1
|
Klupczynska-Gabryszak A, Daskalaki E, Wheelock CE, Kasprzyk M, Dyszkiewicz W, Grabicki M, Brajer-Luftmann B, Pawlak M, Kokot ZJ, Matysiak J. Metabolomics-based search for lung cancer markers among patients with different smoking status. Sci Rep 2024; 14:15444. [PMID: 38965272 PMCID: PMC11224321 DOI: 10.1038/s41598-024-65835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Tobacco smoking is the main etiological factor of lung cancer (LC), which can also cause metabolome disruption. This study aimed to investigate whether the observed metabolic shift in LC patients was also associated with their smoking status. Untargeted metabolomics profiling was applied for the initial screening of changes in serum metabolic profile between LC and chronic obstructive pulmonary disease (COPD) patients, selected as a non-cancer group. Differences in metabolite profiles between current and former smokers were also tested. Then, targeted metabolomics methods were applied to verify and validate the proposed LC biomarkers. For untargeted metabolomics, a single extraction-dual separation workflow was applied. The samples were analyzed using a liquid chromatograph-high resolution quadrupole time-of-flight mass spectrometer. Next, the selected metabolites were quantified using liquid chromatography-triple-quadrupole mass spectrometry. The acquired data confirmed that patients' stratification based on smoking status impacted the discriminating ability of the identified LC marker candidates. Analyzing a validation set of samples enabled us to determine if the putative LC markers were truly robust. It demonstrated significant differences in the case of four metabolites: allantoin, glutamic acid, succinic acid, and sphingosine-1-phosphate. Our research showed that studying the influence of strong environmental factors, such as tobacco smoking, should be considered in cancer marker research since it reduces the risk of false positives and improves understanding of the metabolite shifts in cancer patients.
Collapse
Affiliation(s)
| | - Evangelia Daskalaki
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mariusz Kasprzyk
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Grabicki
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Pawlak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Zenon J Kokot
- Faculty of Health Sciences, Calisia University, Kalisz, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Marín D, Basagaña X, Amaya F, Aristizábal LM, Muñoz DA, Domínguez A, Molina F, Ramos CD, Morales-Betancourt R, Hincapié R, Rodríguez-Villamizar L, Rojas Y, Morales O, Cuellar M, Corredor A, Villamil-Osorio M, Bejarano MA, Vidal D, Narváez DM, Groot H, Builes JJ, López L, Henao EA, Lopera V, Hernández LJ, Bangdiwala SI, Marín-Ochoa B, Oviedo AI, Sánchez-García OE, Toro MV, Riaño W, Rueda ZV. Early-life external exposome in children 2-5 years old in Colombia. ENVIRONMENTAL RESEARCH 2024; 252:118913. [PMID: 38643821 DOI: 10.1016/j.envres.2024.118913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Exposome studies are advancing in high-income countries to understand how multiple environmental exposures impact health. However, there is a significant research gap in low- and middle-income and tropical countries. We aimed to describe the spatiotemporal variation of the external exposome, its correlation structure between and within exposure groups, and its dimensionality. A one-year follow-up cohort study of 506 children under 5 in two cities in Colombia was conducted to evaluate asthma, acute respiratory infections, and DNA damage. We examined 48 environmental exposures during pregnancy and 168 during childhood in eight exposure groups, including atmospheric pollutants, natural spaces, meteorology, built environment, traffic, indoor exposure, and socioeconomic capital. The exposome was estimated using geographic information systems, remote sensing, spatiotemporal modeling, and questionnaires. The median age of children at study entry was 3.7 years (interquartile range: 2.9-4.3). Air pollution and natural spaces exposure decreased from pregnancy to childhood, while socioeconomic capital increased. The highest median correlations within exposure groups were observed in meteorology (r = 0.85), traffic (r = 0.83), and atmospheric pollutants (r = 0.64). Important correlations between variables from different exposure groups were found, such as atmospheric pollutants and meteorology (r = 0.76), natural spaces (r = -0.34), and the built environment (r = 0.53). Twenty principal components explained 70%, and 57 explained 95% of the total variance in the childhood exposome. Our findings show that there is an important spatiotemporal variation in the exposome of children under 5. This is the first characterization of the external exposome in urban areas of Latin America and highlights its complexity, but also the need to better characterize and understand the exposome in order to optimize its analysis and applications in local interventions aimed at improving the health conditions and well-being of the child population and contributing to environmental health decision-making.
