1
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Toss A, Piombino C, Quarello P, Trama A, Mascarin M, Lambertini M, Canesi M, Incorvaia L, Milano GM, Maruzzo M, Perrone F, Peccatori F, Ferrari A. Risk factors behind the increase of early-onset cancer in Italian adolescents and young adults: An investigation from the Italian AYA Working group. Eur J Cancer 2024; 212:115042. [PMID: 39362174 DOI: 10.1016/j.ejca.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
The incidence of early-onset cancers in adolescents and young adults (AYA) has been increasing worldwide since the 1990s. In Italy, a significant increased rate of 1.6 % per year has been reported for early-onset cancers among females between 2008 and 2016. This is mainly attributable to melanoma, thyroid, breast and endometrial cancer. The aim of our work was to describe temporal trends of the main established lifestyle risk factors (tobacco use, alcohol consumption, obesity, physical inactivity, dietary westernization and reproductive factors) over the last 20 years in the Italian AYA population. Available data on behavioural risk factors, individual and household daily life have been obtained and elaborated from PASSI, ISTAT and Eurostat reports. Lowering age of smoking initiation, an increase in alcohol drinkers among young females, and an obesity and overweight epidemic, particularly among children and adolescents as a result of physical inactivity and dietary habits, may be contributing factors behind this cancer epidemic, especially among females. In-depth investigations are needed to understand the exact role of each contributing factor, the effects of exposure to nicotine-containing products and environmental factors such as endocrine disruptors that could play a role in this phenomenon.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy; Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Claudia Piombino
- Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy.
| | - Annalisa Trama
- Department of Epidemiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Maurizio Mascarin
- AYA Oncology and Paediatric Radiotherapy Unit, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy.
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy.
| | - Marta Canesi
- Department of Paediatrics, University of Milano-Bicocca, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences Section of Medical Oncology University of Palermo, Palermo, Italy.
| | - Giuseppe Maria Milano
- Department of Paediatric Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Rome, Italy.
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy.
| | - Francesco Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| | - Fedro Peccatori
- Division of Gynaecologic Oncology, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Andrea Ferrari
- Department of Paediatrics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
3
|
Marcon A. Air Pollution and Bronchitis: Childhood Exposure, Lifelong Consequences. Am J Respir Crit Care Med 2024; 210:973-975. [PMID: 39133483 PMCID: PMC11531100 DOI: 10.1164/rccm.202407-1278ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Alessandro Marcon
- Department of Diagnostics and Public Health University of Verona Verona, Italy
| |
Collapse
|
4
|
Wada T, Adachi Y, Murakami S, Ito Y, Itazawa T, Tsuchida A, Matsumura K, Hamazaki K, Inadera H. Maternal exposure to smoking and wheezing phenotypes in children: a cohort study of the Japan Environment and Children's Study. BMC Pediatr 2024; 24:624. [PMID: 39354379 PMCID: PMC11443675 DOI: 10.1186/s12887-024-05101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Previous studies have shown that prenatal maternal smoking and maternal secondhand smoke exposure during pregnancy were associated with an increased risk of wheezing and asthma development. However, few studies have examined the influence of different sources of tobacco exposure in different perinatal timeframes (preconception, prenatal, and postnatal) on wheezing phenotypes in children. Using national survey data from Japan, we investigated the effects of exposure to tobacco smoke during pregnancy on wheezing phenotypes in children before the age of 3 years. METHODS Pregnant women who lived in the 15 regional centers in the Japan Environment and Children's Study were recruited. We obtained information on prenatal and postnatal exposure to active and secondhand smoke (SHS) and wheeze development up to 3 years of age. Multiple logistic regression analysis was performed to determine the association between tobacco smoke exposure and wheezing phenotypes in children. RESULTS We analyzed 73,057 singleton births and identified four longitudinal wheezing phenotypes: never wheezing; early transient wheezing (wheezing by age 1 year but not thereafter); late-onset wheezing (wheezing by age 2-3 years but not beforehand); and persistent wheezing. Maternal smoking during pregnancy was significantly associated with early transient and persistent wheezing in children compared with no maternal smoking [early transient wheezing: 1-10 cigarettes per day, adjusted odds ratio (aOR) 1.43, 95% confidence interval (CI) 1.23-1.66; ≥ 11 cigarettes per day, aOR 1.67, 95% CI 1.27-2.20; persistent wheezing: 1-10 cigarettes per day, aOR 1.64, 95% CI 1.37-1.97; ≥ 11 cigarettes per day, aOR 2.32, 95% CI 1.70-3.19]. Smoking cessation even before pregnancy was also significantly associated with increased risk of early transient wheezing, late-onset wheezing, and persistent wheezing in children. Moreover, maternal exposure to SHS during pregnancy was significantly associated with increased risk of early transient and persistent wheezing compared with no such exposure. CONCLUSIONS Maternal smoking before and throughout pregnancy was associated with wheeze development in children up to 3 years of age. It appears that smoking is detrimental compared to never smoking, regardless of whether individuals quit smoking before or after becoming aware of the pregnancy.
Collapse
Affiliation(s)
- Takuya Wada
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan.
- Pediatric Allergy Center, Toyama Red Cross Hospital, 2-1-58 Ushijima-honmachi, Toyama, 930- 8562, Japan.
