < .001). CONCLUSIONS This study identified that 12 months of mepolizumab treatment in patients with late-onset severe asthma, who are also characterized by eosinophilic and impaired reversibility phenotypes, not only leads to clinical improvement but also reduces indices of airway tissue remodeling suggestive of a disease-modifying effect.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Pathology, George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Tsiouprou
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Bakakos
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, University General Hospital Dragana, Alexandroupolis, Greece
| | | | | | - Katerina M Antoniou
- Department of Thoracic Medicine and Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Crete, Greece
| | - Andriana I Papaioannou
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikoletta Rovina
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Paraskevi Katsaounou
- Pulmonary and Respiratory Failure Department, First ICU, Evaggelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicoleta Pastelli
- Department of Pathology, George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stavros Tryfon
- Pulmonary Department (NHS), George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Fouka
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stelios Loukides
- Attiko University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Lindsley AW, Lugogo N, Reeh KAG, Spahn J, Parnes JR. Asthma Biologics Across the T2 Spectrum of Inflammation in Severe Asthma: Biomarkers and Mechanism of Action. J Asthma Allergy 2025; 18:33-57. [PMID: 39830595 PMCID: PMC11742565 DOI: 10.2147/jaa.s496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Airway inflammation, a hallmark feature of asthma, drives many canonical features of the disease, including airflow limitation, mucus plugging, airway remodeling, and hyperresponsiveness. The T2 inflammatory paradigm is firmly established as the dominant mechanism of asthma pathogenesis, largely due to the success of inhaled corticosteroids and biologic therapies targeting components of the T2 pathway, including IL-4, IL-5, IL-13, and thymic stromal lymphopoietin (TSLP). However, up to 30% of patients may lack signatures of meaningful T2 inflammation (ie, T2 low). In T2-low asthma patients, T2 inflammation may be masked due to anti-inflammatory treatments or may be highly variable depending on exposure to common asthma triggers such as allergens, respiratory infections, and smoke or pollution. The epithelium and epithelial cytokines (TSLP, IL-33) are increasingly recognized as upstream drivers of canonical T2 pathways and as modulators of various effector cells, including mast cells, eosinophils, and neutrophils, which impact the pathological manifestations of airway smooth muscle hypertrophy, hypercontractility, and airway hyperresponsiveness. Approved biologics for severe asthma target several distinct mechanisms of action, leading to differential effects on the spectrum of T2 inflammation, inflammatory biomarkers, and treatment efficacy (reducing asthma exacerbations, improving lung function, and diminishing symptoms). The approved anti-asthma biologics primarily target T2 immune pathways, with little evidence suggesting a benefit of targeting non-T2 asthma-associated mediators. Indeed, many negative results challenge current assumptions about the etiology of non-T2 asthma and raise doubts about the viability of targeting popular alternative inflammatory pathways, such as T17. Novel data have emerged from the use of biologics to treat various inflammatory mediators and have furthered our understanding of pathogenic mechanisms that drive asthma. This review discusses inflammatory pathways that contribute to asthma, quantitatively outlines effects of available biologics on biomarkers, and summarizes data and challenges from clinical trials that address non-T2 mechanisms of asthma.
Collapse
Affiliation(s)
| | - Njira Lugogo
- Michigan Medicine Asthma Program, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
4
|
Tiotiu A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2025; 61:31-40. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Plaza V, García G, Perez de Llano L, Quirce S. Initiating Biological Treatment of Asthma: When is the Right Time? Arch Bronconeumol 2025; 61:3-4. [PMID: 39368876 DOI: 10.1016/j.arbres.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Affiliation(s)
- Vicente Plaza
- Servicio de Neumología y Alergia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Gabriel García
- Centro de Investigaciones Respiratorias, La Plata, Argentina
| | | | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Servicio de Alergología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| |
Collapse
|
6
|
Gyawali B, Georas SN, Khurana S. Biologics in severe asthma: a state-of-the-art review. Eur Respir Rev 2025; 34:240088. [PMID: 39778920 PMCID: PMC11707604 DOI: 10.1183/16000617.0088-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Asthma is considered severe if it remains uncontrolled despite optimal conventional therapy, characterised by poor symptom control, frequent exacerbations and increased exposure to systemic corticosteroids. This has a significant impact on morbidity, mortality and healthcare resource utilisation. Recent advances in the understanding of asthma heterogeneity and immunopathogenesis have helped delineate precise disease pathways. The discovery of these pivotal pathways has led to the development of highly effective biologic therapies. Currently available asthma biologics target immunoglobulin E, interleukin (IL)-5/IL-5Rα, IL-4Rα and thymic stromal lymphopoietin. Identification of specific asthma phenotypes, utilising easily measurable biomarkers, has paved the way towards personalised and precision asthma management. Biologic therapies play a significant role in reducing exacerbations, hospitalisations and the need for maintenance systemic steroids, while also improving the quality of life in patients with severe asthma. The evidence for their clinical efficacy comes from randomised controlled trials (RCTs), extension studies, metanalyses and real-world data. This review synthesises findings from early, pivotal RCTs and subsequent studies following the approval of biologics for severe asthma. The safety and efficacy data from these studies, completed in a variety of settings, provide practical perspectives on their application and enhance their generalisability.
Collapse
Affiliation(s)
- Bishal Gyawali
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Mary Parkes Center for Asthma, Allergy and Pulmonary Care, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Mary Parkes Center for Asthma, Allergy and Pulmonary Care, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
7
|
Qin J, Wang G, Han D. Long-term safety of tezepelumab in patients with asthma: a systematic review and meta-analysis of randomized controlled trials. J Asthma 2025; 62:4-13. [PMID: 39067012 DOI: 10.1080/02770903.2024.2385973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Tezepelumab has demonstrated its effectiveness in patients with asthma, but its safety, especially for long-term use, needs to be further explored. This systematic review and meta-analysis aimed to determine the safety of long-term use of tezepelumab in patients with asthma. DATA SOURCES A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. STUDY SELECTIONS Randomized controlled trials (RCTs) on treatment of asthma with tezepelumab, compared with placebo, were reviewed. Studies were pooled to weighted mean differences (WMDs) and risk ratios (RRs), with 95% confidence intervals (CIs). RESULTS Seven RCTs (enrolling 2050 participants) met the inclusion criteria. Serious adverse event (RR 0.74, 95% CI 0.57 to 0.95), upper respiratory tract infection (RR 0.73, 95% CI 0.55 to 0.96), and asthma (RR 0.61, 95% CI 0.48 to 0.76) were more frequent in the placebo groups. There was no statistically significant difference in the proportion of patients with at least one adverse event (AE), AEs leading to discontinuation of study treatment, all-cause death, influenza, bronchitis, nasopharyngitis, headache, and hypertension between the two groups. CONCLUSION Long-term (12-52 wk) use of tezepelumab in patients with asthma does not increase the incidence of adverse events.
Collapse
Affiliation(s)
- Jinlv Qin
- Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dong Han
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Tashiro H, Kuwahara Y, Kurihara Y, Takahashi K. Molecular mechanisms and clinical impact of biologic therapies in severe asthma. Respir Investig 2025; 63:50-60. [PMID: 39642687 DOI: 10.1016/j.resinv.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe asthma is a critical condition for patients with asthma, characterized by frequent exacerbations, decreased pulmonary function, and unstable symptoms related to asthma. Consequently, the administration of systemic corticosteroids, which cause secondary damage because of their adverse effects, is considered. Recently, several types of molecular-targeted biological therapies have become available for patients with severe asthma, and they have a capacity to improve the pathophysiology of severe asthma. However, several clinical reports indicate that the effects differ depending on the biological targets of asthma in individual patients. In this review, the molecular mechanisms and clinical impact of biologic therapies in severe asthma are described. In addition, molecules targeted by possible future biologics are also addressed. Better understanding of the mechanistic basis for the role of biologics in severe asthma could lead to new therapeutic options for these patients.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan.