Collapse
Affiliation(s)
- Diana Marín
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia.
| | - Xavier Basagaña
- ISGlobal, Barcelona, 08003, España, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain
| | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - Diego Alejandro Muñoz
- Department of Mathematics, National University of Colombia, Medellín, 050034, Colombia
| | - Alan Domínguez
- ISGlobal, Barcelona, 08003, España, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain
| | - Francisco Molina
- Environmental School, School of Engineering, Universidad de Antioquia UdeA, Medellin, 050010, Colombia
| | - Carlos Daniel Ramos
- Environmental School, School of Engineering, Universidad de Antioquia UdeA, Medellin, 050010, Colombia
| | | | - Roberto Hincapié
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Laura Rodríguez-Villamizar
- Department of Public Health, School of Medicine, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia
| | - Yurley Rojas
- School of Engineering, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia
| | - Olga Morales
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia; Department of Pediatrics, Hospital San Vicente Fundación, Medellín, 050010, Colombia
| | - Martha Cuellar
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia; Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina Integral del Sueño, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | - Dolly Vidal
- Department of Pediatrics, Hospital Universitario San José, Popayán, 190003, Colombia
| | - Diana M Narváez
- Human Genetics Laboratory, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Helena Groot
- Human Genetics Laboratory, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan José Builes
- Department of Paternity Testing. GENES Laboratory, Medellín, 050024, Colombia
| | - Lucelly López
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - Verónica Lopera
- Secretariat of Health, Medellin Mayor's Office, Medellin, 050015, Colombia
| | | | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, L8S 4K1, Canada; Statistics Department, Population Health Research Institute, McMaster University, Hamilton, ON, L8L 2X2, Canada
| | - Beatriz Marín-Ochoa
- School of Social Sciences, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Ana Isabel Oviedo
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - María Victoria Toro
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Will Riaño
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia; School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia
| | - Zulma Vanessa Rueda
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
3
|
Scher MS. Interdisciplinary fetal-neonatal neurology training applies neural exposome perspectives to neurology principles and practice. Front Neurol 2024; 14:1321674. [PMID: 38288328 PMCID: PMC10824035 DOI: 10.3389/fneur.2023.1321674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.
Collapse
Affiliation(s)
- Mark S. Scher
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
4
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Moss BJ, Rosas IO. Defining the Genetic Landscape of Idiopathic Pulmonary Fibrosis: Role of Common and Rare Variants. Am J Respir Crit Care Med 2023; 207:1118-1120. [PMID: 36796091 PMCID: PMC10161759 DOI: 10.1164/rccm.202301-0177ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Benjamin J Moss
- Department of Medicine, Pulmonary, Critical Care, and Sleep Medicine Baylor College of Medicine Houston, Texas
| | - Ivan O Rosas
- Department of Medicine, Pulmonary, Critical Care, and Sleep Medicine Baylor College of Medicine Houston, Texas
| |
Collapse
|
6
|
Bucher ML, Anderson FL, Lai Y, Dicent J, Miller GW, Zota AR. Exposomics as a tool to investigate differences in health and disease by sex and gender. EXPOSOME 2023; 3:osad003. [PMID: 37122372 PMCID: PMC10125831 DOI: 10.1093/exposome/osad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
The health and disease of an individual is mediated by their genetics, a lifetime of environmental exposures, and interactions between the two. Genetic or biological sex, including chromosome composition and hormone expression, may influence both the types and frequency of environmental exposures an individual experiences, as well as the biological responses an individual has to those exposures. Gender identity, which can be associated with social behaviors such as expressions of self, may also mediate the types and frequency of exposures an individual experiences. Recent advances in exposome-level analysis have progressed our understanding of how environmental factors affect health outcomes; however, the relationship between environmental exposures and sex- and gender-specific health remains underexplored. The comprehensive, non-targeted, and unbiased nature of exposomic research provides a unique opportunity to systematically evaluate how environmental exposures interact with biological sex and gender identity to influence health. In this forward-looking narrative review, we provide examples of how biological sex and gender identity influence environmental exposures, discuss how environmental factors may interact with biological processes, and highlight how an intersectional approach to exposomics can provide critical insights for sex- and gender-specific health sciences.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Edsjö A, Lindstrand A, Gisselsson D, Mölling P, Friedman M, Cavelier L, Johansson M, Ehrencrona H, Fagerqvist T, Strid T, Lovmar L, Jacobsson B, Johansson Å, Engstrand L, Wheelock CE, Sikora P, Wirta V, Fioretos T, Rosenquist R. Building a precision medicine infrastructure at a national level: The Swedish experience. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e15. [PMID: 38550923 PMCID: PMC10953755 DOI: 10.1017/pcm.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 06/28/2024]