| | - Shokei Murakami
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasunori Ito
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toshiko Itazawa
- Department of Pediatrics, Saitama Medical University, Saitama, Japan
| | - Akiko Tsuchida
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
- Toyama Regional Center for Japan Environment and Children's Study (JECS), University of Toyama, Toyama, Japan
| | - Kenta Matsumura
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
- Toyama Regional Center for Japan Environment and Children's Study (JECS), University of Toyama, Toyama, Japan
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Public Health, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
- Toyama Regional Center for Japan Environment and Children's Study (JECS), University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Hernandez-Pacheco N, Kilanowski A, Kumar A, Curtin JA, Olvera N, Kress S, Bertels X, Lahousse L, Bhatta L, Granell R, Marí S, Bilbao JR, Sun Y, Tingskov Pedersen CE, Karramass T, Thiering E, Dardani C, Kebede Merid S, Wang G, Hallberg J, Koch S, Garcia-Aymerich J, Esplugues A, Torrent M, Ibarluzea J, Lowe L, Simpson A, Gehring U, Vermeulen RCH, Roberts G, Bergström A, Vonk JM, Felix JF, Duijts L, Bønnelykke K, Timpson N, Brusselle G, Brumpton BM, Langhammer A, Turner S, Holloway JW, Arshad SH, Ullah A, Custovic A, Cullinan P, Murray CS, van den Berge M, Kull I, Schikowski T, Wedzicha JA, Koppelman G, Faner R, Agustí À, Standl M, Melén E. Exploring the genetics of airflow limitation in lung function across the lifespan - a polygenic risk score study. EClinicalMedicine 2024; 75:102731. [PMID: 39568778 PMCID: PMC11577569 DOI: 10.1016/j.eclinm.2024.102731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 11/22/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is caused by interactions between many factors across the life course, including genetics. A proportion of COPD may be due to reduced lung growth in childhood. We hypothesized that a polygenic risk score (PRS) for COPD is associated with lower lung function already in childhood and up to adulthood. Methods A weighted PRS was calculated based on the 82 association signals (p ≤ 5 × 10-8) revealed by the largest GWAS of airflow limitation (defined as COPD) to date. This PRS was tested in association with lung function measures (FEV1, FVC, and FEV1/FVC) in subjects aged 4-50 years from 16 independent cohorts participating in the Chronic Airway Diseases Early Stratification (CADSET) Clinical Research Collaboration. Age-stratified meta-analyses were conducted combining the results from each cohort (n = 45,406). These findings were validated in subjects >50 years old. Findings We found significant associations between the PRS for airflow limitation and: (1) lower pre-bronchodilator FEV1/FVC from school age (7-10 years; β: -0.13 z-scores per one PRS z-score increase [-0.15, -0.11], q-value = 7.04 × 10-53) to adulthood (41-50 years; β: -0.16 [-0.19, -0.13], q-value = 1.31 × 10-24); and (2) lower FEV1 (from school age: 7-10 years; β: -0.07 [-0.09, -0.05], q-value = 1.65 × 10-9, to adulthood: 41-50 years; β: -0.17 [-0.20, -0.13], q-value = 4.48 x 10-20). No effect modification by smoking, sex, or a diagnosis of asthma was observed. Interpretation We provide evidence that a higher genetic risk for COPD is linked to lower lung function from childhood onwards. Funding This study was supported by CADSET, a Clinical Research Collaboration of the European Respiratory Society.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Campus Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Ashish Kumar
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Cobbett House Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, United Kingdom
| | - Núria Olvera
- CIBER de Enfermedades Respiratorias (CIBERES), Spain
- Universitat de Barcelona, Departament de Biomedicina, Institut D'investigacions Biomediques August Pi I Sunyer (IDIBAPS), Calle Rosselló 149, 08036, Barcelona, Spain
| | - Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Xander Bertels
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000, CA, the Netherlands
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000, CA, the Netherlands
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Håkon Jarls gt.11, 7491, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, S.P. Andersens veg 11, 7031, Trondheim, Norway
- Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Raquel Granell
- Medical Research Council Integrative Epidemiology Unit (MRC-IEU), Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, United Kingdom
| | - Sergi Marí
- Biobizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Leioa, 48940, Bizkaia, Spain
| | - Jose Ramon Bilbao
- Biobizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Leioa, 48940, Bizkaia, Spain
- CIBER Diabetes y Enfermedades Metabólicas asociadas (CIBEDEM), Spain
| | - Yidan Sun
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Ledreborg alle 34, 2820, Gentofte, Denmark
| | - Tarik Karramass
- The Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Campus Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Christina Dardani
- Medical Research Council Integrative Epidemiology Unit (MRC-IEU), Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, United Kingdom
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
| | - Gang Wang
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, 17 Renmin South Rd Section 3, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Jenny Hallberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Hjalmar Cederströms gata 14, 118 61 Stockholm, Sweden
| | - Sarah Koch
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ana Esplugues
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Nursing, University of Valencia, Avenida de Menéndez y Pelayo, 19, 46010 Valencia, Spain
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Av. de Catalunya, 21, 46020, Valencia, Spain
| | | | - Jesus Ibarluzea
- CIBER Diabetes y Enfermedades Metabólicas asociadas (CIBEDEM), Spain
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Avenida Navarra 4, 20013, San Sebastian, Spain
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Cobbett House Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Cobbett House Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, United Kingdom
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Graham Roberts
- David Hide Asthma and Allergy Research Centre, St Marys Hospital Nhs Trust, Newport, PO30 5TG, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom
- Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton, SO17 1BJ, United Kingdom
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 65, Solna, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Torsplan, Solnavägen 4, 113 65, Stockholm, Sweden
| | - Judith M Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningne, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Ledreborg alle 34, 2820, Gentofte, Denmark
| | - Nic Timpson
- Medical Research Council Integrative Epidemiology Unit (MRC-IEU), Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, United Kingdom
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000, CA, the Netherlands
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Håkon Jarls gt.11, 7491, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, S.P. Andersens veg 11, 7031, Trondheim, Norway
| | - Arnulf Langhammer
- Department of Levanger Hospital, Nord-Trøndelag Hospital Trust, Helse Nord-Trøndelag, 7601, Levanger, Norway
| | - Stephen Turner
- Royal Aberdeen Children's Hospital NHS Grampian, Westburn Rd, Aberdeen, AB25 2ZG, United Kingdom
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom
- Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton, SO17 1BJ, United Kingdom
| | - Syed Hasan Arshad
- David Hide Asthma and Allergy Research Centre, St Marys Hospital Nhs Trust, Newport, PO30 5TG, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton, SO17 1BJ, United Kingdom
| | - Anhar Ullah
- National Heart and Lung Institute, Imperial College London, St Mary's Campus Medical School, Norfolk Place, London W2 1PG, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, St Mary's Campus Medical School, Norfolk Place, London W2 1PG, United Kingdom
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College London, St Mary's Campus Medical School, Norfolk Place, London W2 1PG, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Cobbett House Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, United Kingdom
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningne, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Imperial College London, St Mary's Campus Medical School, Norfolk Place, London W2 1PG, United Kingdom
| | - Gerard Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningne, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rosa Faner
- CIBER de Enfermedades Respiratorias (CIBERES), Spain
- Universitat de Barcelona, Departament de Biomedicina, Institut D'investigacions Biomediques August Pi I Sunyer (IDIBAPS), Calle Rosselló 149, 08036, Barcelona, Spain
