1
|
Bhargava M, Crouser ED. Application of laboratory models for sarcoidosis research. J Autoimmun 2024; 149:103184. [PMID: 38443221 DOI: 10.1016/j.jaut.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
This manuscript will review the implications and applications of sarcoidosis models towards advancing our understanding of sarcoidosis disease mechanisms, identification of biomarkers, and preclinical testing of novel therapies. Emerging disease models and innovative research tools will also be considered.
Collapse
Affiliation(s)
- Maneesh Bhargava
- University of Minnesota Medical Center, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 420 Delaware Street SE, MMC 276. Minneapolis, MN 55455, USA
| | - Elliott D Crouser
- Ohio State University Wexner Medicine Center, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 241 W. 11th Street, Suite 5000, Columbus, OH 43201, USA.
| |
Collapse
|
2
|
Benn BS, Lippitt WL, Cortopassi I, Balasubramani GK, Mortani Barbosa EJ, Drake WP, Herzog E, Gibson K, Chen ES, Koth LL, Fuhrman C, Lynch DA, Kaminski N, Wisniewski SR, Carlson NE, Maier LA. Understanding the Added Value of High-Resolution CT Beyond Chest X-Ray in Determining Extent of Physiologic Impairment. Chest 2024; 166:1093-1107. [PMID: 38830401 PMCID: PMC11560486 DOI: 10.1016/j.chest.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Sarcoidosis staging primarily has relied on the Scadding chest radiographic system, although chest CT imaging is finding increased clinical use. RESEARCH QUESTION Whether standardized chest CT scan assessment provides additional understanding of lung function beyond Scadding stage and demographics is unknown and the focus of this study. STUDY DESIGN AND METHODS We used National Heart, Lung, and Blood Institute study Genomics Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) cases of sarcoidosis (n = 351) with Scadding stage and chest CT scans obtained in a standardized manner. One chest radiologist scored all CT scans with a visual scoring system, with a subset read by another chest radiologist. We compared demographic features, Scadding stage and CT scan findings, and the correlation between these measures. Associations between spirometry and diffusing capacity of the lungs for carbon monoxide (Dlco) results and CT scan findings and Scadding stage were determined using regression analysis (n = 318). Agreement between readers was evaluated using Cohen's κ value. RESULTS CT scan features were inconsistent with Scadding stage in approximately 40% of cases. Most CT scan features assessed on visual scoring were associated negatively with lung function. Associations persisted for FEV1 and Dlco when adjusting for Scadding stage, although some CT scan feature associations with FVC became insignificant. Scadding stage was associated primarily with FEV1, and inclusion of CT scan features reduced significance in association between Scadding stage and lung function. Multivariable regression modeling to identify radiologic measures explaining lung function included Scadding stage for FEV1 and FEV1 to FVC ratio (P < .05) and marginally for Dlco (P < .15). Combinations of CT scan measures accounted for Scadding stage for FVC. Correlations among Scadding stage and CT scan features were noted. Agreement between readers was poor to moderate for presence or absence of CT scan features and poor for degree and location of abnormality. INTERPRETATION In this study, CT scan features explained additional variability in lung function beyond Scadding stage, with some CT scan features obviating the associations between lung function and Scadding stage. Whether CT scan features, phenotypes, or endotypes could be useful for treating patients with sarcoidosis needs more study.
Collapse
Affiliation(s)
- Bryan S Benn
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, CA; Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - William L Lippitt
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Isabel Cortopassi
- Department of Radiology, Mayo Clinic College of Medicine and Science, Jacksonville, FL
| | - G K Balasubramani
- Department of Epidemiology and Clinical and Translations Sciences, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Wonder P Drake
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Erica Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Kevin Gibson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Edward S Chen
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Laura L Koth
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, CA; Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Carl Fuhrman
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Stephen R Wisniewski
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lisa A Maier
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Medicine, National Jewish Health, Denver, CO.
| |
Collapse
|
3
|
Sharp M, Psoter KJ, Mustafa AM, Chen ES, Lin NW, Mathai SC, Gilotra NA, Eakin MN, Wise RA, Moller DR, McCormack MC. Pulmonary sarcoidosis: differences in lung function change over time. Thorax 2024; 79:1033-1039. [PMID: 38906696 PMCID: PMC11483203 DOI: 10.1136/thorax-2023-221309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Given the heterogeneity of sarcoidosis, predicting disease course of patients remains a challenge. Our aim was to determine whether the 3-year change in pulmonary function differed between pulmonary function phenotypes and whether there were differential longitudinal changes by race and sex. METHODS We identified individuals seen between 2005 and 2015 with a confirmed diagnosis of sarcoidosis who had at least two pulmonary function test measurements within 3 years of entry into the cohort. For each individual, spirometry, diffusion capacity, Charlson Comorbidity Index, sarcoidosis organ involvement, diagnosis duration, tobacco use, race, sex, age and medications were recorded. We compared changes in pulmonary function by type of pulmonary function phenotype and for demographic groups. RESULTS Of 291 individuals, 59% (173) were female and 54% (156) were black. Individuals with restrictive pulmonary function phenotype had significantly greater 3-year rate of decline of FVC% (forced vital capacity) predicted and FEV1% (forced expiratory volume in 1 s) predicted course when compared with normal phenotype. We identified a subset of individuals in the cohort, highest decliners, who had a median 3-year FVC decline of 156 mL. Black individuals had worse pulmonary function at entry into the cohort measured by FVC% predicted, FEV1% predicted and diffusing capacity for carbon monoxide % predicted compared with white individuals. Black individuals' pulmonary function remained stable or declined over time, whereas white individuals' pulmonary function improved over time. There were no sex differences in rate of change in any pulmonary function parameters. SUMMARY We found significant differences in 3-year change in pulmonary function among pulmonary function phenotypes and races, but no difference between sexes.