Abstract
Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mikaela Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Maria Johansson
- Lund University Collaboration Office, Lund University, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Tobias Strid
- Department of Clinical Pathology, Biological and Clinical Sciences, Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Solna, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per Sikora
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
8
|
Wigmann C, Hüls A, Krutmann J, Schikowski T. Estimating the Relative Contribution of Environmental and Genetic Risk Factors to Different Aging Traits by Combining Correlated Variables into Weighted Risk Scores. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16746. [PMID: 36554627 PMCID: PMC9779342 DOI: 10.3390/ijerph192416746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Genetic and exposomal factors contribute to the development of human aging. For example, genetic polymorphisms and exposure to environmental factors (air pollution, tobacco smoke, etc.) influence lung and skin aging traits. For prevention purposes it is highly desirable to know the extent to which each category of the exposome and genetic factors contribute to their development. Estimating such extents, however, is methodologically challenging, mainly because the predictors are often highly correlated. Tackling this challenge, this article proposes to use weighted risk scores to assess combined effects of categories of such predictors, and a measure of relative importance to quantify their relative contribution. The risk score weights are determined via regularized regression and the relative contributions are estimated by the proportion of explained variance in linear regression. This approach is applied to data from a cohort of elderly Caucasian women investigated in 2007-2010 by estimating the relative contribution of genetic and exposomal factors to skin and lung aging. Overall, the models explain 17% (95% CI: [9%, 28%]) of the outcome's variance for skin aging and 23% ([11%, 34%]) for lung function parameters. For both aging traits, genetic factors make up the largest contribution. The proposed approach enables us to quantify and rank contributions of categories of exposomal and genetic factors to human aging traits and facilitates risk assessment related to common human diseases in general. Obtained rankings can aid political decision making, for example, by prioritizing protective measures such as limit values for certain exposures.
Collapse
Affiliation(s)
- Claudia Wigmann
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jean Krutmann
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
- The Human Phenome Institute, Shanghai 200433, China
| | - Tamara Schikowski
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
| |
Collapse
|
9
|
Mazur DM, Sosnova AA, Latkin TB, Artaev BV, Siek K, Koluntaev DA, Lebedev AT. Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow. Anal Bioanal Chem 2022; 415:2587-2599. [PMID: 36289105 DOI: 10.1007/s00216-022-04390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The best way to understand the environmental status of a certain region involves thorough non-target analysis, which will result in a list of pollutants under concern. Arkhangelsk (64° 32' N 40° 32' E, pop. ~ 344,000) is the largest city in the world to the north of the 60th parallel. Several industrial enterprises and the "cold finger" effect represent the major sources of air contamination in the city. Analysis of snow with comprehensive two-dimensional gas chromatography-high-resolution mass spectrometry allows detecting and quantifying the most hazardous volatile and semivolatile anthropogenic pollutants and estimating long-term air pollution. Target analysis, suspect screening, and non-target analysis of snow samples collected from ten sites within the city revealed the presence of several hundreds of organic compounds including 18 species from the US EPA list of priority pollutants. Fortunately, the levels of these compounds appeared to be much lower than the safe levels established in Russia. Phenol and dioctylphthalate could be considered as the pollutants of concern because their levels were about 20% of the safe thresholds. ChromaTOF® Tile, MetaboAnalyst software platform, and open-source software protocols were applied to process the obtained data. The obtained clusterization results of the samples were generally similar for various tools; however, each of them had certain peculiarities. Bis(2-ethylhexyl) hexanedioate, benzyl alcohol, phthalates, aniline, dinitrotoluenes, and fluoranthene showed the strongest influence on the clusterization of the studied samples. Possible sources of the major pollutants were proposed: car traffic and pulp and paper mills.