| | - Àlvar Agustí
- CIBER de Enfermedades Respiratorias (CIBERES), Spain
- Universitat de Barcelona, Departament de Biomedicina, Institut D'investigacions Biomediques August Pi I Sunyer (IDIBAPS), Calle Rosselló 149, 08036, Barcelona, Spain
- Cátedra de Salud Respiratoria, University of Barcelona, Calle Casanovas, 143, 08036, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Hospital Clinic, Calle Villarroel, 170, 08036, Barcelona, Spain
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Campus Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Lung Research (DZL), Aulweg 130, 35392, Gießen, Munich, Germany
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 118 83, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Hjalmar Cederströms gata 14, 118 61 Stockholm, Sweden
| |
Collapse
|
6
|
Oliver BG, Foster PS. To burn or not to burn: similar effects of different types of prenatal tobacco exposure on infant lung function. ERJ Open Res 2024; 10:00294-2024. [PMID: 38978549 PMCID: PMC11228605 DOI: 10.1183/23120541.00294-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/10/2024] Open
Abstract
The first study to describe the harmful effects of snus on the unborn infant provides evidence to help clinicians and mothers collectively to make an informed choice about quitting the use of snus before planning pregnancies https://bit.ly/3vJnBxW.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- The Woolcock Institute of Medical Research and Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul S Foster
- The Woolcock Institute of Medical Research and Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Chen J, Liu X, Su W, Liu Z, Sun G, Yang Y, Tian M, Li J, Dong Y. Unveiling the hidden risk: paternal smoking and alcohol exposure prior to conception as independent factors for allergic rhinitis in children. Front Pediatr 2024; 12:1394400. [PMID: 38873584 PMCID: PMC11172151 DOI: 10.3389/fped.2024.1394400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Limited knowledge exists regarding the impact of paternal smoking and alcohol exposure on the development of allergic rhinitis in offspring. Our study aimed to investigate the potential association between preconception paternal smoking and alcohol exposure and the likelihood of children allergic rhinitis. Methods A retrospective case-control study of 556 prepubertal children aged 3-12 years was performed. The participants were 278 children with allergic rhinitis and 278 healthy controls matched for age and gender. Self-administered questionnaires were distributed and collected on-site, focusing on various factors related to the children's fathers, mothers, and the children themselves during the first year of life and the past 12 months, from March to October 2022. Results Multivariate analysis demonstrated that paternal smoking, paternal alcohol consumption prior to conception, paternal allergic diseases, children with a family history of allergies, maternal allergic diseases and pregnancy complications were identified as independent risk factors for allergic rhinitis in their offspring. Moreover, after considering confounding factors, it was observed that paternal smoking exceeding 5 cigarettes per day in the year preceding pregnancy and exceeding 11 years significantly elevated the likelihood of allergic rhinitis in children (OR = 2.009 and 2.479, respectively). Furthermore, the consumption of alcohol by the father at intervals of less than one month in the year prior to pregnancy and a duration of alcohol consumption exceeding 11 years prior to pregnancy are both associated with a significantly increased risk of allergic rhinitis in children (OR = 2.005 and 3.149, respectively). Conclusions Paternal smoking and alcohol consumption prior to conception contribute to an increased risk of allergic rhinitis in children, with the risk being dependent on the dosage and duration of exposure. Therefore, it is important to not only focus on personal and maternal environmental exposures when considering the occurrence risk of allergic rhinitis in children, but also to consider paternal detrimental exposures prior to conception.
Collapse
Affiliation(s)
- Junrong Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
- Nursing Department, Changde Vocational Technical College, Changde, Hunan, China
| | - Xiaohua Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
- Department of Medical Consortium Work, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, China
| | - Wenwen Su
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
- Hunan Provincial People's Hospital Affiliated to Hunan Normal University, Changsha, Hunan, China
| | - Zixin Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoying Sun
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
| | - Yide Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
| | - Mei Tian
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
| | - Jian Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Yunpeng Dong
- Department of Otolaryngology-Head and Neck Surgery, Yichang Central People's Hospital, Three Gorges University, Hubei, China
| |
Collapse
|
9
|
Kitaba NT, Knudsen GTM, Johannessen A, Rezwan FI, Malinovschi A, Oudin A, Benediktsdottir B, Martino D, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Watkins SH, Suderman M, Gómez-Real F, Schlünssen V, Svanes C, Holloway JW. Fathers' preconception smoking and offspring DNA methylation. Clin Epigenetics 2023; 15:131. [PMID: 37649101 PMCID: PMC10469907 DOI: 10.1186/s13148-023-01540-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Gerd Toril Mørkve Knudsen
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sarah H Watkins
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Matthew Suderman
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Francisco Gómez-Real
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Work, Environment and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Center, University Hospitals Southampton, Southampton, UK.
| |
Collapse
|
10
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
11
|
Lange AE, Mahlo-Nguyen J, Pierdant G, Allenberg H, Heckmann M, Ittermann T. Antenatal Care and Health Behavior of Pregnant Women—An Evaluation of the Survey of Neonates in Pomerania. CHILDREN 2023; 10:children10040678. [PMID: 37189927 DOI: 10.3390/children10040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Background. The German maternity guidelines require regular medical checkup (MC) during pregnancy as a measure of prevention. Socioeconomic factors such as education, profession, income and origin, but also age and parity may influence the preventive and health behavior of pregnant women. The aim was to investigate the influence of these factors on the participation rate in MC of pregnant women. Method. The current analysis is based on the prospective population-based birth cohort study Survey of Neonates in Pomerania, which was conducted in Western Pomerania, Germany. The data of 4092 pregnant women from 2004 to 2008 were analyzed regarding the antenatal care and health behavior. Up to 12 MC were regularly offered; participation in 10 MC is defined as standard screening according to maternity guidelines. Results. Women participated in the first preventive MC on average in the 10th (±3.8 SD) week of pregnancy. 1343 (34.2%) women participated in standard screening and 2039 (51.9%) took a screening above standard. 547 (13.92%) women participated in less than the 10 standard MCs. In addition, about one-third of the pregnancies investigated in this study were unplanned. Bivariate analyses showed an association between better antenatal care behavior and higher maternal age, stabile partnerships and mother born in Germany, p < 0.05. On the contrary antenatal care below standard were more often found by women with unplanned pregnancies, less educational women and women with lower equivalent income, p < 0.001. Health behaviors also influenced antenatal care. Whereas the risk of antenatal care below standard increased by smoking during pregnancy (RRR 1.64; 95% CI 1.25, 2.14) and alcohol consumption (RRR 1.31; 95% CI 1.01, 1.69), supplementation intake was associated with decreased risk (iodine—RRR 0.66; 95% CI 0.53, 0.81; folic acid—RRR 0.56; 95% CI 0.44, 0.72). The health behavior of pregnant women also differs according to their social status. Higher maternal income was negatively correlated with smoking during pregnancy (OR 0.2; 95% CI 0.15, 0.24), but positively associated with alcohol consumption during pregnancy (OR 1.3; 95% CI 1.15, 1.48) and lower pre-pregnancy BMI (Coef. = 0.083, p < 0.001). Lower maternal education was positively correlated with smoking during pregnancy (OR 59.0; 95% CI 28.68, 121.23). Conclusions. Prenatal care according to maternity guidelines is well established with a high participation rate in MC during pregnancy of more than 85%. However, targeted preventive measures may address younger age, socioeconomic status and health-damaging behaviors (smoking, drinking) of the pregnant women because these factors were associated with antenatal care below standard.