Collapse
Affiliation(s)
- Michelle Sharp
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kevin J Psoter
- Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ali M Mustafa
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward S Chen
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nancy W Lin
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephen C Mathai
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nisha A Gilotra
- Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle N Eakin
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert A Wise
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David R Moller
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Meredith C McCormack
- Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Bączek K, Piotrowski WJ. Lung fibrosis in sarcoidosis. Is there a place for antifibrotics? Front Pharmacol 2024; 15:1445923. [PMID: 39281278 PMCID: PMC11392764 DOI: 10.3389/fphar.2024.1445923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Sarcoidosis, an enigmatic disease with unknown etiology, is characterized by inflammation and the potential involvement of various organs, predominantly the lungs and intrathoracic lymph nodes. Non-caseating granulomas can resolve spontaneously in approximately 60% of cases within 2-3 years. However, sarcoidosis-related mortality has increased. Lung fibrosis, affecting up to 20% of sarcoidosis patients, stands out as a primary cause of mortality. Traditionally, fibrosis is viewed because of prolonged inflammation, necessitating anti-inflammatory treatment with systemic steroids, immunosuppressants, and anti-TNF agents to manage the disease. The recent introduction of antifibrotic drugs such as nintedanib and pirfenidone offers new avenues for treating fibrotic sarcoidosis. Nintedanib, effective in idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-related interstitial lung disease (SSc-ILD), has shown promise in patients with various progressive fibrosing interstitial lung diseases (PF-ILD), including those with sarcoidosis. Pirfenidone, also effective in IPF, has demonstrated potential in managing fibrotic sarcoidosis, though results have been inconclusive due to limited participant numbers in studies. This review explores the theoretical and empirical evidence supporting the use of antifibrotics in sarcoidosis, weighing the benefits and drawbacks. While antifibrotics offer a potential therapeutic approach, further randomized controlled trials are essential to determine their efficacy in fibrotic sarcoidosis. Addressing fibrosis as a continuum of chronic inflammation, the role of antifibrotics in managing sarcoidosis remains an area requiring more in-depth research to improve patient outcomes and advance treatment paradigms.
Collapse
Affiliation(s)
- Karol Bączek
- Department of Pneumology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
5
|
Behr J, Salisbury ML, Walsh SLF, Podolanczuk AJ, Hariri LP, Hunninghake GM, Kolb M, Ryerson CJ, Cottin V, Beasley MB, Corte T, Glanville AR, Adegunsoye A, Hogaboam C, Wuyts WA, Noth I, Oldham JM, Richeldi L, Raghu G, Wells AU. The Role of Inflammation and Fibrosis in Interstitial Lung Disease Treatment Decisions. Am J Respir Crit Care Med 2024; 210:392-400. [PMID: 38484133 DOI: 10.1164/rccm.202401-0048pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Juergen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Margaret L Salisbury
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon L F Walsh
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lida P Hariri
- Department of Pathology and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, and
| | - Gary M Hunninghake
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin Kolb
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Mary B Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamera Corte
- Royal Prince Alfred Hospital and
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Cory Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, Department of Respiratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Luca Richeldi
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; and
| | - Athol U Wells
- Royal Brompton Hospital and Imperial College, London, United Kingdom
| |
Collapse
|
6
|
Konigsberg IR, Lin NW, Liao SY, Liu C, MacPhail K, Mroz MM, Davidson E, Restrepo CI, Sharma S, Li L, Maier LA, Yang IV. Multi-omic signatures of sarcoidosis and progression in bronchoalveolar lavage cells. Respir Res 2024; 25:289. [PMID: 39080656 PMCID: PMC11290275 DOI: 10.1186/s12931-024-02919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Sarcoidosis is a heterogeneous granulomatous disease with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential biomarkers. METHODS Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of sarcoidosis diagnosis and progression phenotype, adjusting for age, sex, smoking, and principal components of the data. We built a supervised multi-omics model using a subset of features from each dataset. RESULTS We identified 1,459 CpGs, 64 mRNAs, and five miRNAs associated with sarcoidosis versus controls and four mRNAs associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. CONCLUSIONS Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing is required for confirmation.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
| | - Nancy W Lin
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Margaret M Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Elizabeth Davidson
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Clara I Restrepo
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Sunita Sharma
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana V Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Lippitt WL, Maier LA, Fingerlin TE, Lynch DA, Yadav R, Rieck J, Hill AC, Liao SY, Mroz MM, Barkes BQ, Chae KJ, Hwang HJ, Carlson NE. The textures of sarcoidosis: quantifying lung disease through variograms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307618. [PMID: 38826353 PMCID: PMC11142277 DOI: 10.1101/2024.05.20.24307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Objective Sarcoidosis is a granulomatous disease affecting the lungs in over 90% of patients. Qualitative assessment of chest CT by radiologists is standard clinical practice and reliable quantification of disease from CT would support ongoing efforts to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques such as radiomics suffer from extreme sensitivity to image acquisition and processing, potentially impeding generalizability of research to clinical populations. In this work, we instead investigate approaches to engineering variogram-based features with the intent to identify a robust, generalizable pipeline for image quantification in the study of sarcoidosis. Approach For a cohort of more than 300 individuals with sarcoidosis, we investigated 24 feature engineering pipelines differing by decisions for image registration to a template lung, empirical and model variogram estimation methods, and feature harmonization for CT scanner model, and subsequently 48 sets of phenotypes produced through unsupervised clustering. We then assessed sensitivity of engineered features, phenotypes produced through unsupervised clustering, and sarcoidosis disease signal strength to pipeline. Main results We found that variogram features had low to mild association with scanner model and associations were reduced by image registration. For each feature type, features were also typically robust to all pipeline decisions except image registration. Strength of disease signal as measured by association with pulmonary function testing and some radiologist visual assessments was strong (optimistic AUC ≈ 0.9, p ≪ 0.0001 in models for architectural distortion, conglomerate mass, fibrotic abnormality, and traction bronchiectasis) and fairly consistent across engineering approaches regardless of registration and harmonization for CT scanner. Significance Variogram-based features appear to be a suitable approach to image quantification in support of generalizable research in pulmonary sarcoidosis.