Collapse
Affiliation(s)
- D M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
| | - A A Sosnova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - T B Latkin
- Core Facility Center "Arktika", Lomonosov Northern (Arctic) Federal University, nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - B V Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - K Siek
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - D A Koluntaev
- "Scietegra", 12, 5 quarter, EZhKEdem, Gavrilkovo, Moscow Region, Russia
| | - A T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
10
|
Gruzieva O, Jeong A, He S, Yu Z, de Bont J, Pinho MGM, Eze IC, Kress S, Wheelock CE, Peters A, Vlaanderen J, de Hoogh K, Scalbert A, Chadeau-Hyam M, Vermeulen RCH, Gehring U, Probst-Hensch N, Melén E. Air pollution, metabolites and respiratory health across the life-course. Eur Respir Rev 2022; 31:220038. [PMID: 35948392 PMCID: PMC9724796 DOI: 10.1183/16000617.0038-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
Previous studies have explored the relationships of air pollution and metabolic profiles with lung function. However, the metabolites linking air pollution and lung function and the associated mechanisms have not been reviewed from a life-course perspective. Here, we provide a narrative review summarising recent evidence on the associations of metabolic profiles with air pollution exposure and lung function in children and adults. Twenty-six studies identified through a systematic PubMed search were included with 10 studies analysing air pollution-related metabolic profiles and 16 studies analysing lung function-related metabolic profiles. A wide range of metabolites were associated with short- and long-term exposure, partly overlapping with those linked to lung function in the general population and with respiratory diseases such as asthma and COPD. The existing studies show that metabolomics offers the potential to identify biomarkers linked to both environmental exposures and respiratory outcomes, but many studies suffer from small sample sizes, cross-sectional designs, a preponderance on adult lung function, heterogeneity in exposure assessment, lack of confounding control and omics integration. The ongoing EXposome Powered tools for healthy living in urbAN Settings (EXPANSE) project aims to address some of these shortcomings by combining biospecimens from large European cohorts and harmonised air pollution exposure and exposome data.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Both authors contributed equally to this article
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Both authors contributed equally to this article
| | - Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhebin Yu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G M Pinho
- Dept of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sara Kress
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Dept of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Annette Peters
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Imperial College London, London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- These authors contributed equally to this article
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- These authors contributed equally to this article
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
- These authors contributed equally to this article
| |
Collapse
|
11
|
Koelmel JP, Xie H, Price EJ, Lin EZ, Manz KE, Stelben P, Paige MK, Papazian S, Okeme J, Jones DP, Barupal D, Bowden JA, Rostkowski P, Pennell KD, Nikiforov V, Wang T, Hu X, Lai Y, Miller GW, Walker DI, Martin JW, Godri Pollitt KJ. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry. EXPOSOME 2022; 2:osac007. [PMID: 36483216 PMCID: PMC9719826 DOI: 10.1093/exposome/osac007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 04/16/2023]
Abstract
Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Xie
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Elizabeth Z Lin
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | | | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Matthew K Paige
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Stefano Papazian
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Dean P Jones
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dinesh Barupal
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - John A Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | | | - Thanh Wang
- MTM Research Centre, Örebro University, Örebro, Sweden
| | - Xin Hu
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Yunjia Lai
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Gary W Miller
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
12
|