Collapse
Affiliation(s)
- Anja Erika Lange
- Department of Neonatology & Paediatric Intensive Care Medicine, University of Greifswald, 17475 Greifswald, Germany
| | - Janine Mahlo-Nguyen
- Department of Neonatology & Paediatric Intensive Care Medicine, University of Greifswald, 17475 Greifswald, Germany
| | - Guillermo Pierdant
- Department of Obstetrics and Gynecology, University of Greifswald, 17475 Greifswald, Germany
| | - Heike Allenberg
- Department of Neonatology & Paediatric Intensive Care Medicine, University of Greifswald, 17475 Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology & Paediatric Intensive Care Medicine, University of Greifswald, 17475 Greifswald, Germany
| | - Till Ittermann
- Institute of Community Medicine, Division of Health Care Epidemiology and Community Health, University of Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
12
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Carter T, Schoenaker D, Adams J, Steel A. Paternal preconception modifiable risk factors for adverse pregnancy and offspring outcomes: a review of contemporary evidence from observational studies. BMC Public Health 2023; 23:509. [PMID: 36927694 PMCID: PMC10022288 DOI: 10.1186/s12889-023-15335-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The preconception period represents transgenerational opportunities to optimize modifiable risk factors associated with both short and long-term adverse health outcomes for women, men, and children. As such, preconception care is recommended to couples during this time to enable them to optimise their health in preparation for pregnancy. Historically, preconception research predominately focuses on maternal modifiable risks and health behaviours associated with pregnancy and offspring outcomes; limited attention has been given to inform paternal preconception health risks and outcomes. This systematic review aims to advance paternal preconception research by synthesising the current evidence on modifiable paternal preconception health behaviours and risk factors to identify associations with pregnancy and/or offspring outcomes. METHODS Medline, Embase, Maternity and Infant care, CINAHL, PsycINFO, Scopus, and ISI Proceedings were searched on the 5th of January 2023, a date limit was set [2012-2023] in each database. A Google Scholar search was also conducted identifying all other relevant papers. Studies were included if they were observational, reporting associations of modifiable risk factors in the preconception period among males (e.g., identified as reproductive partners of pregnant women and/or fathers of offspring for which outcomes were reported) with adverse pregnancy and offspring outcomes. Study quality was assessed using the Newcastle-Ottawa Scale. Exposure and outcome heterogeneity precluded meta-analysis, and results were summarised in tables. RESULTS This review identified 56 cohort and nine case control studies. Studies reported on a range of risk factors and/or health behaviours including paternal body composition (n = 25), alcohol intake (n = 6), cannabis use (n = 5), physical activity (n = 2), smoking (n = 20), stress (n = 3) and nutrition (n = 13). Outcomes included fecundability, IVF/ISCI live birth, offspring weight, body composition/BMI, asthma, lung function, leukemia, preterm birth, and behavioural issues. Despite the limited number of studies and substantial heterogeneity in reporting, results of studies assessed as good quality showed that paternal smoking may increase the risk of birth defects and higher paternal BMI was associated with higher offspring birthweight. CONCLUSION The current evidence demonstrates a role of paternal preconception health in influencing outcomes related to pregnancy success and offspring health. The evidence is however limited and heterogenous, and further high-quality research is needed to inform clinical preconception care guidelines to support men and couples to prepare for a health pregnancy and child.
Collapse
Affiliation(s)
- Tristan Carter
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, 2006, Australia.
| | - Danielle Schoenaker
- School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jon Adams
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, 2006, Australia
| | - Amie Steel
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, 2006, Australia
| |
Collapse
|
14
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
15
|
Wheatley LM, Holloway JW, Svanes C, Sears MR, Breton C, Fedulov AV, Nilsson E, Vercelli D, Zhang H, Togias A, Arshad SH. The role of epigenetics in multi-generational transmission of asthma: An NIAID workshop report-based narrative review. Clin Exp Allergy 2022; 52:1264-1275. [PMID: 36073598 PMCID: PMC9613603 DOI: 10.1111/cea.14223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
There is mounting evidence that environmental exposures can result in effects on health that can be transmitted across generations, without the need for a direct exposure to the original factor, for example, the effect of grandparental smoking on grandchildren. Hence, an individual's health should be investigated with the knowledge of cross-generational influences. Epigenetic factors are molecular factors or processes that regulate genome activity and may impact cross-generational effects. Epigenetic transgenerational inheritance has been demonstrated in plants and animals, but the presence and extent of this process in humans are currently being investigated. Experimental data in animals support transmission of asthma risk across generations from a single exposure to the deleterious factor and suggest that the nature of this transmission is in part due to changes in DNA methylation, the most studied epigenetic process. The association of father's prepuberty exposure with offspring risk of asthma and lung function deficit may also be mediated by epigenetic processes. Multi-generational birth cohorts are ideal to investigate the presence and impact of transfer of disease susceptibility across generations and underlying mechanisms. However, multi-generational studies require recruitment and assessment of participants over several decades. Investigation of adult multi-generation cohorts is less resource intensive but run the risk of recall bias. Statistical analysis is challenging given varying degrees of longitudinal and hierarchical data but path analyses, structural equation modelling and multilevel modelling can be employed, and directed networks addressing longitudinal effects deserve exploration as an effort to study causal pathways.