Collapse
Affiliation(s)
- William L Lippitt
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa A Maier
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Environmental and Occupational Health, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha E Fingerlin
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Ruchi Yadav
- Dept of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Jared Rieck
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew C Hill
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shu-Yi Liao
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Kum Ju Chae
- Dept of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do, Korea
| | - Hye Jeon Hwang
- Dept of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, Korea
| | - Nichole E Carlson
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Lim CX, Redl A, Kleissl L, Pandey RV, Mayerhofer C, El Jammal T, Mazic M, Gonzales K, Sukhbaatar N, Krausgruber T, Bock C, Hengstschläger M, Calender A, Pacheco Y, Stary G, Weichhart T. Aberrant Lipid Metabolism in Macrophages Is Associated with Granuloma Formation in Sarcoidosis. Am J Respir Crit Care Med 2024; 209:1152-1164. [PMID: 38353578 DOI: 10.1164/rccm.202307-1273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.
Collapse
Affiliation(s)
- Clarice X Lim
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Anna Redl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Thomas El Jammal
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Mario Mazic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Karine Gonzales
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | | | - Thomas Krausgruber
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Alain Calender
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
- Department of Genetics, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Bron, France
| | - Yves Pacheco
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Georg Stary
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| |
Collapse
|
9
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Nunes H, Brillet PY, Bernaudin JF, Gille T, Valeyre D, Jeny F. Fibrotic Pulmonary Sarcoidosis. Clin Chest Med 2024; 45:199-212. [PMID: 38245367 DOI: 10.1016/j.ccm.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Fibrotic pulmonary sarcoidosis (fPS) affects about 20% of patients. fPS carries a significant morbidity and mortality. However, its prognosis is highly variable, depending mainly on fibrosis extent, functional impairment severity, and the development of pulmonary hypertension. Moreover, fPS outcomes are also influenced by several other complications, including acute exacerbations, and infections. fPS natural history is unknown, in particular regarding the risk of progressive self-sustaining fibrosis. The management of fPS is challenging, including anti-inflammatory treatment if granulomatous activity persists, rehabilitation, and in highly selected patients antifibrotic treatment and lung transplantation.
Collapse
Affiliation(s)
- Hilario Nunes
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, 93009, France; INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, 93009, France.
| | - Pierre-Yves Brillet
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, 93009, France; AP-HP, Radiology Department, Avicenne Hospital, Bobigny, 93009, France
| | | | - Thomas Gille
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, 93009, France; AP-HP, Physiology Department, Avicenne Hospital, Bobigny, 93009, France
| | - Dominique Valeyre
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, 93009, France; Groupe Hospitalier Paris Saint-Joseph, Pulmonology Department, Paris, 75014 France
| | - Florence Jeny
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, 93009, France; INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, 93009, France
| |
Collapse
|
11
|
Redl A, Doberer K, Unterluggauer L, Kleissl L, Krall C, Mayerhofer C, Reininger B, Stary V, Zila N, Weninger W, Weichhart T, Bock C, Krausgruber T, Stary G. Efficacy and safety of mTOR inhibition in cutaneous sarcoidosis: a single-centre trial. THE LANCET. RHEUMATOLOGY 2024; 6:e81-e91. [PMID: 38267106 DOI: 10.1016/s2665-9913(23)00302-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sarcoidosis is an inflammatory condition that can affect various organs and tissues, causing the formation of granulomas and subsequent functional impairment. The origin of sarcoidosis remains unknown and there are few treatment options. Mechanistic target of rapamycin (mTOR) activation is commonly seen in granulomas of patients across different tissues and has been shown to induce sarcoidosis-like granulomas in a mouse model. This study aimed to examine the efficacy and safety of the mTOR inhibitor sirolimus as a treatment for cutaneous sarcoidosis. METHODS We did a single-centre, randomised study treating patients with persistent and glucocorticoid-refractory cutaneous sarcoidosis with sirolimus at the Vienna General Hospital, Medical University of Vienna (Vienna, Austria). We recruited participants who had persistent, active, and histologically proven cutaneous sarcoidosis. We used an n-of-1 crossover design in a placebo-controlled, double-blind topical treatment period and a subsequent single-arm systemic treatment phase for 4 months in the same participants. Participants initially received either 0·1% topical sirolimus in Vaseline or placebo (Vaseline alone), twice daily. After a washout period, all participants were subsequently administered a 6 mg loading dose followed by 2 mg sirolimus solution orally once daily, aiming to achieve serum concentrations of 6 ng/mL. The primary endpoint was change in the Cutaneous Sarcoidosis Activity and Morphology Index (CSAMI) after topical or systemic treatment. All participants were included in the safety analyses, and patients having completed the respective treatment period (topical treatment or systemic treatment) were included in the primary analyses. Adverse events were assessed at each study visit by clinicians and were categorised according to their correlation with the study drug, severity, seriousness, and expectedness. This study is registered with EudraCT (2017-004930-27) and is now closed. FINDINGS 16 participants with persistent cutaneous sarcoidosis were enrolled in the study between Sept 3, 2019, and June 15, 2021. Six (37%) of 16 participants were men, ten (63%) were women, and 15 (94%) were White. The median age of participants was 54 years (IQR 48-58). 14 participants were randomly assigned in the topical phase and 2 entered the systemic treatment phase directly. Daily topical treatment did not improve cutaneous lesions (effect estimate -1·213 [95% CI -2·505 to 0·079], p=0·066). Systemic treatment targeting trough serum concentrations of 6 ng/mL resulted in clinical and histological improvement of skin lesions in seven (70%) of ten participants (median -7·0 [95% CI -16·5 to -3·0], p=0·018). Various morphologies of cutaneous sarcoidosis, including papular, nodular, plaque, scar, and tattoo-associated sarcoidosis, responded to systemic sirolimus therapy with a long-lasting effect for more than 1 year after treatment had been stopped. There were no serious adverse events and no deaths. INTERPRETATION Short-term treatment with systemic sirolimus might be an effective and safe treatment option for patients with persistent glucocorticoid-refractory sarcoidosis with a long-lasting disease-modulating effect. The effect of sirolimus in granulomatous inflammation should be investigated further in large, multi-centre, randomised clinical trials. FUNDING Vienna Science and Technology Fund, Austrian Science Fund.