| |
Collapse
|
9
|
Wechsler ME, Brusselle G, Virchow JC, Bourdin A, Kostikas K, Llanos JP, Roseti SL, Ambrose CS, Hunter G, Jackson DJ, Castro M, Lugogo N, Pavord ID, Martin N, Brightling CE. Clinical response and on-treatment clinical remission with tezepelumab in a broad population of patients with severe, uncontrolled asthma: results over 2 years from the NAVIGATOR and DESTINATION studies. Eur Respir J 2024; 64:2400316. [PMID: 39326921 PMCID: PMC11618813 DOI: 10.1183/13993003.00316-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND In asthma, clinical response is characterised by disease improvement with treatment, whereas clinical remission is characterised by long-term disease stabilisation with or without ongoing treatment. The proportions of patients receiving tezepelumab who responded to treatment and who achieved on-treatment clinical remission were assessed in the NAVIGATOR (ClinicalTrials.gov identifier NCT03347279) and DESTINATION (ClinicalTrials.gov identifier NCT03706079) studies of severe, uncontrolled asthma. METHODS NAVIGATOR and DESTINATION were phase 3, randomised, double-blind, placebo-controlled studies; DESTINATION was an extension of NAVIGATOR. Complete clinical response was defined as achieving all of the following: ≥50% reduction in exacerbations versus the previous year, improvements in pre-bronchodilator (BD) forced expiratory volume in 1 s (FEV1) of ≥100 mL or ≥5%, improvements in Asthma Control Questionnaire (ACQ)-6 score of ≥0.5 and physician's assessment of asthma improvement. On-treatment clinical remission was defined as an ACQ-6 total score ≤1.5, stable lung function (pre-BD FEV1 >95% of baseline) and no exacerbations or use of oral corticosteroids during the time periods assessed. RESULTS Higher proportions of tezepelumab than placebo recipients achieved complete clinical response over weeks 0-52 (46% versus 24%; OR 2.83, 95% CI 2.10-3.82) and on-treatment clinical remission over weeks 0-52 (28.5% versus 21.9%; OR 1.44, 95% CI 0.95-2.19) and weeks >52-104 (33.5% versus 26.7%; OR 1.44, 95% CI 0.97-2.14). Tezepelumab recipients who achieved on-treatment clinical remission versus complete clinical response at week 52 had better preserved lung function and lower inflammatory biomarker levels at baseline, and fewer exacerbations in the 12 months before the study. CONCLUSIONS Among patients with severe, uncontrolled asthma, tezepelumab treatment was associated with an increased likelihood of achieving complete clinical response and on-treatment clinical remission compared with placebo. Both are clinically important outcomes, but may be driven by different patient characteristics.
Collapse
Affiliation(s)
- Michael E. Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - J. Christian Virchow
- Department of Pneumology and Department of Intensive Care Medicine, University of Rostock, Rostock, Germany
| | - Arnaud Bourdin
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | | | | | - Stephanie L. Roseti
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher S. Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Gillian Hunter
- Biometrics, Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David J. Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas’ NHS Foundation Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Njira Lugogo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ian D. Pavord
- Respiratory Medicine, National Institute for Health and Care Research, Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neil Martin
- Institute for Lung Health, National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Christopher E. Brightling
- Institute for Lung Health, National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
10
|
Stewart KE, RuiWen Kuo C, Chan R, Lipworth BJ. Effects of dupilumab on mannitol airway hyperresponsiveness in uncontrolled severe asthma. J Allergy Clin Immunol 2024:S0091-6749(24)01275-2. [PMID: 39608583 DOI: 10.1016/j.jaci.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Airway hyperresponsiveness (AHR) is a hallmark of persistent asthma. However, effects of IL-4/13 blockade with dupilumab (Dupi) on AHR are unknown. OBJECTIVES This study sought to investigate the effect of 12 weeks of Dupi on AHR, asthma control, and quality of life. METHODS After a 4-week run-in on beclomethasone/formoterol maintenance and reliever therapy (baseline), participants with uncontrolled type-2 high severe asthma received open-label Dupi 300 mg twice weekly, for 12 weeks. Mannitol challenges were done at baseline, 2, 4, and 12 weeks and following a 12-week washout. Study power was 90% to detect 1 doubling difference (dd) in mannitol PD10 FEV1 threshold at week 12. RESULTS Of 24 enrolled patients, 23 completed per protocol mannitol AHR at 12 weeks. Mean baseline values were age 52 years, FEV1 82%, Asthma Control Questionnaire 2.53, mini-Asthma Quality of Life Questionnaire 3.84, inhaled corticosteroids dose 1300 μg; fractional exhaled nitric oxide 50 parts per billion; Eosinophils 552 cells/μL. Mannitol sensitivity as PD10 was significantly attenuated by week 4, and reactivity as response dose ratio by week 2. After 12 weeks of Dupi, mean dd for PD10 was 1.78 (95% CI: 1.23-2.33; P < .001) and for response dose ratio was 3.40 (95% CI: 2.25-4.55; P < .001). At week 12, Asthma Control Questionnaire improved by 1.73 (95% CI: 1.11-2.36; P < .001); mini-Asthma Quality of Life Questionnaire by 2.31 (95% CI: 1.57-3.05; P < .001); FEV1 by 0.39 L (95% CI: 0.11-0.67; P < .01); and PEF by 61 L/min (95% CI: 24-98; P < .001). Beclomethasone/formoterol maintenance and reliever therapy requirement was reduced at 12 weeks versus baseline by 1.7 puffs/d (95% CI: 0.7-2.7; P < .01). After washout at week 24, the dd change was 0.96 (95% CI: 0.02-1.91; P < .05). CONCLUSIONS Dupilumab attenuated mannitol AHR to a clinically relevant degree despite concomitant inhaled corticosteroid reduction, combined with improvements in lung function, asthma control, and quality of life.
Collapse
Affiliation(s)
- Kirsten E Stewart
- Scottish Centre for Respiratory Research, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Chris RuiWen Kuo
- Scottish Centre for Respiratory Research, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Rory Chan
- Scottish Centre for Respiratory Research, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
11
|
Lombardi C, Marcello C, Bosi A, Francesco M. Positioning tezepelumab for patients with severe asthma: from evidence to unmet needs. J Int Med Res 2024; 52:3000605241297532. [PMID: 39552062 PMCID: PMC11571243 DOI: 10.1177/03000605241297532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Several endotypes of severe asthma with predominantly type 2 inflammation can be distinguished by the immune pathways driving the inflammatory processes. However, in the absence of type 2 inflammation, asthma is less clearly defined and is generally associated with poor responses to conventional anti-asthmatic therapies. Studies have shown that disruption of the epithelial barrier triggers inflammatory responses and increases epithelial permeability. A key aspect of this process is that epithelial cells release alarmin cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), in response to allergens and infections. Among these cytokines, TSLP has been identified as a potential therapeutic target for severe asthma, leading to the development of a new biologic, tezepelumab (TZP). By blocking TSLP, TZP may produce wide-ranging effects. Based on positive clinical trial results, TZP appears to offer a promising, safe, and effective treatment approach. This narrative review examines the evidence for treating severe asthma with TZP, analyses clinical trial findings, and provides clinicians with practical insights into identifying patients who may respond best to this novel biologic therapy.
Collapse
Affiliation(s)
- Carlo Lombardi
- Departmental Unit of Allergology, Clinical Immunology & Pneumology, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy
| | | | - Annamaria Bosi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Menzella Francesco
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| |
Collapse
|
12
|
Terl M, Diamant Z, Kosturiak R, Jesenak M. Choosing the right biologic treatment for individual patients with severe asthma - Lessons learnt from Picasso. Respir Med 2024; 234:107766. [PMID: 39181277 DOI: 10.1016/j.rmed.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Severe asthma represents a true challenge for clinicians from two basic perspectives, i.e.: a rational assessment of the underlying endo/phenotype and the subsequent selection of the best fitted (personalized) and effective treatment. Even though asthma is a heterogeneous disease, in the majority of therapy-compliant patients, it is possible to achieve (almost) complete disease control or even remission through conventional and quite uniform step-based pharmacotherapy, even without phenotyping. However, the absence of deeper assessment of individual patients revealed its handicap to its fullest extent during the first years of the new millennium upon the launch of biological therapeutics for patients with the most severe forms of asthma. The introduction of differentially targeted biologics into clinical practice became a challenge in terms of understanding and recognizing the etiopathogenetic heterogeneity of the asthmatic inflammation, pheno/endotyping, and, consequently, to choose the right biologic for the right patient. The answers to the following three questions should lead to correct identification of the dominant pheno/endotype: Is it really (severe) asthma? Is it eosinophilic asthma? If eosinophilic, is it (predominantly) allergen-driven? The identification of the best achievable and relevant alliance between endotypes and phenotypes ("euphenotypes") should be based not only on the assessment of the actual clinical characteristics and laboratory biomarkers, but more importantly, on the evaluation of their development and changes over time. In the current paper, we present a pragmatic three-step approach to severe asthma diagnosis and management.