Collapse
Affiliation(s)
- Lisa M. Wheatley
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - John W. Holloway
- Faculty of Medicine, Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Cecilie Svanes
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | | | - Carrie Breton
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexey V. Fedulov
- Warren Alpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Eric Nilsson
- Washington State University PullmanPullmanWashingtonUSA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Alkis Togias
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- The David Hide Asthma and Allergy CentreSt Mary's HospitalNewportUK
| |
Collapse
|
16
|
Schuyler AJ, Wenzel SE. Historical Redlining Impacts Contemporary Environmental and Asthma-related Outcomes in Black Adults. Am J Respir Crit Care Med 2022; 206:824-837. [PMID: 35612914 PMCID: PMC9799280 DOI: 10.1164/rccm.202112-2707oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 01/02/2023] Open
Abstract
Rationale: Environmental threats and poorly controlled asthma disproportionately burden Black people. Some have attributed this to socioeconomic or biologic factors; however, racism, specifically historical redlining, a U.S. discriminatory mortgage lending practice in existence between the 1930s and the 1970s, may have actuated and then perpetuated poor asthma-related outcomes. Objectives: To link historical redlining (institutional racism) to contemporary environmental quality- and lung health-related racial inequity. Methods: Leveraging a broadly recruited asthma registry, we geocoded 1,034 registry participants from Pittsburgh/Allegheny County, Pennsylvania, to neighborhoods subjected to historical redlining, as defined by a 1930s Home Owners' Loan Corporation (HOLC) map. Individual-level clinical/physiologic data, residential air pollution, demographics, and socioeconomic factors provided detailed characterization. We determined the prevalence of uncontrolled and/or severe asthma and other asthma-related outcomes by HOLC (neighborhood) grade (A-D). We performed a stratified analysis by self-identified race to assess the distribution of environmental and asthma risk within each HOLC grade. Measurements and Main Results: The registry sampling overall reflected Allegheny County neighborhood populations. The emissions of carbon monoxide, filterable particulate matter <2.5 μm, sulfur dioxide, and volatile organic compounds increased across HOLC grades (all P ⩽ 0.004), with grade D neighborhoods encumbered by the highest levels. The persistent, dispersive socioenvironmental burden peripherally extending from grade D neighborhoods, including racialized access to healthy environments (structural racism), supported a long-term impact of historical/HOLC redlining. The worst asthma-related outcomes, including uncontrolled and/or severe asthma (P < 0.001; Z = 3.81), and evidence for delivery of suboptimal asthma care occurred among registry participants from grade D neighborhoods. Furthermore, elevated exposure to filterable particulate matter <2.5 μm, sulfur dioxide, and volatile organic compound emissions (all P < 0.050) and risk of uncontrolled and/or severe asthma (relative risk [95% confidence interval], 2.30 [1.19, 4.43]; P = 0.009) demonstrated inequitable distributions within grade D neighborhood boundaries, disproportionately burdening Black registry participants. Conclusions: The racist practice of historical/HOLC redlining profoundly contributes to long-term environmental and asthma-related inequities in Black adults. Acknowledging the role racism has in these outcomes should empower more specific and novel interventions targeted at reversing these structural issues.
Collapse
Affiliation(s)
- Alexander J. Schuyler
- University of Pittsburgh Asthma and Environmental Lung Health Institute@UPMC and
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally E. Wenzel
- University of Pittsburgh Asthma and Environmental Lung Health Institute@UPMC and
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Gau CC, Lee HJ, Lu HY, Wu CY, Huang HY, Tsai HJ, Yao TC. Association of advanced paternal age with lung function at school age. Respir Res 2022; 23:259. [PMID: 36127724 PMCID: PMC9487029 DOI: 10.1186/s12931-022-02178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epidemiological studies suggest that advanced paternal age impact offspring health, but its impact on respiratory health is unclear. This study aimed to investigate the association of paternal age with lung function and fraction of exhaled nitric oxide (FeNO) in children. METHODS We analyzed data from 1330 single-born children (576 girls, 43.3%; mean age, 6.4 years), who participated in the Longitudinal Investigation of Global Health in Taiwanese Schoolchildren (LIGHTS) cohort and received measurements of lung function and FeNO at 6-year follow-up visits. Covariate-adjusted regression analyses were applied. RESULTS Every 5-year increase in paternal age at birth was associated with 0.51% decrease in FEV1/FVC ratio (95% CI - 0.86 to - 0.15; p = 0.005) and 19.86 mL/s decrease in FEF75 (95% CI: - 34.07 to - 5.65; p = 0.006). Stratified analyses revealed that increasing paternal age at birth was associated with decreasing FEV1/FVC ratio and FEF75 only among children with prenatal exposure to environmental tobacco smoke (ETS) or not being breastfed. Sensitivity analyses using paternal age as a categorical variable found decreasing FEV1/FVC ratio and FEF75 in the groups of paternal age 35-39 and ≥ 40 years. There was no association of paternal age at birth with FeNO. CONCLUSION Our findings provide novel evidence linking advanced paternal age at birth with decreasing lung function in children at school age. Children with prenatal exposure to ETS or not being breastfed are more vulnerable to the adverse effect of advanced paternal age on childhood lung function. Further studies are warranted to confirm this novel adverse effect of advanced paternal age.