Collapse
Affiliation(s)
- Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Krall
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | | | - Bärbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Victoria Stary
- Department of General Surgery, Medical University of Vienna, Vienna, Austria.
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Krausgruber
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
12
|
Lassandro G, Picchi SG, Corvino A, Massimo C, Tamburrini S, Vanore L, Urraro G, Russo G, Lassandro F. Noninfectious Granulomatous Lung Disease: Radiological Findings and Differential Diagnosis. J Pers Med 2024; 14:134. [PMID: 38392568 PMCID: PMC10890318 DOI: 10.3390/jpm14020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Granulomatous lung diseases (GLDs) are a heterogeneous group of pathological entities that can have different clinical presentations and outcomes. Granulomas are histologically defined as focal aggregations of activated macrophages, Langerhans cells, and lymphocytes, and may form in the lungs when the immune system cannot eliminate a foreign antigen and attempts to barricade it. The diagnosis includes clinical evaluation, laboratory testing, and radiological imaging, which especially consists of high-resolution computed tomography. bronchoalveolar lavage, transbronchial needle aspiration or cryobiopsy, positron emission tomography, while genetic evaluation can improve the diagnostic accuracy. Differential diagnosis is challenging due to the numerous different imaging appearances with which GLDs may manifest. Indeed, GLDs include both infectious and noninfectious, and necrotizing and non-necrotizing granulomatous diseases and the imaging appearance of some GLDs may mimic malignancy, leading to confirmatory biopsy. The purposes of our review are to report the different noninfectious granulomatous entities and to show their various imaging features to help radiologists recognize them properly and make an accurate differential diagnosis.
Collapse
Affiliation(s)
- Giulia Lassandro
- Department of Radiology, Ospedale del Mare-ASL NA1 Centro, Via Enrico Russo 11, I-80147 Naples, Italy
| | - Stefano Giusto Picchi
- Department of Radiology, Ospedale del Mare-ASL NA1 Centro, Via Enrico Russo 11, I-80147 Naples, Italy
| | - Antonio Corvino
- Medical, Movement and Wellbeing Sciences Department, University of Naples "Parthenope", Via Medina 40, I-80133 Naples, Italy
| | - Candida Massimo
- Department of Radiology, Monaldi Hospital, A.O. Ospedali dei Colli, Via Leonardo Bianchi, I-80131 Naples, Italy
| | - Stefania Tamburrini
- Department of Radiology, Ospedale del Mare-ASL NA1 Centro, Via Enrico Russo 11, I-80147 Naples, Italy
| | - Laura Vanore
- Department of Radiology, Ospedale S. Anna e SS. Madonna della Neve, ASL NA3 Sud, Via Lenze, Boscotrecase, I-80042 Naples, Italy
| | - Giovanna Urraro
- Department of Radiology, Ospedale S. Anna e SS. Madonna della Neve, ASL NA3 Sud, Via Lenze, Boscotrecase, I-80042 Naples, Italy
| | - Giuseppe Russo
- General Direction for Health Management, ASL Napoli 3 Sud, Via Marconi, Torre del Greco, I-80059 Naples, Italy
| | - Francesco Lassandro
- Department of Radiology, Ospedale S. Anna e SS. Madonna della Neve, ASL NA3 Sud, Via Lenze, Boscotrecase, I-80042 Naples, Italy
| |
Collapse
|
13
|
Ji HL, Xi NMS, Mohan C, Yan X, Jain KG, Zang QS, Gahtan V, Zhao R. Biomarkers and molecular endotypes of sarcoidosis: lessons from omics and non-omics studies. Front Immunol 2024; 14:1342429. [PMID: 38250062 PMCID: PMC10797773 DOI: 10.3389/fimmu.2023.1342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Nan Mile S. Xi
- Department of Mathematics and Statistics at Loyola University Chicago, Chicago, IL, United States
| | - Chandra Mohan
- Biomedical Engineering & Medicine, University of Houston, Houston, TX, United States
| | - Xiting Yan
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, United States
| | - Krishan G. Jain
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Qun Sophia Zang
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Vivian Gahtan
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Runzhen Zhao
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| |
Collapse
|
14
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 2024; 134:e175264. [PMID: 38165044 PMCID: PMC10760966 DOI: 10.1172/jci175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Sarcoidosis is a complex immune-mediated disease characterized by clusters of immune cells called granulomas. Despite major steps in understanding the cause of this disease, many questions remain. In this Review, we perform a mechanistic interrogation of the immune activities that contribute to granuloma formation in sarcoidosis and compare these processes with its closest mimic, tuberculosis, highlighting shared and divergent immune activities. We examine how Mycobacterium tuberculosis is sensed by the immune system; how the granuloma is initiated, formed, and perpetuated in tuberculosis compared with sarcoidosis; and the role of major innate and adaptive immune cells in shaping these processes. Finally, we draw these findings together around several recent high-resolution studies of the granuloma in situ that utilized the latest advances in single-cell technology combined with spatial methods to analyze plausible disease mechanisms. We conclude with an overall view of granuloma formation in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Sindhu A, Jadhav U, Ghewade B, Wagh P, Yadav P. Unveiling the Diagnostic Potential: A Comprehensive Review of Bronchoalveolar Lavage in Interstitial Lung Disease. Cureus 2024; 16:e52793. [PMID: 38389607 PMCID: PMC10882258 DOI: 10.7759/cureus.52793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