Collapse
Affiliation(s)
- Milan Terl
- Department of Pneumology and Phthisiology, University Hospital and Faculty of Medicine in Pilsen, Charles University Prague, Czech Republic
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; Dept Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Radovan Kosturiak
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic; Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| |
Collapse
|
13
|
Israel E, Castro M, Ambrose CS, Llanos JP, Molfino NA, Martin NL, Ponnarambil SS, Martin N. Efficacy of tezepelumab in patients with severe asthma and persistent airflow obstruction. ERJ Open Res 2024; 10:00164-2024. [PMID: 39588080 PMCID: PMC11587167 DOI: 10.1183/23120541.00164-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 11/27/2024] Open
Abstract
Background Persistent airflow obstruction (PAO) in patients with asthma can be difficult to treat. Tezepelumab blocks thymic stromal lymphopoietin, an epithelial cytokine implicated in asthma pathogenesis. This analysis evaluated the efficacy of tezepelumab in patients with severe, uncontrolled asthma and PAO. Methods PATHWAY (phase 2b) and NAVIGATOR (phase 3) were multicentre, randomised, double-blind, placebo-controlled studies. This post hoc analysis included PATHWAY and NAVIGATOR patients who received tezepelumab 210 mg or placebo every 4 weeks for 52 weeks. Change from baseline to week 52 in pre-bronchodilator forced expiratory volume in 1 s (FEV1) and the annualised asthma exacerbation rate (AAER) over 52 weeks were assessed in patients with and without PAO (post-bronchodilator FEV1/forced vital capacity ratio <0.7) at baseline. Results Of the 1334 included patients, 782 (58.6%) had PAO at baseline. At week 52, greater improvements in pre-bronchodilator FEV1 from baseline were observed in tezepelumab versus placebo recipients with PAO (least-squares (LS) mean 0.24 versus 0.07 L; difference 0.17 L, 95% confidence interval (CI): 0.11-0.23) and without PAO (LS mean 0.20 versus 0.12 L; difference 0.08 L, 95% CI: 0.01-0.15). Tezepelumab reduced the AAER versus placebo by 61% (95% CI: 51-69) and 56% (95% CI: 42-67) in patients with and without PAO, respectively. For patients with PAO at baseline, the proportion without PAO at week 52 was higher with tezepelumab (12.1%) than placebo (6.6%) (odds ratio 1.96, 95% CI: 1.30-2.94). Conclusion Tezepelumab improved lung function and reduced exacerbations versus placebo in patients with severe, uncontrolled asthma with and without PAO.
Collapse
Affiliation(s)
- Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Christopher S. Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Nicole L. Martin
- Biometrics, Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
- Cytel Inc., Waltham, MA, USA
| | - Sandhia S. Ponnarambil
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
15
|
Caminati M, Vatrella A, Rogliani P, Carpagnano E, Spanevello A, Senna G. Tezepelumab for severe asthma: elevating current practice to recognize epithelial driven profiles. Respir Res 2024; 25:367. [PMID: 39385131 PMCID: PMC11465883 DOI: 10.1186/s12931-024-02998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND An increasing amount of evidence supports the relevance of epithelium across the wide spectrum of asthma pathobiology. On a clinical ground tezepelumab, selectively binding TSLP, a major epithelial cytokine, has demonstrated to be effective in asthma patients regardless their specific phenotype. In order to avoid the risk of considering tezepelumab as a not-specific option, the present perspective aims to sketch the tezepelumab best eligible patient profile and to propose some hallmarks of epithelial-driven disease by reviewing the published evidence on the drug mechanism of action and efficacy data. MAIN BODY Although it cannot rely on standardised or exclusive "markers", the relationship between environment and poor asthma control might suggest a major relevance of the epithelial barrier dysfunction. In that light, allergy and asthma exacerbations concomitant with specific exposures (pathogens, pollutants, chemicals), as well as increased susceptibility to infections can be considered as the hallmark of an impaired epithelial immune response. Tezepelumab is effective in allergic patients, being able to reduce asthma exacerbations precipitated by the exposure to seasonal or perennial aeroallergens, including fungi. In addition, tezepelumab reduced the incidence of co-occurring respiratory illness and asthma exacerbations. In terms of inflammation, epithelial immune response has been related to an impaired mucus hypersecretion and plugging. A placebo-controlled trial demonstrated a significant reduction of mucus plugging in treated patient. Airways hyperreactivity (AHR), airways obstruction and remodelling have been described as an expression of epithelial orchestrated immunological activation. Of note, a significantly higher incidence of mannitol negative test in patients treated with tezepelumab when compared to placebo group has been observed. In addition, A 130 mL improvement in pre-BD FEV1 has been described in patients assuming Tezepelumab. The above-mentioned data suggest that bronchial reversibility and AHR can be considered "functional biomarkers" supporting patients' phenotyping and the identification of tezepelumab best responders. CONCLUSION Integrating "functional biomarkers" to the inflammatory ones and a better characterization of asthma exacerbations might pave the way to a different and more transversal phenotyping, which overcomes the "restrictive" labels including T2 high, allergic/atopic or T2 low asthma. Precisely defining the disease characteristics and potential targets for a better control even in tezepelumab eligible subjects is essential to avoid the block buster temptation and optimize the personalized medicine approach according to each patient's individuality.
Collapse
Affiliation(s)
- Marco Caminati
- Allergy Unit and Asthma Center, Integrated University Hospital of Verona, Verona, Italy.
- Department of Medicine, University of Verona, Verona, Italy.
| | - A Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - P Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - E Carpagnano
- Respiratory Diseases Section, Department of Basic Medical Science Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - A Spanevello
- Istituti Clinici Scientifici Maugeri IRCCS, Tradate , University of Insubria, Varese, Italy
| | - G Senna
- Allergy Unit and Asthma Center, Integrated University Hospital of Verona, Verona, Italy
- Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Granados L, John M, Edelman JD. New Therapies in Outpatient Pulmonary Medicine. Med Clin North Am 2024; 108:843-869. [PMID: 39084837 DOI: 10.1016/j.mcna.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Newer medications and devices, as well as greater understanding of the benefits and limitations of existing treatments, have led to expanded treatment options for patients with lung disease. Treatment advances have led to improved outcomes for patients with asthma, chronic obstructive pulmonary disease, interstitial lung disease, pulmonary hypertension, and cystic fibrosis. The risks and benefits of available treatments are substantially variable within these heterogeneous disease groups. Defining the role of newer therapies mandates both an understanding of these disorders and overall treatment approaches. This section will review general treatment approaches in addition to focusing on newer therapies for these conditions..