Collapse
Affiliation(s)
- Chun-Chun Gau
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Pediatric General Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Hsin-Ju Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan
| | - Hung-Yi Lu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Yi Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, Bai C, Chalmers JD, Criner GJ, Dharmage SC, Franssen FME, Frey U, Han M, Hansel NN, Hawkins NM, Kalhan R, Konigshoff M, Ko FW, Parekh TM, Powell P, Rutten-van Mölken M, Simpson J, Sin DD, Song Y, Suki B, Troosters T, Washko GR, Welte T, Dransfield MT. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022; 400:921-972. [PMID: 36075255 PMCID: PMC11260396 DOI: 10.1016/s0140-6736(22)01273-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
Despite substantial progress in reducing the global impact of many non-communicable diseases, including heart disease and cancer, morbidity and mortality due to chronic respiratory disease continues to increase. This increase is driven primarily by the growing burden of chronic obstructive pulmonary disease (COPD), and has occurred despite the identification of cigarette smoking as the major risk factor for the disease more than 50 years ago. Many factors have contributed to what must now be considered a public health emergency: failure to limit the sale and consumption of tobacco products, unchecked exposure to environmental pollutants across the life course, and the ageing of the global population (partly as a result of improved outcomes for other conditions). Additionally, despite the heterogeneity of COPD, diagnostic approaches have not changed in decades and rely almost exclusively on post-bronchodilator spirometry, which is insensitive for early pathological changes, underused, often misinterpreted, and not predictive of symptoms. Furthermore, guidelines recommend only simplistic disease classification strategies, resulting in the same therapeutic approach for patients with widely differing conditions that are almost certainly driven by variable pathophysiological mechanisms. And, compared with other diseases with similar or less morbidity and mortality, the investment of financial and intellectual resources from both the public and private sector to advance understanding of COPD, reduce exposure to known risks, and develop new therapeutics has been woefully inadequate.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, Basel, Switzerland; Clinic of Respiratory Medicine and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Desiree M Schumann
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Alvar Agusti
- Respiratory Institute-Hospital Clinic, University of Barcelona IDIBAPS, CIBERES, Barcelona, Spain
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global health, University of Melbourne, Melbourne, VIC, Australia
| | - Frits M E Franssen
- Department of Research and Education, CIRO, Horn, Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Urs Frey
- University Children's Hospital Basel, Basel, Switzerland
| | - MeiLan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathaniel M Hawkins
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Ravi Kalhan
- Department of Preventive Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melanie Konigshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fanny W Ko
- The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Trisha M Parekh
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Maureen Rutten-van Mölken
- Erasmus School of Health Policy & Management and Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jodie Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; Jinshan Hospital of Fudan University, Shanghai, China
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thierry Troosters
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
19
|
Svanes C, Johannessen A, Bertelsen RJ, Dharmage S, Benediktsdottir B, Bråbäck L, Gislason T, Holm M, Jõgi O, Lodge CJ, Malinovschi A, Martinez-Moratalla J, Oudin A, Sánchez-Ramos JL, Timm S, Janson C, Real FG, Schlünssen V. Cohort profile: the multigeneration Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort. BMJ Open 2022; 12:e059434. [PMID: 35654464 PMCID: PMC9163543 DOI: 10.1136/bmjopen-2021-059434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort was established to (1) investigate how exposures before conception and in previous generations influence health and disease, particularly allergies and respiratory health, (2) identify susceptible time windows and (3) explore underlying mechanisms. The ultimate aim is to facilitate efficient intervention strategies targeting multiple generations. PARTICIPANTS RHINESSA includes study participants of multiple generations from ten study centres in Norway (1), Denmark (1), Sweden (3), Iceland (1), Estonia (1), Spain (2) and Australia (1). The RHINESSA core cohort, adult offspring generation 3 (G3), was first investigated in 2014-17 in a questionnaire study (N=8818, age 18-53 years) and a clinical study (subsample, n=1405). Their G2 parents participated in the population-based cohorts, European Community Respiratory Heath Survey and Respiratory Health In Northern Europe, followed since the early 1990s when they were 20-44 years old, at 8-10 years intervals. Study protocols are harmonised across generations. FINDINGS TO DATE Collected data include spirometry, skin prick tests, exhaled nitric oxide, anthropometrics, bioimpedance, blood pressure; questionnaire/interview data on respiratory/general/reproductive health, indoor/outdoor environment, smoking, occupation, general characteristics and lifestyle; biobanked blood, urine, gingival fluid, skin swabs; measured specific and total IgE, DNA methylation, sex hormones and oral microbiome. Research results suggest that parental environment years before conception, in particular, father's exposures such as smoking and overweight, may be of key importance for asthma and lung function, and that there is an important susceptibility window in male prepuberty. Statistical analyses developed to approach causal inference suggest that these associations may be causal. DNA methylation studies suggest a mechanism for transfer of father's exposures to offspring health and disease through impact on offspring DNA methylation. FUTURE PLANS Follow-up is planned at 5-8 years intervals, first in 2021-2023. Linkage with health registries contributes to follow-up of the cohort.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, University of Bergen Department of Global Public Health and Primary Care, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, University of Bergen Department of Global Public Health and Primary Care, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Oral Helath Centre of Expertise Western Norway, Bergen, Norway
| | - Shyamali Dharmage
- Allergy and Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Bryndis Benediktsdottir
- Medical Faculty, University of Iceland, Reykjavik, Iceland
- Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
| | - Lennart Bråbäck
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå Universitet, Umeå, Sweden
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Oskar Jõgi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Jesus Martinez-Moratalla
- Servicio de Neumología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha - Campus de Albacete, Albacete, Spain
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå Universitet, Umeå, Sweden
| | | | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, Kolding, Denmark
| | - Christer Janson
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences: Respiratory, Allergy, Sleep Research, Uppsala University, Uppsala, Sweden
| | - Francisco Gomez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health - Work, Environment and Health, Danish Ramazzini Centre, Aarhus Universitet, Aarhus, Denmark
- National Research Centre for the Working Environment, Kobenhavn, Denmark
| |
Collapse
|
20
|
Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. THE LANCET. RESPIRATORY MEDICINE 2022; 10:512-524. [PMID: 35427533 PMCID: PMC11428195 DOI: 10.1016/s2213-2600(21)00555-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.
Collapse
Affiliation(s)
- Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, Spain; Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
21
|
Lønnebotn M, Calciano L, Johannessen A, Jarvis DL, Abramson MJ, Benediktsdóttir B, Bråbäck L, Franklin KA, Godoy R, Holm M, Janson C, Jõgi NO, Kirkeleit J, Malinovschi A, Pereira-Vega A, Schlünssen V, Dharmage SC, Accordini S, Gómez Real F, Svanes C. Parental Prepuberty Overweight and Offspring Lung Function. Nutrients 2022; 14:nu14071506. [PMID: 35406119 PMCID: PMC9002985 DOI: 10.3390/nu14071506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
In a recent study we found that fathers' but not mothers' onset of overweight in puberty was associated with asthma in adult offspring. The potential impact on offspring's adult lung function, a key marker of general and respiratory health, has not been studied. We investigated the potential causal effects of parents' overweight on adult offspring's lung function within the paternal and maternal lines. We included 929 offspring (aged 18-54, 54% daughters) of 308 fathers and 388 mothers (aged 40-66). Counterfactual-based multi-group mediation analyses by offspring's sex (potential moderator) were used, with offspring's prepubertal overweight and/or adult height as potential mediators. Unknown confounding was addressed by simulation analyses. Fathers' overweight before puberty had a negative indirect effect, mediated through sons' height, on sons' forced expiratory volume in one second (FEV1) (beta (95% CI): -144 (-272, -23) mL) and forced vital capacity (FVC) (beta (95% CI): -210 (-380, -34) mL), and a negative direct effect on sons' FVC (beta (95% CI): -262 (-501, -9) mL); statistically significant effects on FEV1/FVC were not observed. Mothers' overweight before puberty had neither direct nor indirect effects on offspring's lung function. Fathers' overweight starting before puberty appears to cause lower FEV1 and FVC in their future sons. The effects were partly mediated through sons' adult height but not through sons' prepubertal overweight.