This comprehensive review examines the diagnostic potential of bronchoalveolar lavage (BAL) in interstitial lung disease (ILD), emphasizing its accuracy and significance in various ILDs, including idiopathic pulmonary fibrosis (IPF), sarcoidosis, hypersensitivity pneumonitis, and connective tissue disease-associated ILD. The analysis underscores the importance of abnormalities in both cellular and non-cellular components of BAL fluid for precise ILD diagnosis. Recommendations advocate for the integration of BAL into clinical guidelines, a multidisciplinary diagnostic approach, and further standardization of procedures. Looking toward the future, ongoing research highlights technological advancements, biomarker discovery, and the integration of artificial intelligence in BAL interpretation. These developments not only promise to enhance ILD diagnosis but also offer prospects for a more personalized approach to patient management based on insightful patient stratification guided by BAL findings. This abstract encapsulates the key findings, recommendations, and future prospects identified in the review, providing a concise overview of the diagnostic potential of BAL in ILD.
Collapse
Affiliation(s)
- Arman Sindhu
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Pallavi Yadav
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Wardha, IND
| |
Collapse
|
16
|
Kim JS, Gupta R. Clinical Manifestations and Management of Fibrotic Pulmonary Sarcoidosis. J Clin Med 2023; 13:241. [PMID: 38202248 PMCID: PMC10780222 DOI: 10.3390/jcm13010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrotic pulmonary sarcoidosis represents a distinct and relatively uncommon manifestation within the spectrum of sarcoidosis and has substantial morbidity and mortality. Due to the scarcity of research focused on this specific disease subtype, our current understanding of pathogenesis and optimal management remains constrained. This knowledge gap underscores the need for further investigation into areas such as targeted therapies, lung transplantation, and quality of life of patients with fibrotic pulmonary sarcoidosis. The primary aim of this review is to discuss recent developments within the realm of fibrotic pulmonary sarcoidosis to foster a more comprehensive understanding of the underlying mechanisms, prognosis, and potential treatment modalities.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA 19140, USA
| | - Rohit Gupta
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA;
| |
Collapse
|
17
|
Yoshimura J, Togami Y, Ebihara T, Matsumoto H, Mitsuyama Y, Sugihara F, Hirata H, Okuzaki D, Ogura H. Classification of patients with COVID-19 by blood RNA endotype: a prospective cohort study. Microbiol Spectr 2023; 11:e0264523. [PMID: 37966347 PMCID: PMC10715063 DOI: 10.1128/spectrum.02645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE In this study, whole-blood RNAs (prolactin and toll-like receptor 3) involved in the prognosis of patients with COVID-19 were identified. The RNA endotypes classified by these important RNAs highlight the possibility of stratifying the COVID-19 patient population and the need for targeted therapy based on these phenotypes.
Collapse
Affiliation(s)
- Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Affiliation(s)
- Edward S Chen
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, 5501 Hopkins Bayview Cir, Baltimore, MD, 21224, USA.
| |
Collapse
|
19
|
Liao SY, Jacobson S, Hamzeh NY, Culver DA, Barkes BQ, Mroz M, Macphail K, Pacheco K, Patel DC, Wasfi YS, Koth LL, Langefeld CD, Leach SM, White E, Montgomery C, Maier LA, Fingerlin TE. Genome-wide association study identifies multiple HLA loci for sarcoidosis susceptibility. Hum Mol Genet 2023; 32:2669-2678. [PMID: 37399103 PMCID: PMC10407706 DOI: 10.1093/hmg/ddad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/05/2023] Open
Abstract
Sarcoidosis is a complex systemic disease. Our study aimed to (1) identify novel alleles associated with sarcoidosis susceptibility; (2) provide an in-depth evaluation of HLA alleles and sarcoidosis susceptibility and (3) integrate genetic and transcription data to identify risk loci that may more directly impact disease pathogenesis. We report a genome-wide association study of 1335 sarcoidosis cases and 1264 controls of European descent (EA) and investigate associated alleles in a study of African Americans (AA: 1487 cases and 1504 controls). The EA and AA cohort was recruited from multiple United States sites. HLA alleles were imputed and tested for association with sarcoidosis susceptibility. Expression quantitative locus and colocalization analysis were performed using a subset of subjects with transcriptome data. Forty-nine SNPs in the HLA region in HLA-DRA, -DRB9, -DRB5, -DQA1 and BRD2 genes were significantly associated with sarcoidosis susceptibility in EA, rs3129888 was also a risk variant for sarcoidosis in AA. Classical HLA alleles DRB1*0101, DQA1*0101 and DQB1*0501, which are highly correlated, were also associated with sarcoidosis. rs3135287 near HLA-DRA was associated with HLA-DRA expression in peripheral blood mononuclear cells and bronchoalveolar lavage from subjects and lung tissue and whole blood from GTEx. We identified six novel SNPs (out of the seven SNPs representing the 49 significant SNPs) and nine HLA alleles associated with sarcoidosis susceptibility in the largest EA population. We also replicated our findings in an AA population. Our study reiterates the potential role of antigen recognition and/or presentation HLA class II genes in sarcoidosis pathogenesis.