Ryu MH, Gómez C, Yuen ACY, Brook JR, Wheelock CE, Carlsten C. Urinary Eicosanoid Levels Reflect Allergen and Diesel Exhaust Coexposure and Are Linked to Impaired Lung Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7107-7118. [PMID: 35044166 DOI: 10.1021/acs.est.1c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eicosanoids are potent regulators of homeostasis and inflammation. Co-exposure to allergen and diesel exhaust (DE) have been shown to lead to eosinophilic inflammation, impaired airflow, and increased airway responsiveness. It is not clear whether eicosanoids mediate the mechanism by which these exposures impair lung function. We conducted a randomized, double-blinded, and four-arm crossover study. Fourteen allergen-sensitized participants were exposed to four conditions: negative control; allergen-alone exposure; DE and allergen coexposure; coexposure with particle-reducing technology applied. Quantitative metabolic profiling of urinary eicosanoids was performed using LC-MS/MS. As expected, allergen inhalation increased eicosanoids. The prostacyclin metabolite 2,3-dinor-6-keto-PGF1α (PGF1α, prostaglandin F1α) increased with coexposure, but particle depletion suppressed this pathway. Individuals with a high genetic risk score demonstrated a greater increase in isoprostane metabolites following coexposure. Causal mediation analyses showed that allergen induced airflow impairment was mediated via leukotriene E4 and tetranor-prostaglandin D metabolite. Overall, DE exposure did not augment the allergen's effect on urinary eicosanoids, except insofar as variant genotypes conferred susceptibility to the addition of DE in terms of isoprostane metabolites. These findings will add to the body of previous controlled human exposure studies and provide greater insight into how complex environmental exposures in urban air may influence individuals with sensitivity to aeroallergens.
Collapse
Affiliation(s)
- Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Cristina Gómez
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jeffrey R Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1P8, Canada
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-171 76, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
13
|
Reinke SN, Chaleckis R, Wheelock CE. Metabolomics in pulmonary medicine - extracting the most from your data. Eur Respir J 2022; 60:13993003.00102-2022. [PMID: 35618271 PMCID: PMC9386331 DOI: 10.1183/13993003.00102-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
The metabolome enables unprecedented insight into biochemistry, providing an integrated signature of the genome, transcriptome, proteome and exposome. Measurement requires rigorous protocols combined with specialised data analysis to achieve its promise.https://bit.ly/3yPiYkQ
Collapse
Affiliation(s)
- Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Zhang P, Carlsten C, Chaleckis R, Hanhineva K, Huang M, Isobe T, Koistinen VM, Meister I, Papazian S, Sdougkou K, Xie H, Martin JW, Rappaport SM, Tsugawa H, Walker DI, Woodruff TJ, Wright RO, Wheelock CE. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:839-852. [PMID: 34660833 PMCID: PMC8515788 DOI: 10.1021/acs.estlett.1c00648] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.
Collapse
Affiliation(s)
- Pei Zhang
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Christopher Carlsten
- Air
Pollution Exposure Laboratory, Division of Respiratory Medicine, Department
of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Romanas Chaleckis
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kati Hanhineva
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Mengna Huang
- Channing
Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tomohiko Isobe
- The
Japan Environment and Children’s Study Programme Office, National Institute for Environmental Sciences, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ville M. Koistinen
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Isabel Meister
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Stefano Papazian
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Kalliroi Sdougkou
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Hongyu Xie
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Jonathan W. Martin
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Stephen M. Rappaport
- Division
of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720-7360, United States
| | - Hiroshi Tsugawa
- RIKEN Center
for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 Japan
- Graduate
School of Medical life Science, Yokohama
City University, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Douglas I. Walker
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, University of California San Francisco, San Francisco, California 94143, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Craig E. Wheelock
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
15
|
Maguire G. Stem cells part of the innate and adaptive immune systems as a therapeutic for Covid-19. Commun Integr Biol 2021; 14:186-198. [PMID: 34527167 PMCID: PMC8437473 DOI: 10.1080/19420889.2021.1965356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Some stem cell types not only release molecules that reduce viral replication, but also reduce the hypercytokinemia and inflammation induced by the immune system, and have been found to be part of the innate and adaptive immune systems. An important component of the stem cell's ability to ameliorate viral diseases, especially the complications post-clearance of the pathogen, is the ability of adult stem cells to reset the innate and adaptive immune systems from an inflammatory state to a repair state. Thus, the molecules released from certain stem cell types found to be safe and efficacious, may be an important new means for therapeutic development in Covid-19, especially for late-stage inflammation and tissue damage once the virus has cleared, particularly in the aged population.