Collapse
Affiliation(s)
- Marianne Lønnebotn
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: ; Tel.: +47-9596-8484
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
| | - Deborah L. Jarvis
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London SW7 2AZ, UK;
- MRC-PHE Centre for Environment and Health, Imperial College, London W2 1PG, UK
| | - Michael J. Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | | | - Lennart Bråbäck
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Karl A. Franklin
- The Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeaa, Sweden;
| | - Raúl Godoy
- Department of Pulmonary Medicine, University Hospital Complex of Albacete, University of Castilla La Mancha, 02008 Albacete, Spain;
| | - Mathias Holm
- Occupational and Environmental Medicine, Institute of Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 751 85 Uppsala, Sweden;
| | - Nils O. Jõgi
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (N.O.J.); (F.G.R.)
| | - Jorunn Kirkeleit
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Antonio Pereira-Vega
- Pneumology Service, Juan Ramón Jiménez University Hospital in Huelva, 21005 Huelva, Spain;
| | - Vivi Schlünssen
- Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, 8000 Aarhus, Denmark;
- National Research Center for the Working Environment, 2100 Copenhagen, Denmark
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (N.O.J.); (F.G.R.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
22
|
Bowatte G, Bui DS, Priyankara S, Lowe AJ, Perret JL, Lodge CJ, Hamilton GS, Erbas B, Thomas P, Thompson B, Schlünssen V, Martino D, Holloway JW, Svanes C, Abramson MJ, Walters EH, Dharmage SC. Parental preconception BMI trajectories from childhood to adolescence and asthma in the future offspring. J Allergy Clin Immunol 2022; 150:67-74.e30. [PMID: 35007625 DOI: 10.1016/j.jaci.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent evidence suggests that parental exposures before conception can increase the risk of asthma in offspring. OBJECTIVE We investigated the association between parental preconception Body Mass Index (BMI) trajectories from childhood to adolescence and subsequent risk of asthma in their offspring. METHODS Using group-based trajectory modeling from the Tasmanian Longitudinal Health Study (TAHS), we identified BMI trajectories for index participants (parents) when aged 4 to 15 years. Multinomial regression models adjusted for potential confounders were utilized to estimate the association between these early-life parental BMI trajectories and asthma phenotypes in their subsequent offspring. RESULTS The main analysis included 1822 parents and 4208 offspring. Four BMI trajectories from age 4 to 15 years were identified as the best fitting model: "low" (8.8%); "normal" (44.1%); "above normal" (40.2%); and "high" (7.0%). Associations were observed between father's "high" BMI trajectory and risk of asthma in offspring before the age of 10 years (RRR=1.70, 95%CI 0.98, 2.93) and also asthma ever (RRR=1.72, 95%CI 1.00, 2.97), especially allergic asthma ever (RRR=2.05, 95%CI 1.12, 3.72). These associations were not mediated by offspring birth weight. No associations were observed for maternal BMI trajectories and offspring asthma phenotypes. CONCLUSION This cohort study over six decades of life and across two generations suggests that the "high BMI" trajectory in fathers, well before conception, increased the risk of asthma in their offspring.
Collapse
Affiliation(s)
- Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Department of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Sajith Priyankara
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka; Department of Mathematics & Statistics, Texas Tech University, Lubbock, Tex
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Garun S Hamilton
- Monash Lung, Sleep, Allergy and Immunology, Monash Health, Clayton, Australia; School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Paul Thomas
- Prince of Wales' Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Bruce Thompson
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Vivi Schlünssen
- Department of Public Health, Danish Ramazzini Center, Aarhus University and the National Research Center for the Working Environment, Copenhagen, Denmark
| | - David Martino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; School of Medicine, University of Tasmania, Hobart, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
23
|
López-Cervantes JP, Lønnebotn M, Jogi NO, Calciano L, Kuiper IN, Darby MG, Dharmage SC, Gómez-Real F, Hammer B, Bertelsen RJ, Johannessen A, Würtz AML, Mørkve Knudsen T, Koplin J, Pape K, Skulstad SM, Timm S, Tjalvin G, Krauss-Etschmann S, Accordini S, Schlünssen V, Kirkeleit J, Svanes C. The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12684. [PMID: 34886409 PMCID: PMC8657011 DOI: 10.3390/ijerph182312684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.
Collapse
Affiliation(s)
- Juan Pablo López-Cervantes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Marianne Lønnebotn
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Nils Oskar Jogi
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | | | - Matthew G. Darby
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town 7925, South Africa;
| | - Shyamali C. Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Barbara Hammer
- Department of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Ane Johannessen
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
| | - Anne Mette Lund Würtz
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Toril Mørkve Knudsen
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Jennifer Koplin
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Kathrine Pape
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark;
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Gro Tjalvin
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | | | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Vivi Schlünssen
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Jorunn Kirkeleit
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Cecilie Svanes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| |
Collapse
|
24
|
Tang L, Chen P, Yang L, Liu J, Zheng Y, Lin J, Chen S, Luo Y, Chen Y, Ma X, Zhang L. Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1551. [PMID: 34790757 PMCID: PMC8576681 DOI: 10.21037/atm-21-4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the influence of extrauterine growth restriction (EUGR) on pulmonary arterial pressure (PAP) and the transgenerational inheritance of promoter methylation changes in pulmonary vascular endothelial cells (PVECs) of 2 consecutive generations under EUGR stress. Methods After modeling, PAP values of F1 and F2 pups were investigated at 9-week-old. The methyl-DNA immune precipitation chip was used to analyze DNA methylation profiling. Differential enrichment peaks (DEPs) and regions of interest (ROIs) were identified, based on which Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and reactome pathway enrichments were analyzed. Results The F1 male rats in the EUGR group had significantly increased PAP levels compared to the control group; however, this increase was not observed in female rats. Interestingly, in F2 female rats, the EUGR group had decreased PAP. In the X chromosome of the F1 males, there were 16 differential ROI genes in the F1 generation, while in F2 females, there were 86 differential ROI genes. Similarly, there were 105 DEPs in the F1 generation and 38 DEPs in the F2 generation. In combination with the 5 common ROIs and 14 common DEPs, 18 genes were regarded as the key candidate genes associated with hereditable PAP variation in the EUGR model. Enrichment analysis showed that synaptic and neurotransmitter relative pathways might be involved in the process of EUGR-induced PAH development. Among common DEPs, Smad1 and Serpine1 were also found in 102 PAH-associated genes in the MalaCards database. Conclusions Together, there is a transgenerational inheritance of promoter methylation changes in the X chromosome in EUGR-induced PAP disorders, which involves the participation of synaptic and neurotransmitter relative pathways. Also, attenuated methylation of Smad1 and Serpine1 in the promoter region may be a partial driver of PAH in later life.