Collapse
Affiliation(s)
- Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado School of Public Health, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean Jacobson
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Nabeel Y Hamzeh
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel A Culver
- Department of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Briana Q Barkes
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Margarita Mroz
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kristyn Macphail
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Karin Pacheco
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado School of Public Health, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya C Patel
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Laura L Koth
- Department of Medicine, University of California-San Fransisco, San Fransisco, CA 94143, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest University School of Medicine, Center for Precision Medicine, Winston-Salem, NC 27101, USA
| | - Sonia M Leach
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Elizabeth White
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - Lisa A Maier
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado School of Public Health, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tasha E Fingerlin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado School of Public Health, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
20
|
Mobasheri A, Thudium CS, Bay-Jensen AC, Maleitzke T, Geissler S, Duda GN, Winkler T. Biomarkers for osteoarthritis: Current status and future prospects. Best Pract Res Clin Rheumatol 2023; 37:101852. [PMID: 37620236 DOI: 10.1016/j.berh.2023.101852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis globally and a major cause of pain, physical disability, and loss of economic productivity, with currently no causal treatment available. This review article focuses on current research on OA biomarkers and the potential for using biomarkers in future clinical practice and clinical trials of investigational drugs. We discuss how biomarkers, specifically soluble ones, have a long path to go before reaching clinical standards of care. We also discuss how biomarkers can help in phenotyping and subtyping to achieve enhanced stratification and move toward better-designed clinical trials. We also describe how biomarkers can be used for molecular endotyping and for determining the clinical outcomes of investigational cell-based therapies. Biomarkers have the potential to be developed as surrogate end points in clinical trials and help private-public consortia and the biotechnology and pharmaceutical industries develop more effective and targeted personalized treatments and enhance clinical care for patients with OA.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Belgium.
| | | | | | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sven Geissler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Georg N Duda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
21
|
Papiris SA, Kolilekas L, Rivera N, Spanos M, Li G, Gokulnath P, Chatterjee E, Georgakopoulos A, Kallieri M, Papaioannou AI, Raptakis T, Apollonatou V, Antonogiannaki EM, Gialafos E, Chatziioannou S, Grunewald J, Manali ED. From Karl Wurm and Guy Scadding's staging to 18F-FDG PET/CT scan phenotyping and far beyond: perspective in the evading history of phenotyping in sarcoidosis. Front Med (Lausanne) 2023; 10:1174518. [PMID: 37234239 PMCID: PMC10206027 DOI: 10.3389/fmed.2023.1174518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Sarcoidosis is an inflammatory granulomatous disease of unknown etiology involving any organ or tissue along with any combination of active sites, even the most silent ones clinically. The unpredictable nature of the sites involved in sarcoidosis dictates the highly variable natural history of the disease and the necessity to cluster cases at diagnosis based on clinical and/or imaging common characteristics in an attempt to classify patients based on their more homogeneous phenotypes, possibly with similar clinical behavior, prognosis, outcome, and therefore with therapeutic requirements. In the course of the disease's history, this attempt relates to the availability of a means of detection of the sites involved, from the Karl Wurm and Guy Scadding's chest x-ray staging through the ACCESS, the WASOG Sarcoidosis Organ Assessment Instruments, and the GenPhenReSa study to the 18F-FDG PET/CT scan phenotyping and far beyond to new technologies and/or the current "omics." The hybrid molecular imaging of the 18F-FDG PET/CT scan, by unveiling the glucose metabolism of inflammatory cells, can identify high sensitivity inflammatory active granulomas, the hallmark of sarcoidosis-even in clinically and physiologically silent sites-and, as recently shown, is successful in identifying an unexpected ordered stratification into four phenotypes: (I) hilar-mediastinal nodal, (II) lungs and hilar-mediastinal nodal, (III) an extended nodal supraclavicular, thoracic, abdominal, inguinal, and (IV) all the above in addition to systemic organs and tissues, which is therefore the ideal phenotyping instrument. During the "omics era," studies could provide significant, distinct, and exclusive insights into sarcoidosis phenotypes linking clinical, laboratory, imaging, and histologic characteristics with molecular signatures. In this context, the personalization of treatment for sarcoidosis patients might have reached its goal.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Natalia Rivera
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Michail Spanos
- Cardiovascular Research Center, Simches 3 Massachusetts General Hospital, Boston, MA, United States
| | - Guoping Li
- Cardiovascular Research Center, Simches 3 Massachusetts General Hospital, Boston, MA, United States
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Simches 3 Massachusetts General Hospital, Boston, MA, United States
| | - Emeli Chatterjee
- Cardiovascular Research Center, Simches 3 Massachusetts General Hospital, Boston, MA, United States
| | - Alexandros Georgakopoulos
- 2nd Department of Radiology, Nuclear Medicine Section, Medical School, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana I. Papaioannou
- 1st Respiratory Medicine Department, Athens Medical School, Sotiria Chest Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Raptakis
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Elias Gialafos
- Department of Cardiology, Medical School, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Chatziioannou
- 2nd Department of Radiology, Nuclear Medicine Section, Medical School, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
- Division of Nuclear Medicine, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Johan Grunewald
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 2023; 56:289-306.e7. [PMID: 36750099 PMCID: PMC9942876 DOI: 10.1016/j.immuni.2023.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.