Collapse
Affiliation(s)
- Laura Granados
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
| | - Mira John
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey D Edelman
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA; Puget Sound Department of Veterans Affairs, Seattle, WA, USA
| |
Collapse
|
18
|
Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med 2024; 18:485-498. [PMID: 38994712 DOI: 10.1080/17476348.2024.2380072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The hallmark of most patients with severe asthma is type 2 inflammation, driven by innate and adaptive immune responses leading to either allergic or non-allergic eosinophilic infiltration of airways. The cellular and molecular pathways underlying severe type 2 asthma can be successfully targeted by specific monoclonal antibodies. AREAS COVERED This review article provides a concise overview of the pathophysiology of type 2 asthma, followed by an updated appraisal of the mechanisms of action and therapeutic efficacy of currently available biologic treatments used for management of severe type 2 asthma. Therefore, all reported information arises from a wide literature search performed on PubMed. EXPERT OPINION The main result of the recent advances in the field of anti-asthma biologic therapies is the implementation of a personalized medicine approach, aimed to achieve clinical remission of severe asthma. Today this accomplishment is made possible by the right choice of the most beneficial biologic drug for the pathologic traits characterizing each patient, including type 2 severe asthma and its comorbidities.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Calabria, Italy
| | - James Melhorn
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Timothy Sc Hinks
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Ian D Pavord
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Berni Canani R, Caminati M, Carucci L, Eguiluz-Gracia I. Skin, gut, and lung barrier: Physiological interface and target of intervention for preventing and treating allergic diseases. Allergy 2024; 79:1485-1500. [PMID: 38439599 DOI: 10.1111/all.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The epithelial barriers of the skin, gut, and respiratory tract are critical interfaces between the environment and the host, and they orchestrate both homeostatic and pathogenic immune responses. The mechanisms underlying epithelial barrier dysfunction in allergic and inflammatory conditions, such as atopic dermatitis, food allergy, eosinophilic oesophagitis, allergic rhinitis, chronic rhinosinusitis, and asthma, are complex and influenced by the exposome, microbiome, individual genetics, and epigenetics. Here, we review the role of the epithelial barriers of the skin, digestive tract, and airways in maintaining homeostasis, how they influence the occurrence and progression of allergic and inflammatory conditions, how current treatments target the epithelium to improve symptoms of these disorders, and what the unmet needs are in the identification and treatment of epithelial disorders.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marco Caminati
- Allergy Unit and Asthma Centre, Verona Integrated University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malága, Malaga, Spain
- Allergy Group, Biomedical Research Institute of Malaga (IBIMA)-BIONAND Platform, RICORS Inflammatory Diseases, Malaga, Spain
| |
Collapse
|
20
|
Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol 2024; 153:1181-1193. [PMID: 38395082 DOI: 10.1016/j.jaci.2024.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andréanne Côté
- Quebec Heart and Lung Institute, Université Laval, Laval, Quebec, Canada; Department of Medicine, Université Laval, Laval, Quebec, Canada
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Christopher E Brightling
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
21
|
Caminati M, Buhl R, Corren J, Hanania NA, Kim H, Korn S, Lommatzsch M, Martin N, Matucci A, Nasser SM, Pavord ID, Domingo C. Tezepelumab in patients with allergic and eosinophilic asthma. Allergy 2024; 79:1134-1145. [PMID: 38146651 DOI: 10.1111/all.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Asthma is a heterogeneous disease commonly driven by allergic and/or eosinophilic inflammation, both of which may be present in severe disease. Most approved biologics for severe asthma are indicated for specific phenotypes and target individual downstream type 2 components of the inflammatory cascade. Tezepelumab, a human monoclonal antibody (immunoglobulin G2λ), binds specifically to thymic stromal lymphopoietin (TSLP), an epithelial cytokine that initiates and sustains allergic and eosinophilic inflammation in asthma. By blocking TSLP, tezepelumab has demonstrated efficacy across known asthma phenotypes and acts upstream of all current clinically used biomarkers. In a pooled analysis of the phase 2b PATHWAY (NCT02054130) and phase 3 NAVIGATOR (NCT03347279) studies, compared with placebo, tezepelumab reduced the annualized asthma exacerbation rate over 52 weeks by 62% (95% confidence interval [CI]: 53, 70) in patients with perennial aeroallergen sensitization (allergic asthma); by 71% (95% CI: 62, 78) in patients with a baseline blood eosinophil count ≥300 cells/μL; and by 71% (95% CI: 59, 79) in patients with allergic asthma and a baseline blood eosinophil count ≥300 cells/μL. This review examines the efficacy and mode of action of tezepelumab in patients with allergic asthma, eosinophilic asthma and coexisting allergic and eosinophilic phenotypes.
Collapse
Affiliation(s)
- Marco Caminati
- Asthma Center and Allergy Unit, Verona Integrated University Hospital & Department of Medicine, University of Verona, Verona, Italy
| | - Roland Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - Jonathan Corren
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Harold Kim
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Korn
- IKF Pneumologie Mainz, Mainz, Germany
- Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Marek Lommatzsch
- Department of Pneumology and Critical Care Medicine, University of Rostock, Rostock, Germany
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Shuaib M Nasser
- Department of Allergy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Domingo
- Servei de Pneumologia, Corporació Sanitària Parc Taulí, Sabadell, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
22
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
23
|
Bourdin A, Brusselle G, Couillard S, Fajt ML, Heaney LG, Israel E, McDowell PJ, Menzies-Gow A, Martin N, Mitchell PD, Petousi N, Quirce S, Schleich F, Pavord ID. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:809-823. [PMID: 38280454 DOI: 10.1016/j.jaip.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024]
Abstract
Severe asthma is associated with significant morbidity and mortality despite the maximal use of inhaled corticosteroids and additional controller medications, and has a high economic burden. Biologic therapies are recommended for the management of severe, uncontrolled asthma to help to prevent exacerbations and to improve symptoms and health-related quality of life. The effective management of severe asthma requires consideration of clinical heterogeneity that is driven by varying clinical and inflammatory phenotypes, which are reflective of distinct underlying disease mechanisms. Phenotyping patients using a combination of clinical characteristics such as the age of onset or comorbidities and biomarker profiles, including blood eosinophil counts and levels of fractional exhaled nitric oxide and serum total immunoglobulin E, is important for the differential diagnosis of asthma. In addition, phenotyping is beneficial for risk assessment, selection of treatment, and monitoring of the treatment response in patients with asthma. This review describes the clinical and inflammatory phenotypes of asthma, provides an overview of biomarkers routinely used in clinical practice and those that have recently been explored for phenotyping, and aims to assess the value of phenotyping in severe asthma management in the current era of biologics.
Collapse
Affiliation(s)
- Arnaud Bourdin
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Merritt L Fajt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Liam G Heaney
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy & Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - P Jane McDowell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew Menzies-Gow
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; Royal Brompton and Harefield Hospitals, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; University of Leicester, Leicester, United Kingdom
| | | | - Nayia Petousi
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Lab, University of Liege, Liege, Belgium
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
24
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
25
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
26
|
Panettieri Jr R, Lugogo N, Corren J, Ambrose CS. Tezepelumab for Severe Asthma: One Drug Targeting Multiple Disease Pathways and Patient Types. J Asthma Allergy 2024; 17:219-236. [PMID: 38524099 PMCID: PMC10960583 DOI: 10.2147/jaa.s342391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways, affecting many children, adolescents, and adults worldwide. Up to 10% of people with asthma have severe disease, associated with a higher risk of hospitalizations, greater healthcare costs, and poorer outcomes. Patients with severe asthma generally require high-dose inhaled corticosteroids and additional controller medications to achieve disease control; however, many patients remain uncontrolled despite this intensive treatment. The treatment of severe uncontrolled asthma has improved with greater understanding of asthma pathways and phenotypes as well as the advent of targeted biologic therapies. Tezepelumab, a monoclonal antibody, blocks thymic stromal lymphopoietin, an epithelial cytokine that has multifaceted effects on the initiation and persistence of asthma inflammation and pathophysiology. Unlike other biologic treatments, tezepelumab has demonstrated efficacy across severe asthma phenotypes, with the magnitude of effects varying by phenotype. Here we describe the anti-inflammatory effects and efficacy of tezepelumab across the most relevant phenotypes of severe asthma. Across clinical studies, tezepelumab reduced annualized asthma exacerbation rates versus placebo by 63-71% in eosinophilic severe asthma, by 58-68% in allergic severe asthma, by 67-71% in allergic and eosinophilic severe asthma, by 34-49% in type 2-low asthma, and by 31-41% in oral corticosteroid-dependent asthma. Furthermore, in all these asthma phenotypes, tezepelumab demonstrated higher efficacy in reducing exacerbations requiring hospitalizations or emergency department visits versus placebo. In patients with severe uncontrolled asthma, who commonly have multiple drivers of inflammation and disease, tezepelumab may modulate airway inflammation more extensively, as other available biologics block only specific downstream components of the inflammatory cascade.
Collapse
Affiliation(s)
- Reynold Panettieri Jr
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Njira Lugogo
- Michigan Medicine Asthma Program, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Corren
- Departments of Medicine and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
27
|
Sverrild A, Cerps S, Nieto-Fontarigo JJ, Ramu S, Hvidtfeldt M, Menzel M, Kearley J, Griffiths JM, Parnes JR, Porsbjerg C, Uller L. Tezepelumab decreases airway epithelial IL-33 and T2-inflammation in response to viral stimulation in patients with asthma. Allergy 2024; 79:656-666. [PMID: 37846599 DOI: 10.1111/all.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM To examine effects of blocking TSLP in patients with asthma on host resistance (IFNβ, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNβ IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNβ and IFNλ expression and viral load were unchanged. CONCLUSION Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.