Collapse
Affiliation(s)
- Greg Maguire
- Dept. of Preventative and Medicinal Chemistry, NeoGenesis Inc. And BioRegenerative Sciences Inc, San Diego, CA, USA
| |
Collapse
|
16
|
Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, Vermeulen R, Patel CJ. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:85001. [PMID: 34435882 PMCID: PMC8388254 DOI: 10.1289/ehp8327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/28/2021] [Accepted: 07/13/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome-the totality of the biologically active exposures relevant to disease development-through coupling biochemical receptor-binding assays with affinity purification-mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conventional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen M. Rappaport
- Program in Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas P. van der Meer
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Roel Vermeulen
- Utrecht University & Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Villaseñor A, Eguiluz-Gracia I, Moreira A, Wheelock CE, Escribese MM. Metabolomics in the Identification of Biomarkers of Asthma. Metabolites 2021; 11:metabo11060346. [PMID: 34072459 PMCID: PMC8227545 DOI: 10.3390/metabo11060346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Asthma is a major non-communicable disease characterized by recurrent attacks of breathlessness and wheezing [...].
Collapse
Affiliation(s)
- Alma Villaseñor
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine (IMMA), Universidad San Pablo CEU, CEU Universities, 28660 Madrid, Spain;
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Ibon Eguiluz-Gracia
- Allergy Group, Instituto de Investigacion Biomedica de Malaga (IBIMA) and ARADyAL, 29009 Malaga, Spain;
- Allergy Unit, Hospital Regional Universitario de Malaga, 29009 Malaga, Spain
| | - André Moreira
- EPI Unit, Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal;
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar São João EPE, 4200-319 Porto, Portugal
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum Quartier 9A, SE-171-77 Stockholm, Sweden;
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171-77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - María M Escribese
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine (IMMA), Universidad San Pablo CEU, CEU Universities, 28660 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-372-4700 (ext. 4665)
| |
Collapse
|
18
|
Rago D, Pedersen CET, Huang M, Kelly RS, Gürdeniz G, Brustad N, Knihtilä H, Lee-Sarwar KA, Morin A, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Wheelock CE, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Characteristics and Mechanisms of a Sphingolipid-associated Childhood Asthma Endotype. Am J Respir Crit Care Med 2021; 203:853-863. [PMID: 33535020 DOI: 10.1164/rccm.202008-3206oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.
Collapse
Affiliation(s)
- Daniela Rago
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Hanna Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, New York; and
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
19
|
Mazur DM, Detenchuk EA, Sosnova AA, Artaev VB, Lebedev AT. GC-HRMS with Complementary Ionization Techniques for Target and Non-target Screening for Chemical Exposure: Expanding the Insights of the Air Pollution Markers in Moscow Snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144506. [PMID: 33360203 DOI: 10.1016/j.scitotenv.2020.144506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposure assessment is an important step in establishing a list of local priority pollutants and finding the sources of the threats for proposing appropriate protection measures. Exposome targeted and non-targeted analysis as well as suspect screening may be applied to reveal these pollutants. The non-targeted screening is a challenging task and requires the application of the most powerful analytical tools available, assuring wide analytical coverage, sensitivity, identification reliability, and quantitation. Moscow, Russia, is the largest and most rapidly growing European city. That rapid growth is causing changes in the environment which require periodic clarification of the real environmental situation regarding the presence of the classic pollutants and possible new contaminants. Gas chromatography - high resolution time-of-flight mass spectrometry (GC-HR-TOFMS) with electron ionization (EI), positive chemical ionization (PCI), and electron capture negative ionization (ECNI) ion sources were used for the analysis of Moscow snow samples collected in the early spring of 2018 in nine different locations. Collection of snow samples represents an efficient approach for the estimation of long-term air pollution, due to accumulation and preservation of environmental contaminants by snow during winter period. The high separation power of GC, complementary ionization methods, high mass accuracy, and wide mass range of TOFMS allowed for the identification of several hundred organic compounds belonging to the various classes of pollutants, exposure to which could represent a danger to the health of the population. Although quantitative analysis was not a primary aim of the study, targeted analysis revealed that some priority pollutants exceeded the established safe levels. Thus, dibutylphthalate concentration was over 10-fold higher than its safe level (0.001 mg/L), while benz[a]pyrene concentration exceeded Russian maximal permissible concentration value of 5 ng/L in three samples. The large amount of information generated during the combination of targeted and non-targeted analysis and screening samples for suspects makes it feasible to apply the big data analysis to observe the trends and tendencies in the pollution exposome across the city.