Collapse
|
23
|
Konigsberg IR, Lin NW, Liao SY, Liu C, MacPhail K, Mroz MM, Davidson E, Restrepo CI, Sharma S, Li L, Maier LA, Yang IV. Multi-Omic Signatures of Sarcoidosis and Progression in Bronchoalveolar Lavage Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525601. [PMID: 36747844 PMCID: PMC9901011 DOI: 10.1101/2023.01.26.525601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction Sarcoidosis is a heterogeneous, granulomatous disease that can prove difficult to diagnose, with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential genomic biomarkers. Methods Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of diagnosis and phenotype, adjusting for age, sex, and smoking. We built a supervised multi-omics model using a subset of features from each dataset. Results We identified 46,812 CpGs, 1,842 mRNAs, and 5 miRNAs associated with sarcoidosis versus controls and 1 mRNA, SEPP1 - a protein that supplies selenium to cells, associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway in sarcoidosis, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. Conclusions Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing will be required for confirmation.
Collapse
Affiliation(s)
- Iain R. Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Nancy W. Lin
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO
| | - Cuining Liu
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora CO
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
| | - Margaret M. Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
| | - Elizabeth Davidson
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Clara I. Restrepo
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
| | - Sunita Sharma
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Lisa A. Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver CO
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO
| | - Ivana V. Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora CO
| |
Collapse
|
24
|
Deng W, Li B, Wang J, Jiang W, Yan X, Li N, Vukmirovic M, Kaminski N, Wang J, Zhao H. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Brief Bioinform 2023; 24:bbac616. [PMID: 36631398 PMCID: PMC9851324 DOI: 10.1093/bib/bbac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
Collapse
Affiliation(s)
- Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Bolun Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jiawei Wang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ningshan Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., ON, Canada
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| |
Collapse
|
25
|
Sharp M, Psoter KJ, Balasubramanian A, Pulapaka AV, Chen ES, Brown SAW, Mathai SC, Gilotra NA, Chrispin J, Bascom R, Bernstein R, Eakin MN, Wise RA, Moller DR, McCormack MC. Heterogeneity of Lung Function Phenotypes in Sarcoidosis: Role of Race and Sex Differences. Ann Am Thorac Soc 2023; 20:30-37. [PMID: 35926103 PMCID: PMC9819274 DOI: 10.1513/annalsats.202204-328oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Rationale: Historically, sarcoidosis was described as a restrictive lung disease, but several alternative phenotypes of pulmonary function have been observed. Pulmonary function phenotypes in sarcoidosis may represent different clinical and/or molecular phenotypes. Objectives: To characterize the prevalence of different pulmonary function phenotypes in a large and diverse sarcoidosis cohort from a tertiary care referral center. Methods: We identified individuals seen between 2005-2015 with a confirmed diagnosis of sarcoidosis. Data were collected from the first pulmonary function test (PFT) performed at our institution which included spirometry and diffusing capacity of the lung for carbon monoxide (DlCO). Demographics and clinical data were collected. Chi-squared analyses and multiple linear regressions were done to assess statistical differences and associations. Global Lung Function Initiative equations were used to calculate percent predicted measurements for spirometry and DlCO. Results: Of 602 individuals with sarcoidosis, 93% (562) had pulmonary involvement, 64% (385) were female, and 57% (341) were Black. Of those with pulmonary involvement, 56% had abnormal pulmonary function. Lung function impairment phenotypes included: 47% restriction, 22% obstruction, 15% isolated reduction in DlCO, and 16% combined obstructive restrictive phenotype. Restriction was the most common PFT phenotype among Black individuals (41%), while no lung impairment was most common among White individuals (66%) (P < 0.001). Males more frequently had obstruction (19%) compared with females (9%) P = 0.001, and females had more restriction (30%) compared with males (21%) P = 0.031. Conclusions: Among individuals with sarcoidosis and pulmonary function impairment, less than half demonstrated a restrictive phenotype. There were significant differences in pulmonary function phenotypes by race and sex.
Collapse
Affiliation(s)
- Michelle Sharp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kevin J. Psoter
- Division of General Pediatrics, Department of Pediatrics, and
| | | | - Anuhya V. Pulapaka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Edward S. Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Nisha A. Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, John Hopkins School of Medicine, Baltimore, Maryland; and
| | - Jonathan Chrispin
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, John Hopkins School of Medicine, Baltimore, Maryland; and
| | - Rebecca Bascom
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Richard Bernstein
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Michelle N. Eakin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Robert A. Wise
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - David R. Moller
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | |
Collapse
|
26
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur Respir Rev 2022; 31:220178. [PMID: 36543347 PMCID: PMC9879330 DOI: 10.1183/16000617.0178-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sarcoidosis is an immune-mediated disorder. Its immunopathology has been steadily mapped out over the past few decades. Despite this, the underpinning mechanisms for progressive fibrotic sarcoidosis is an almost uncharted area. Consequently, there has been little change in the clinical management of fibrotic sarcoidosis over the decades and an unfocused search for new therapeutics. In this review, we provide a comprehensive examination of the relevant immune findings in fibrotic and/or progressive pulmonary sarcoidosis and propose a unifying mechanism for the pathobiology of fibrosis in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - David R Moller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ling-Pei Ho
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Keeler EL, Vukmirovic M, Yan X, Gulino K, Ghedin E, Kaminski N, Sullivan KE, Bushman FD, Collman RG, Rosenbach M. Metagenomic sequencing of the bronchoalveolar lavage extracellular virome and cellular transcriptome of sarcoidosis patients does not detect rubella virus. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2022; 39:e2022040. [PMID: 36533601 PMCID: PMC9798337 DOI: 10.36141/svdld.v39i4.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/16/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sarcoidosis is a multisystem granulomatous inflammatory disease of unclear etiology that involves the lung, skin and other organs, with an unknown antigenic trigger. Recently, evidence has been found in both immune deficient and immune competent patients for rubella virus in cutaneous granulomas. These granulomatous lesions share overlapping features with cutaneous sarcoidosis, raising the question of rubella virus in sarcoidosis. OBJECTIVE To investigate the presence of rubella virus in sarcoidosis lung samples. METHODS We employed metagenomic sequencing to interrogate extracellular virome preparations and cellular transcriptomes from bronchoalveolar lavage (BAL) of 209 sarcoidosis patients for rubella virus sequences. RESULTS We found no evidence for rubella virus genomes in acellular fluid or rubella virus gene expression in BAL cells of sarcoidosis patients. CONCLUSIONS These findings argue against rubella virus infection or persistence within the lung at time of sampling as a sarcoidosis trigger.