Collapse
Affiliation(s)
- A Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - S Cerps
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J J Nieto-Fontarigo
- Department of Experimental Medicine, Lund University, Lund, Sweden
- BioLympho Research group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - S Ramu
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - M Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - M Menzel
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J Kearley
- Bioscience, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J M Griffiths
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J R Parnes
- Translational Medicine, Amgen, Thousand Oaks, California, USA
| | - C Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - L Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Siora A, Vontetsianos A, Chynkiamis N, Anagnostopoulou C, Bartziokas K, Anagnostopoulos N, Rovina N, Bakakos P, Papaioannou AI. Small airways in asthma: From inflammation and pathophysiology to treatment response. Respir Med 2024; 222:107532. [PMID: 38228215 DOI: 10.1016/j.rmed.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Small airways are characterized as those with an inner diameter less than 2 mm and constitute a major site of pathology and inflammation in asthma disease. It is estimated that small airways dysfunction may occur before the emergence of noticeable symptoms, spirometric abnormalities and imaging findings, thus characterizing them as "the quiet or silent zone" of the lungs. Despite their importance, measuring and quantifying small airways dysfunction presents a considerable challenge due to their inaccessibility in usual functional measurements, primarily due to their size and peripheral localization. Several pulmonary function tests have been proposed for the assessment of the small airways, including impulse oscillometry, nitrogen washout, body plethysmography, as well as imaging methods. Nevertheless, none of these methods has been established as the definitive "gold standard," thus, a combination of them should be used for an effective assessment of the small airways. Widely used asthma treatments seem to also affect several parameters of the small airways. Emerging biologic treatments show promising results in reducing small airways inflammation and remodelling, providing evidence for potential alterations in the disease's progression and outcomes. These novel therapies have implications not only in the clinical aspects of asthma but also in its inflammatory and functional aspects.
Collapse
Affiliation(s)
- Anastasia Siora
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece.
| | - Angelos Vontetsianos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikolaos Chynkiamis
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Christina Anagnostopoulou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Nektarios Anagnostopoulos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Andriana I Papaioannou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| |
Collapse
|
29
|
Rogliani P, Manzetti GM, Bettin FR, D'Auria M, Calzetta L. Investigational thymic stromal lymphopoietin inhibitors for the treatment of asthma: a systematic review. Expert Opin Investig Drugs 2024; 33:39-49. [PMID: 38206116 DOI: 10.1080/13543784.2024.2305144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Severe asthma patients often remain uncontrolled despite high-intensity therapies. Biological therapies targeting thymic stromal lymphopoietin (TSLP), a key player in asthma pathogenesis, have emerged as potential options. Currently, the only TSLP inhibitor approved for the treatment of severe asthma is the immunoglobulin G (IgG) 2λ anti-TSLP monoclonal antibody (mAb) tezepelumab. AREAS COVERED This systematic review assesses the efficacy and safety of investigational TSLP inhibitors across different stages of development for asthma treatment. EXPERT OPINION TSLP contributes to airway inflammation, making it a pivotal therapeutic target. Ecleralimab, an inhaled antibody fragment antigen binding, shows promising evidence in enhancing efficacy and reducing systemic adverse events. SAR443765, with its NANOBODY® formulation and bispecific inhibition of TSLP and IL-13, offers improved tissue penetration and efficacy. The mAB TQC2731 exhibits high in vitro bioactivity, and the strength of the mAb UPB-101 is to act against the TSLP receptor. Some studies include mild and moderate asthma patients, suggesting the potential for extending biological therapy to non-severe patients. This systematic review highlights the potential of TSLP inhibitors as valuable additions to asthma treatment, even in milder forms of the disease. Future research and cost-reduction efforts are needed to expanding access to these promising therapies.
Collapse
Affiliation(s)
- Paola Rogliani
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Gian Marco Manzetti
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Roberta Bettin
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria D'Auria
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Bernstein JA, Llanos JP, Hunter G, Martin N, Ambrose CS. Efficacy of Biologics in Patients with Allergic Severe Asthma, Overall and by Blood Eosinophil Count: A Literature Review. Adv Ther 2023; 40:4721-4740. [PMID: 37698716 PMCID: PMC10567947 DOI: 10.1007/s12325-023-02647-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Patients with uncontrolled, allergic severe asthma may be prescribed biologic therapies to reduce exacerbations and improve disease control. Randomized controlled trials (RCTs) of these therapies have differed in design, with varying results overall and by baseline blood eosinophil count (BEC). This study describes published annualized asthma exacerbation rate (AAER) reductions from RCTs in patients with allergic severe asthma, overall and by baseline BEC category. A literature search was performed to identify published phase 3 RCT data of US Food and Drug Administration-approved biologics for severe asthma in patients with severe, uncontrolled asthma and confirmed sensitization to perennial aeroallergens. Analyses focused on AAER reduction versus placebo in the overall population and/or in those with an elevated or low BEC at baseline or screening. Baseline serum total immunoglobulin E levels varied between RCT populations. In patients with allergic severe asthma across all BEC categories, data were available for tezepelumab, dupilumab, benralizumab and omalizumab only; the greatest AAER reduction was observed with tezepelumab. In patients with allergic severe asthma and BECs of ≥ 260 cells/µL or ≥ 300 cells/μL, AAER reductions were observed with all biologics (tezepelumab, dupilumab, mepolizumab, benralizumab and omalizumab); the greatest AAER reduction was observed with tezepelumab and the smallest AAER reduction was observed with omalizumab. In patients with allergic severe asthma and BECs of < 260 cells/µL or < 300 cells/μL (regardless of historical BEC), an AAER reduction was observed with tezepelumab but not with benralizumab or omalizumab. Differential mechanisms of action may explain the differences in results observed between biologics. Among patients with allergic severe asthma, the efficacy of biologics in RCTs varied considerably overall and by BEC. Tezepelumab was the only biologic to demonstrate AAER reductions consistently across all subgroups. These differences can inform provider treatment decisions when selecting biologic treatments for patients with allergic severe asthma.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Bernstein Clinical Research Center, Cincinnati, OH, USA
| | | | - Gillian Hunter
- Biometrics, Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
32
|
Hawthorne IJ, Dunbar H, Tunstead C, Schorpp T, Weiss DJ, Enes SR, Dos Santos CC, Armstrong ME, Donnelly SC, English K. Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Mol Ther 2023; 31:3243-3258. [PMID: 37735872 PMCID: PMC10638061 DOI: 10.1016/j.ymthe.2023.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).
Collapse
Affiliation(s)
- Ian J Hawthorne
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tamara Schorpp
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
33
|
Castagnoli R, Brambilla I, Giovannini M, Marseglia GL, Licari A. New approaches in childhood asthma treatment. Curr Opin Allergy Clin Immunol 2023; 23:319-326. [PMID: 37357774 PMCID: PMC10317303 DOI: 10.1097/aci.0000000000000922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the most recent advances in asthma management, focusing on novel approaches to pediatric asthma. RECENT FINDINGS In recent years, the therapeutic tools for pediatric asthma have expanded significantly for both the nonsevere and severe forms. The use of anti-inflammatory treatment, even for the mildest cases, and the withdrawal of symptomatic bronchodilation as monotherapy have been included in the most recent guidelines. Also, different biological therapies have revolutionized the therapeutical approach for severe uncontrolled asthma in children and adolescents. SUMMARY With the expanding landscape of novel therapeutic approaches for pediatric asthma, further evidence is needed to help clinicians choose the best option for patients, particularly those with severe asthma. The identification of novel predictive biomarkers may also help pediatricians in selecting children and adolescents for innovative therapies.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Ilaria Brambilla
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| |
Collapse
|
34
|
Spahn JD, Brightling CE, O’Byrne PM, Simpson LJ, Molfino NA, Ambrose CS, Martin N, Hallstrand TS. Effect of Biologic Therapies on Airway Hyperresponsiveness and Allergic Response: A Systematic Literature Review. J Asthma Allergy 2023; 16:755-774. [PMID: 37496824 PMCID: PMC10368134 DOI: 10.2147/jaa.s410592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Background Airway hyperresponsiveness (AHR) is a key feature of asthma. Biologic therapies used to treat asthma target specific components of the inflammatory pathway, and their effects on AHR can provide valuable information about the underlying disease pathophysiology. This review summarizes the available evidence regarding the effects of biologics on allergen-specific and non-allergen-specific airway responses in patients with asthma. Methods We conducted a systematic review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, including risk-of-bias assessment. PubMed and Ovid were searched for studies published between January 1997 and December 2021. Eligible studies were randomized, placebo-controlled trials that assessed the effects of biologics on AHR, early allergic response (EAR) and/or late allergic response (LAR) in patients with asthma. Results Thirty studies were identified for inclusion. Bronchoprovocation testing was allergen-specific in 18 studies and non-allergen-specific in 12 studies. Omalizumab reduced AHR to methacholine, acetylcholine or adenosine monophosphate (3/9 studies), and reduced EAR (4/5 studies) and LAR (2/3 studies). Mepolizumab had no effect on AHR (3/3 studies), EAR or LAR (1/1 study). Tezepelumab reduced AHR to methacholine or mannitol (3/3 studies), and reduced EAR and LAR (1/1 study). Pitrakinra reduced LAR, with no effect on AHR (1/1 study). Etanercept reduced AHR to methacholine (1/2 studies). No effects were observed for lebrikizumab, tocilizumab, efalizumab, IMA-638 and anti-OX40 ligand on AHR, EAR or LAR; benralizumab on LAR; tralokinumab on AHR; and Ro-24-7472 on AHR or LAR (all 1/1 study each). No dupilumab or reslizumab studies were identified. Conclusion Omalizumab and tezepelumab reduced EAR and LAR to allergens. Tezepelumab consistently reduced AHR to methacholine or mannitol. These findings provide insights into AHR mechanisms and the precise effects of asthma biologics. Furthermore, findings suggest that tezepelumab broadly targets allergen-specific and non-allergic forms of AHR, and the underlying cells and mediators involved in asthma.