Collapse
Affiliation(s)
- Lili Tang
- Department of Neonatology, Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc., Wuxi, China
| | - Jiyuan Liu
- Fujian Medical University, Fuzhou, China
| | - Yuanfang Zheng
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Jincai Lin
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Senhua Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yinzhu Luo
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yanyan Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoying Ma
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liyan Zhang
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Tjalvin G, Svanes Ø, Igland J, Bertelsen RJ, Benediktsdóttir B, Dharmage S, Forsberg B, Holm M, Janson C, Jõgi NO, Johannessen A, Malinovschi A, Pape K, Real FG, Sigsgaard T, Torén K, Vindenes HK, Zock JP, Schlünssen V, Svanes C. Maternal preconception occupational exposure to cleaning products and disinfectants and offspring asthma. J Allergy Clin Immunol 2021; 149:422-431.e5. [PMID: 34674855 DOI: 10.1016/j.jaci.2021.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Emerging research suggests health effects in offspring after parental chemical exposures before conception. Many future mothers are exposed to potent chemicals at work, but potential offspring health effects are hardly investigated. OBJECTIVE We sought to investigate childhood asthma in relation to mother's occupational exposure to cleaning products and disinfectants before conception. METHODS The multicenter Respiratory Health In Northern Europe/Respiratory Health In Northern Europe, Spain and Australia generation study investigated asthma and wheeze starting at age less than 10 years in 3318 mother-offspring pairs. From an asthma-specific Job-Exposure Matrix and mothers' occupational history, we defined maternal occupational exposure to indoor cleaning agents (cleaning products/detergents and disinfectants) starting before conception, in the 2-year period around conception and pregnancy, or after birth. Never-employed mothers were excluded. Exposed groups include cleaners, health care workers, cooks, and so forth. Associations were analyzed using mixed-effects logistic regression and ordinary logistic regression with clustered robust SEs and adjustment for maternal education. RESULTS Maternal occupational exposure to indoor cleaning starting preconception and continuing (n = 610) was associated with offspring's childhood asthma: odds ratio 1.56 (95% CI, 1.05-2.31), childhood asthma with nasal allergies: 1.77 (1.13-2.77), and childhood wheeze and/or asthma: 1.71 (95% CI, 1.19-2.44). Exposure starting around conception and pregnancy (n = 77) was associated with increased childhood wheeze and/or asthma: 2.25 (95% CI, 1.03-4.91). Exposure starting after birth was not associated with asthma outcomes (1.13 [95% CI, 0.71-1.80], 1.15 [95% CI, 0.67-1.97], 1.08 [95% CI, 0.69-1.67]). CONCLUSIONS Mother's occupational exposure to indoor cleaning agents starting before conception, or around conception and pregnancy, was associated with more childhood asthma and wheeze in offspring. Considering potential implications for vast numbers of women in childbearing age using cleaning agents, and their children, further research is imperative.
Collapse
Affiliation(s)
- Gro Tjalvin
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Øistein Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Health and Caring Sciences, Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway; Oral Health Center of Expertise in Western Norway, Bergen, Norway
| | - Bryndís Benediktsdóttir
- Medical Faculty, University of Iceland, Reykjavík, Iceland; Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavík, Iceland
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, University of Melbourne, Melbourne, Australia
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Nils Oskar Jõgi
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Tartu University Lung Clinic, Tartu, Estonia
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Kathrine Pape
- National Research Centre for the Working Environment, Aarhus, Denmark; Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Francisco Gomez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hilde Kristin Vindenes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan-Paul Zock
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vivi Schlünssen
- National Research Centre for the Working Environment, Aarhus, Denmark; Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Svanes C, Bertelsen RJ, Accordini S, Holloway JW, Júlíusson P, Boateng E, Krauss-Etchmann S, Schlünssen V, Gómez-Real F, Skulstad SM. Exposures during the prepuberty period and future offspring's health: evidence from human cohort studies†. Biol Reprod 2021; 105:667-680. [PMID: 34416759 PMCID: PMC8444705 DOI: 10.1093/biolre/ioab158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that exposures in prepuberty, particularly in fathers-to-be, may impact the phenotype of future offspring. Analyses of the RHINESSA cohort find that offspring of father’s exposed to tobacco smoking or overweight that started in prepuberty demonstrate poorer respiratory health in terms of more asthma and lower lung function. A role of prepuberty onset smoking for offspring fat mass is suggested in the RHINESSA and ALSPAC cohorts, and historic studies suggest that ancestral nutrition during prepuberty plays a role for grand-offspring’s health and morbidity. Support for causal relationships between ancestral exposures and (grand-)offspring’s health in humans has been enhanced by advancements in statistical analyses that optimize the gain while accounting for the many complexities and deficiencies in human multigeneration data. The biological mechanisms underlying such observations have been explored in experimental models. A role of sperm small RNA in the transmission of paternal exposures to offspring phenotypes has been established, and chemical exposures and overweight have been shown to influence epigenetic programming in germ cells. For example, exposure of adolescent male mice to smoking led to differences in offspring weight and alterations in small RNAs in the spermatozoa of the exposed fathers. It is plausible that male prepuberty may be a time window of particular susceptibility, given the extensive epigenetic reprogramming taking place in the spermatocyte precursors at this age. In conclusion, epidemiological studies in humans, mechanistic research, and biological plausibility, all support the notion that exposures in the prepuberty of males may influence the phenotype of future offspring.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Oral Health Centre of Expertise Western Norway, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pétur Júlíusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Register Research and Development, National Institute of Public Health, Bergen, Norway
| | - Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Susanne Krauss-Etchmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Vivi Schlünssen
- Department of Public Health-Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|