Collapse
Affiliation(s)
- D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - A A Sosnova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA.
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
20
|
Koelmel JP, Lin EZ, Nichols A, Guo P, Zhou Y, Godri Pollitt KJ. Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3796-3806. [PMID: 33625210 DOI: 10.1021/acs.est.0c05522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical exposures are a major risk factor for many diseases. Comprehensive characterization of personal exposures is necessary to highlight chemicals of concern and factors that influence these chemical exposure dynamics. For this purpose, wearable passive samplers can be applied to assess longitudinal personal exposures to airborne contaminants. Questions remain regarding the impact of sampler placement at different locations of the body on the exposure profiles observed and how these placements affect the monitoring of seasonal dynamics in exposures. This study assessed personal air contaminant exposure using passive samplers worn in parallel across 32 participant's wrists, chest, and shoes over 24 h. Samplers were analyzed by thermal desorption gas chromatography high-resolution mass spectrometry. Personal exposure profiles were similar for about one-third of the 275 identified chemicals, irrespective of sampler placement. Signals of certain semivolatile organic compounds (SVOCs) were enhanced in shoes and, to a lesser extent, wrist samplers, as compared to those in chest samplers. Signals of volatile organic compounds were less impacted by sampler placement. Results showed that chest samplers predominantly captured more volatile exposures, as compared to those of particle-bound exposures, which may indicate predominant monitoring of chemicals via the inhalation route of exposure for chest samplers. In contrast, shoe samplers were more sensitive to particle-bound SVOCs. Seventy-one chemicals changed across participants between winter and summer in the same manner for two or more different sampler placements on the body, whereas 122 chemicals were observed to have seasonal differences in only one placement. Hence, the placement in certain cases significantly impacts exposure dynamics observed. This work shows that it is essential in epidemiological studies undertaking exposure assessment to consider the consequence of the placement of exposure monitors.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Amy Nichols
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06520, United States
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
21
|
Davis AP, Wiegers TC, Wiegers J, Grondin CJ, Johnson RJ, Sciaky D, Mattingly CJ. CTD Anatomy: analyzing chemical-induced phenotypes and exposures from an anatomical perspective, with implications for environmental health studies. Curr Res Toxicol 2021; 2:128-139. [PMID: 33768211 PMCID: PMC7990325 DOI: 10.1016/j.crtox.2021.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The Comparative Toxicogenomics Database (CTD) is a freely available public resource that curates and interrelates chemical, gene/protein, phenotype, disease, organism, and exposure data. CTD can be used to address toxicological mechanisms for environmental chemicals and facilitate the generation of testable hypotheses about how exposures affect human health. At CTD, manually curated interactions for chemical-induced phenotypes are enhanced with anatomy terms (tissues, fluids, and cell types) to describe the physiological system of the reported event. These same anatomy terms are used to annotate the human media (e.g., urine, hair, nail, blood, etc.) in which an environmental chemical was assayed for exposure. Currently, CTD uses more than 880 unique anatomy terms to contextualize over 255,000 chemical-phenotype interactions and 167,000 exposure statements. These annotations allow chemical-phenotype interactions and exposure data to be explored from a novel, anatomical perspective. Here, we describe CTD's anatomy curation process (including the construction of a controlled, interoperable vocabulary) and new anatomy webpages (that coalesce and organize the curated chemical-phenotype and exposure data sets). We also provide examples that demonstrate how this feature can be used to identify system- and cell-specific chemical-induced toxicities, help inform exposure data, prioritize phenotypes for environmental diseases, survey tissue and pregnancy exposomes, and facilitate data connections with external resources. Anatomy annotations advance understanding of environmental health by providing new ways to explore and survey chemical-induced events and exposure studies in the CTD framework.