Collapse
Affiliation(s)
- Joseph D Spahn
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, USA
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Paul M O’Byrne
- Firestone Institute for Respiratory Health, St Joseph’s Hospital and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Martin
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, and the Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Korn S, Cook B, Simpson LJ, Llanos JP, Ambrose CS. Efficacy of Biologics in Severe, Uncontrolled Asthma Stratified by Blood Eosinophil Count: A Systematic Review. Adv Ther 2023; 40:2944-2964. [PMID: 37233876 PMCID: PMC10272272 DOI: 10.1007/s12325-023-02514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Randomized controlled trials (RCTs) of biologics in patients with severe, uncontrolled asthma have shown differential results by baseline blood eosinophil count (BEC). In the absence of head-to-head trials, we describe the effects of biologics on annualized asthma exacerbation rate (AAER) by baseline BEC in placebo-controlled RCTs. Exacerbations associated with hospitalization or an emergency room visit, pre-bronchodilator forced expiratory volume in 1 s, Asthma Control Questionnaire score, and Asthma Quality of Life Questionnaire score were also summarized. METHODS MEDLINE (via PubMed) was searched for RCTs of biologics in patients with severe, uncontrolled asthma and with AAER reduction as a primary or secondary endpoint. AAER ratios and change from baseline in other outcomes versus placebo were compared across baseline BEC subgroups. Analysis was limited to US Food and Drug Administration-approved biologics. RESULTS In patients with baseline BEC ≥ 300 cells/μL, AAER reduction was demonstrated with all biologics, and other outcomes were generally improved. In patients with BEC 0 to < 300 cells/μL, consistent AAER reduction was demonstrated only with tezepelumab; improvements in other outcomes were inconsistent across biologics. In patients with BEC 150 to < 300 cells/μL, consistent AAER reduction was demonstrated with tezepelumab and dupilumab (300 mg dose only), and in those with BEC 0 to < 150 cells/μL, AAER reduction was demonstrated only with tezepelumab. CONCLUSION The efficacy of all biologics in reducing AAER in patients with severe asthma increases with higher baseline BEC, with varying profiles across individual biologics likely due to differing mechanisms of action.
Collapse
Affiliation(s)
- Stephanie Korn
- IKF Pneumologie Mainz, Mainz, Germany
- Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Bill Cook
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | | | | | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
36
|
Hvidtfeldt M, Sverrild A, Pulga A, Frøssing L, Silberbrandt A, Hostrup M, Thomassen M, Sanden C, Clausson CM, Siddhuraj P, Bornesund D, Nieto-Fontarigo JJ, Uller L, Erjefält J, Porsbjerg C. Airway hyperresponsiveness reflects corticosteroid-sensitive mast cell involvement across asthma phenotypes. J Allergy Clin Immunol 2023; 152:107-116.e4. [PMID: 36907566 DOI: 10.1016/j.jaci.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a hallmark of asthma across asthma phenotypes. Airway hyperresponsiveness to mannitol specifically relates to mast cell infiltration of the airways, suggesting inhaled corticosteroids to be effective in reducing the response to mannitol, despite low levels of type 2 inflammation. OBJECTIVE We sought to investigate the relationship between airway hyperresponsiveness and infiltrating mast cells, and the response to inhaled corticosteroid treatment. METHODS In 50 corticosteroid-free patients with airway hyperresponsiveness to mannitol, mucosal cryobiopsies were obtained before and after 6 weeks of daily treatment with 1600 μg of budesonide. Patients were stratified according to baseline fractional exhaled nitric oxide (Feno) with a cutoff of 25 parts per billion. RESULTS Airway hyperresponsiveness was comparable at baseline and improved equally with treatment in both patients with Feno-high and Feno-low asthma: doubling dose, 3.98 (95% CI, 2.49-6.38; P < .001) and 3.85 (95% CI, 2.51-5.91; P < .001), respectively. However, phenotypes and distribution of mast cells differed between the 2 groups. In patients with Feno-high asthma, airway hyperresponsiveness correlated with the density of chymase-high mast cells infiltrating the epithelial layer (ρ, -0.42; P = .04), and in those with Feno-low asthma, it correlated with the density in the airway smooth muscle (ρ, -0.51; P = .02). The improvement in airway hyperresponsiveness after inhaled corticosteroid treatment correlated with a reduction in mast cells, as well as in airway thymic stromal lymphopoietin and IL-33. CONCLUSIONS Airway hyperresponsiveness to mannitol is related to mast cell infiltration across asthma phenotypes, correlating with epithelial mast cells in patients with Feno-high asthma and with airway smooth muscle mast cells in patients with Feno-low asthma. Treatment with inhaled corticosteroids was effective in reducing airway hyperresponsiveness in both groups.
Collapse
Affiliation(s)
- Morten Hvidtfeldt
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alexis Pulga
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Laurits Frøssing
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
37
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
38
|
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol 2023; 14:1149203. [PMID: 37377958 PMCID: PMC10291091 DOI: 10.3389/fimmu.2023.1149203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Prosperous advances in understanding the cellular and molecular mechanisms of chronic inflammation and airway remodeling in asthma have been made over the past several decades. Asthma is a chronic inflammatory disease of the airways characterized by reversible airway obstruction that is self-resolving or remits with treatment. Around half of asthma patients are "Type-2-high" asthma with overexpression of type 2 inflammatory pathways and elevated type 2 cytokines. When stimulated by allergens, airway epithelial cells secrete IL-25, IL-33, and TSLP to derive a Th2 immune response. First ILC2 followed by Th2 cells produces a series of cytokines such as IL-4, IL-5, and IL-13. TFH cells control IgE synthesis by secreting IL-4 to allergen-specific B cells. IL-5 promotes eosinophil inflammation, while IL-13 and IL-4 are involved in goblet cell metaplasia and bronchial hyperresponsiveness. Currently, "Type-2 low" asthma is defined as asthma with low levels of T2 biomarkers due to the lack of reliable biomarkers, which is associated with other Th cells. Th1 and Th17 are capable of producing cytokines that recruit neutrophils, such as IFN-γ and IL-17, to participate in the development of "Type-2-low" asthma. Precision medicine targeting Th cells and related cytokines is essential in the management of asthma aiming at the more appropriate patient selection and better treatment response. In this review, we sort out the pathogenesis of Th cells in asthma and summarize the therapeutic approaches involved as well as potential research directions.
Collapse
Affiliation(s)
| | - Hequan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Brusselle G, Riemann S. Is Efficacy of Tezepelumab Independent of Severe Asthma Phenotype? Am J Respir Crit Care Med 2023; 208:1-3. [PMID: 37074294 PMCID: PMC10870843 DOI: 10.1164/rccm.202304-0700ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Affiliation(s)
- Guy Brusselle
- Erasmus Medical Center, Respiratory Medicine and Epidemiology, Rotterdam, Netherlands
- Ghent University Hospital, Respiratory Medicine, Ghent, Belgium;
| | - Sebastian Riemann
- Ghent University Hospital, Department of Respiratory Medicine, Ghent, Belgium
| |
Collapse
|
40
|
Wu Y, Huang M, Zhong J, Lu Y, Gan K, Yang R, Liu Y, Li J, Chen J. The clinical efficacy of type 2 monoclonal antibodies in eosinophil-associated chronic airway diseases: a meta-analysis. Front Immunol 2023; 14:1089710. [PMID: 37114057 PMCID: PMC10126252 DOI: 10.3389/fimmu.2023.1089710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Background Anti-type 2 inflammation therapy has been proposed as a treatment strategy for eosinophil-associated chronic airway disorders that could reduce exacerbations and improve lung function. We performed a meta-analysis of randomized controlled trials to assess the effectiveness of type 2 monoclonal antibodies (anti-T2s) for eosinophil-associated chronic airway disorders. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched from their inception to 21 August 2022. Randomized clinical trials evaluating the effectiveness of anti-T2s versus placebo in the treatment of chronic airway diseases were selected. The outcomes were exacerbation rate and change in pre-bronchodilator forced expiratory volume in 1 s (FEV1) from baseline. The Cochrane Risk of Bias Assessment Tool 1.0 was used to evaluate the risk of bias, and the random-effects or fixed-effect model were used to pool the data. Results Thirty-eight articles concerning forty-one randomized clinical trials with 17,115 patients were included. Compared with placebo, anti-T2s therapy yielded a significant reduction in exacerbation rate in COPD and asthma (Rate Ratio (RR)=0.89, 95%CI, 0.83-0.95, I2 = 29.4%; RR= 0.59, 95%CI, 0.52-0.68, I2 = 83.9%, respectively) and improvement in FEV1 in asthma (Standard Mean Difference (SMD)=0.09, 95%CI, 0.08-0.11, I2 = 42.6%). Anti-T2s therapy had no effect on FEV1 improvement in COPD (SMD=0.05, 95%CI, -0.01-0.10, I2 = 69.8%). Conclusion Despite inconsistent findings across trials, anti-T2s had a positive overall impact on patients' exacerbation rate in asthma and COPD and FEV1 in asthma. Anti-T2s may be effective in treating chronic airway illnesses related to eosinophils. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022362280.
Collapse
Affiliation(s)
- Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyao Zhong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Kao Gan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Rongyuan Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| |
Collapse
|
41
|
Saxena S, Rosas-Salazar C, Fitzpatrick A, Bacharier LB. Biologics and severe asthma in children. Curr Opin Allergy Clin Immunol 2023; 23:111-118. [PMID: 36730217 DOI: 10.1097/aci.0000000000000880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Severe asthma can carry significant morbidity and mortality for patients, and it places a burden on families and the healthcare system. Biologic agents have revolutionized the care of patients with severe asthma in recent years. Evidence surrounding some of these therapies is limited in the pediatric population, but recent studies show that they significantly improve asthma care when used appropriately. In this review, we discuss the biologic therapies currently approved to treat severe asthma in school-age children and adolescents. RECENT FINDINGS Randomized controlled trials have been published in support of biologics in children and/or adolescents. These therapies have been shown to reduce the annual rate of severe asthma exacerbations by at least 40-50%, and some up to about 70%. Improvements in asthma control, lung function, oral corticosteroid use, and quality of life have also been demonstrated, although these vary by agent. Furthermore, these therapies have reassuring safety profiles in pediatric patients. SUMMARY With three biologic agents approved for children ages 6-11 years and five approved for adolescents ages >12 years, it can be challenging to select one. The therapy should be chosen after careful consideration of the patient's asthma phenotype and biomarkers. Additional pediatric-specific clinical trials would be helpful in developing evidence-based guidelines on biologic therapies in this population.
Collapse
Affiliation(s)
- Shikha Saxena
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian Rosas-Salazar
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne Fitzpatrick
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine
- Children's Healthcare of Atlanta Division of Pulmonary Medicine, Atlanta, Georgia, USA
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Corren J, Brightling CE, Boulet LP, Porsbjerg C, Wechsler ME, Menzies-Gow A, Ambrose CS, Cook B, Martin N, Spahn J, Llanos JP. Not just an anti-eosinophil drug: tezepelumab treatment for type 2 asthma and beyond. Eur Respir J 2023; 61:2202202. [PMID: 36997233 DOI: 10.1183/13993003.02202-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Affiliation(s)
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew Menzies-Gow
- Royal Brompton and Harefield Hospitals, School of Immunology and Microbial Sciences, King's College, London, UK
| | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Bill Cook
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Martin
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Joseph Spahn
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, USA
| | | |
Collapse
|
43
|
Charriot J, Ahmed E, Bourdin A. Local targeting of TSLP: feat or defeat. Eur Respir J 2023; 61:61/3/2202389. [PMID: 36894191 DOI: 10.1183/13993003.02389-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Jérémy Charriot
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Engi Ahmed
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
44
|
Gauvreau GM, Hohlfeld JM, FitzGerald JM, Boulet LP, Cockcroft DW, Davis BE, Korn S, Kornmann O, Leigh R, Mayers I, Watz H, Grant SS, Jain M, Cabanski M, Pertel PE, Jones I, Lecot JR, Cao H, O'Byrne PM. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J 2023; 61:13993003.01193-2022. [PMID: 36822634 PMCID: PMC9996823 DOI: 10.1183/13993003.01193-2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/24/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is a key upstream regulator driving allergic inflammatory responses. We evaluated the efficacy and safety of ecleralimab, a potent inhaled neutralising antibody fragment against human TSLP, using allergen inhalation challenge (AIC) in subjects with mild atopic asthma. METHODS This was a 12-week, randomised, double-blind, placebo-controlled, parallel-design, multicentre allergen bronchoprovocation study conducted at 10 centres across Canada and Germany. Subjects aged 18-60 years with stable mild atopic asthma were randomised (1:1) to receive 4 mg once-daily inhaled ecleralimab or placebo. Primary end-points were the allergen-induced change in forced expiratory volume in 1 s (FEV1) during the late asthmatic response (LAR) measured by area under the curve (AUC3-7h) and maximum percentage decrease (LAR%) on day 84, and the safety of ecleralimab. Allergen-induced early asthmatic response (EAR), sputum eosinophils and fractional exhaled nitric oxide (F ENO) were secondary and exploratory end-points. RESULTS 28 subjects were randomised to ecleralimab (n=15) or placebo (n=13). On day 84, ecleralimab significantly attenuated LAR AUC3-7h by 64% (p=0.008), LAR% by 48% (p=0.029), and allergen-induced sputum eosinophils by 64% at 7 h (p=0.011) and by 52% at 24 h (p=0.047) post-challenge. Ecleralimab also numerically reduced EAR AUC0-2h (p=0.097) and EAR% (p=0.105). F ENO levels were significantly reduced from baseline throughout the study (p<0.05), except at 24 h post-allergen (day 43 and day 85). Overall, ecleralimab was safe and well tolerated. CONCLUSION Ecleralimab significantly attenuated allergen-induced bronchoconstriction and airway inflammation, and was safe in subjects with mild atopic asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- These authors contributed equally to this work
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine and Hannover Medical School, Hannover, Germany
- These authors contributed equally to this work
| | - J Mark FitzGerald
- Centre for Lung Health, University of British Columbia, Vancouver, BC, Canada
- These authors contributed equally to this work
| | | | - Donald W Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Beth E Davis
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stephanie Korn
- IKF Pneumologie Mainz and Thoraxklinik, Heidelberg, Germany
| | - Oliver Kornmann
- IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, AB, Canada
| | - Irvin Mayers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Henrik Watz
- Pulmonary Research Institute at Lungen Clinic Grosshansdorf, Airway Research Centre North (ARCN), German Centre for Lung Research (DZL), Grosshansdorf, Germany
| | - Sarah S Grant
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Monish Jain
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Maciej Cabanski
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Peter E Pertel
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | | | | | - Hui Cao
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Chan R, RuiWen Kuo C, Jabbal S, Lipworth BJ. Eosinophil depletion with benralizumab is associated with attenuated mannitol airway hyperresponsiveness in severe uncontrolled eosinophilic asthma. J Allergy Clin Immunol 2023; 151:700-705.e10. [PMID: 36400178 DOI: 10.1016/j.jaci.2022.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Airway hyperresponsiveness (AHR) and eosinophilia are hallmarks of persistent asthma. OBJECTIVE We investigated whether eosinophil depletion with benralizumab might attenuate indirect mannitol AHR in severe uncontrolled asthma using a pragmatic open-label design. METHODS After a 4-week run-in period with provision of usual inhaled corticosteroids and/or long-acting β-agonist (baseline), adults with mannitol-responsive uncontrolled severe eosinophilic asthma received 3 doses of open-label benralizumab 30 mg every 4 weeks, followed by 16 weeks' washout after the last dose. The primary outcome was doubling difference (DD) in provocative dose of mannitol required to decrease FEV1 by 10% (PD10) at the end point after 12 weeks, powered at 90% with 18 patients required to detect 1 DD. Secondary outcomes included measures assessed by the asthma control questionnaire and mini-asthma quality of life questionnaire. RESULTS Twenty-one patients completed 12 weeks' benralizumab therapy at the end point at week 12. Mean (SEM) age was 53 (4) years, and FEV1 80.2% (4.1%) inhaled corticosteroid dose was 1895 (59) μg, with 12 receiving long-acting muscarinic antagonist and 13 leukotriene receptor antagonists. Improvement in AHR was significant by 8 weeks, with a mean 2.1 DD (95% confidence interval 1.0, 3.3; P < .01) change in PD10 at week 12, while mean changes in asthma control questionnaire and mini-asthma quality of life questionnaire were significant by week 2 and sustained over 12 weeks, both exceeding the minimal important difference. Peripheral blood eosinophils were depleted by 2 weeks (439 to 6 cells/μL). No significant improvement occurred in lung function after 12 weeks. Domiciliary peak flow and symptoms also improved with benralizumab. CONCLUSION Eosinophil depletion results in clinically meaningful attenuated AHR in severe uncontrolled asthma patients.