Collapse
Affiliation(s)
- Allan Peter Davis
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Thomas C. Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jolene Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Cynthia J. Grondin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Robin J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniela Sciaky
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Carolyn J. Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
22
|
Koelmel JP, Lin EZ, Guo P, Zhou J, He J, Chen A, Gao Y, Deng F, Dong H, Liu Y, Cha Y, Fang J, Beecher C, Shi X, Tang S, Godri Pollitt KJ. Exploring the external exposome using wearable passive samplers - The China BAPE study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116228. [PMID: 33360595 DOI: 10.1016/j.envpol.2020.116228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposures are one of the greatest threats to human health, yet we lack tools to answer simple questions about our exposures: what are our personal exposure profiles and how do they change overtime (external exposome), how toxic are these chemicals, and what are the sources of these exposures? To capture variation in personal exposures to airborne chemicals in the gas and particulate phases and identify exposures which pose the greatest health risk, wearable exposure monitors can be deployed. In this study, we deployed passive air sampler wristbands with 84 healthy participants (aged 60-69 years) as part of the Biomarkers for Air Pollutants Exposure (China BAPE) study. Participants wore the wristband samplers for 3 days each month for five consecutive months. Passive samplers were analyzed using a novel gas chromatography high resolution mass spectrometry data-processing workflow to overcome the bottleneck of processing large datasets and improve confidence in the resulting identified features. The toxicity of chemicals observed frequently in personal exposures were predicted to identify exposures of potential concern via inhalation route or other routes of airborne contaminant exposure. Three exposures were highlighted based on elevated toxicity: dichlorvos from insecticides (mosquito/malaria control), naphthalene partly from mothballs, and 183 polyaromatic hydrocarbons from multiple sources. Other exposures explored in this study are linked to diet and personal care products, cigarette smoke, sunscreen, and antimicrobial soaps. We highlight the potential for this workflow employing wearable passive samplers for prioritizing chemicals of concern at both the community and individual level, and characterizing sources of exposures for follow up interventions.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Jieqiong Zhou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Jucong He
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Alex Chen
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | | | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
24
|
Maguire G. Better preventing and mitigating the effects of Covid-19. Future Sci OA 2020; 6:FSO586. [PMID: 32685190 PMCID: PMC7238752 DOI: 10.2144/fsoa-2020-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, there are no proven medical treatments against SARS-CoV-2, the virus responsible for Covid-19. In addition to the all important public health measures needed to prevent the spread of this disease, a number of strategies related to our exposome are recommended herein, to better prevent and mitigate the effects of a SARS-CoV-2 infection through enhancement of our immune system and reduction of inflammation.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences Inc., NeoGenesis Inc., San Diego, CA 94704, USA
- The California Physiological Society, Berkeley, CA 94704, USA
| |
Collapse
|
25
|
What Is New about the Exposome? Exploring Scientific Change in Contemporary Epidemiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082879. [PMID: 32331256 PMCID: PMC7215638 DOI: 10.3390/ijerph17082879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
In this commentary, I discuss the scientific changes brought by the exposome, asking what is new about this approach and line of research. I place the exposome in a historical perspective, by analyzing the conditions under which the exposome has been conceived, developed and established in the context of contemporary epidemiological research. I argue that the exposome has been developed by transferring approaches, methods and conceptualizations from other lines of research in the life and health sciences. I thus discuss the conceptual and methodological innovations of the exposome as a result of the merging and adaptation of these elements for new uses and purposes. On this basis, I argue that the novelty of the exposome should be seen in incremental rather than revolutionary terms and, in this sense, the exposome shares significant elements with other projects and repertoires in postgenomics. I conclude by discussing the consequences of this analysis for the potential limitations and future development of exposome research.
Collapse
|