Collapse
Affiliation(s)
- Rory Chan
- From the Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Chris RuiWen Kuo
- From the Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Sunny Jabbal
- From the Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Brian J Lipworth
- From the Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom.
| |
Collapse
|
46
|
Nopsopon T, Lassiter G, Chen ML, Alexander GC, Keet C, Hong H, Akenroye A. Comparative efficacy of tezepelumab to mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: A Bayesian network meta-analysis. J Allergy Clin Immunol 2023; 151:747-755. [PMID: 36538979 PMCID: PMC9992307 DOI: 10.1016/j.jaci.2022.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND It is unclear how the efficacy of tezepelumab, approved for the treatment of type 2 high and low asthma, compares to the efficacy of other biologics for type 2-high asthma. OBJECTIVES We sought to conduct an indirect comparison of tezepelumab to dupilumab, benralizumab, and mepolizumab in the treatment of eosinophilic asthma. METHODS The investigators conducted a systematic review and Bayesian network meta-analyses. They identified randomized controlled trials indexed in PubMed, Embase, or Cochrane Central Register of Controlled Trials (CENTRAL) between January 1, 2000, and August 12, 2022. Outcomes included exacerbation rates, prebronchodilator FEV1, and the Asthma Control Questionnaire. RESULTS Ten randomized controlled trials (n = 9201) met eligibility. Tezepelumab (relative risk: 0.63; 95% credible interval [CI]: 0.46-0.86) was associated with significantly lower exacerbation rates than benralizumab and larger improvements in FEV1 compared to mepolizumab (mean difference [MD]: 66; 95% CI: -33 to 170) and benralizumab (MD: 62; 95% CI: -22 to 150), though the 95% CI crossed the null value of 0. Mepolizumab improved the Asthma Control Questionnaire score the most, but this improvement was not significantly different from that of tezepelumab (tezepelumab vs mepolizumab; MD: 0.14; 95% CI: -0.10 to 0.38). For efficacy by clinically important thresholds, tezepelumab, mepolizumab, and dupilumab achieved a >99% probability of reducing exacerbation rates by ≥50% compared to placebo, but benralizumab had only a 66% probability of doing so. Tezepelumab and dupilumab had a probability of 1.00 of improving prebronchodilator FEV1 by ≥100 mL above placebo. Compared to mepolizumab, dupilumab had >90% chance for improving FEV1 by ≥50 mL, but none of the differences between biologics exceeded 100 mL. CONCLUSIONS In individuals with eosinophilic asthma, tezepelumab and dupilumab were associated with greater improvements (although below clinical thresholds) in exacerbation rates and lung function than benralizumab or mepolizumab.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T.H. Chan School of Public Health, Boston, Mass; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Grace Lassiter
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Ming-Li Chen
- Harvard T.H. Chan School of Public Health, Boston, Mass; Chung Shan Medical University, Taichung, Taiwan
| | - G Caleb Alexander
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Center for Drug Safety and Effectiveness, Baltimore, Md; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Corinne Keet
- Division of Pediatric Allergy and Immunology, University of North Carolina, Chapel Hill, NC
| | - Hwanhee Hong
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
47
|
Chan R, Lipworth B. Efficacy of biologic therapy on airway hyperresponsiveness in asthma. Ann Allergy Asthma Immunol 2023:S1081-1206(23)00121-7. [PMID: 36841374 DOI: 10.1016/j.anai.2023.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Airway hyperresponsiveness refers to an exaggerated bronchial constrictor response to a given exogenous inhaled agent and is governed by airway smooth muscle along with mucosal inflammation in asthma. In recent years, the advent of biologics and antialarmins has transformed severe asthma treatment in terms of reducing oral-corticosteroid-requiring exacerbations and improving disease control, asthma quality of life, and spirometry-measured lung function. In contrast, there have been comparatively fewer studies investigating the efficacy of biologics in airway hyperresponsiveness. In this focused review, we summarize the existing evidence base in this area regarding omalizumab, mepolizumab, benralizumab, and tezepelumab.
Collapse
Affiliation(s)
- Rory Chan
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | - Brian Lipworth
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.
| |
Collapse
|
48
|
Baseline Characteristics of Patients Enrolled in Clinical Trials of Biologics for Severe Asthma as Potential Predictors of Outcomes. J Clin Med 2023; 12:jcm12041546. [PMID: 36836079 PMCID: PMC9960148 DOI: 10.3390/jcm12041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
(1) Background: Over the past 20 years, monoclonal antibodies have been developed for the treatment of severe asthma, with numerous randomised controlled trials (RCTs) conducted to define their safety and efficacy. The growing availability of biologics, which until now have only been available for T2-high asthma, has been further enriched by the arrival of tezepelumab. (2) Methods: This review aims to evaluate the baseline characteristics of patients enrolled in RCTs of biologics for severe asthma to understand how they could potentially predict outcomes and how they can help differentiate between available options. (3) Results: The studies reviewed demonstrated that all biologic agents are effective in improving asthma control, especially with regard to reducing exacerbation rates and OCS use. As we have seen, in this regard, there are few data on omalizumab and none yet on tezepelumab. In analysing exacerbations and average doses of OCSs, pivotal studies on benralizumab have enrolled more seriously ill patients. Secondary outcomes, such as improvement in lung function and quality of life, showed better results-especially for dupilumab and tezepelumab. (4) Conclusion: Biologics are all effective, albeit with important differences. What fundamentally guides the choice is the patient's clinical history, the endotype represented by biomarkers (especially blood eosinophils), and comorbidities (especially nasal polyposis).
Collapse
|
49
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Super-Responders to Biologic Treatment in Type 2-High Severe Asthma: Passing Fad or a Meaningful Phenotype? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1417-1420. [PMID: 36720387 DOI: 10.1016/j.jaip.2023.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023]
Abstract
Defining super-response to biologic treatment is a major concern in severe asthma. Although many definitions have been proposed, there is still a gap between the clinical perception of the super-response and a standardized classification. The current definition of super-response mainly relies on several clinical features, while many aspects of severe asthma inflammation and lung function are still poorly considered. Furthermore, many criteria of severe asthma super-response overlap with those of the clinical remission, leaving room for possible misclassifications. In this context, identifying the correct trajectory linking these 2 aspects of type 2-high severe asthma could help clinicians to understand which factors can predict a greater response to biologic therapies. In this paper, we review various aspects of super-response assessment, proposing some new criteria for its definition as well as new perspectives on its relationship with severe asthma clinical remission.
Collapse
|