Collapse
Affiliation(s)
- Emma L Keeler
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Milica Vukmirovic
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiting Yan
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Kristin Gulino
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA and Laboratory of Parasitic Diseases, NIAID, NIH, Washington, DC, USA.
| | - Naftali Kaminski
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania School of Medicine, and Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Ronald G Collman
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In chronic pulmonary sarcoidosis, the transition from the inflammatory to the fibrotic stage of the lungs occurs in about 10-20% of cases, eventually causing end-stage fibrotic disease. To date, pathogenetic mechanisms and clinical management remain challenging; thus, we highlight the recent evidence in pulmonary fibrotic processes, clinical signs for an early detection and the potential role of the current investigated antifibrotic agents and promising targeted therapies. RECENT FINDINGS Recent findings of relevant key cellular pathways can be considered as a glimmer of light in the complexity of sarcoidosis. In some patients, granulomas persist and serve as a nidus for fibrosis growth, sustained by several fibrosis-stimulating cytokines. Preclinical studies have detected profibrotic, antifibrotic and pleiotropic T cells as promoters of fibrosis. Epigenetics, genetics and transcriptomics research can lead to new target therapies. Antifibrotic drug nintedanib has shown a positive effect on non-idiopathic pulmonary fibrosis fibrotic lung diseases including fibrotic sarcoidosis; other antifibrotic drugs are under investigation. SUMMARY Pulmonary fibrosis strongly impacts the outcome of sarcoidosis, and a better understanding of the underlying pathogenic mechanisms can facilitate the development of novel treatments, improving clinical care and life expectancy of these patients. The greatest challenge is to investigate effective antifibrotic therapies once fibrosis develops. The role of these findings in fibrotic sarcoidosis can be translated into other interstitial lung diseases characterized by the coexistence of inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Alessia Comes
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | |
Collapse
|
29
|
Damsky W, Wang A, Kim DJ, Young BD, Singh K, Murphy MJ, Daccache J, Clark A, Ayasun R, Ryu C, McGeary MK, Odell ID, Fazzone-Chettiar R, Pucar D, Homer R, Gulati M, Miller EJ, Bosenberg M, Flavell RA, King B. Inhibition of type 1 immunity with tofacitinib is associated with marked improvement in longstanding sarcoidosis. Nat Commun 2022; 13:3140. [PMID: 35668129 PMCID: PMC9170782 DOI: 10.1038/s41467-022-30615-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcoidosis is an idiopathic inflammatory disorder that is commonly treated with glucocorticoids. An imprecise understanding of the immunologic changes underlying sarcoidosis has limited therapeutic progress. Here in this open-label trial (NCT03910543), 10 patients with cutaneous sarcoidosis are treated with tofacitinib, a Janus kinase inhibitor. The primary outcome is the change in the cutaneous sarcoidosis activity and morphology instrument (CSAMI) activity score after 6 months of treatment. Secondary outcomes included change in internal organ involvement, molecular parameters, and safety. All patients experience improvement in their skin with 6 patients showing a complete response. Improvement in internal organ involvement is also observed. CD4+ T cell-derived IFN-γ is identified as a central cytokine mediator of macrophage activation in sarcoidosis. Additional type 1 cytokines produced by distinct cell types, including IL-6, IL-12, IL-15 and GM-CSF, also associate with pathogenesis. Suppression of the activity of these cytokines, especially IFN-γ, correlates with clinical improvement. Our results thus show that tofacitinib treatment is associated with improved sarcoidosis symptoms, and predominantly acts by inhibiting type 1 immunity.
Collapse
Affiliation(s)
- William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| | - Alice Wang
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA
| | - Daniel J. Kim
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA
| | - Bryan D. Young
- grid.47100.320000000419368710Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT USA
| | - Katelyn Singh
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA
| | - Michael J. Murphy
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA
| | - Joseph Daccache
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA
| | - Abigale Clark
- grid.258405.e0000 0004 0539 5056Kansas City University of Medicine and Biosciences, Kansas City, MO USA
| | - Ruveyda Ayasun
- grid.240324.30000 0001 2109 4251Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY USA
| | - Changwan Ryu
- grid.47100.320000000419368710Seciton of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT USA
| | - Meaghan K. McGeary
- grid.47100.320000000419368710Department of Pathology, Yale School of Medicine, New Haven, CT USA
| | - Ian D. Odell
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Immunobiology, Yale School of Medicine, New Haven, CT USA
| | - Ramesh Fazzone-Chettiar
- grid.47100.320000000419368710Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT USA
| | - Darko Pucar
- grid.47100.320000000419368710Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT USA
| | - Robert Homer
- grid.47100.320000000419368710Department of Pathology, Yale School of Medicine, New Haven, CT USA
| | - Mridu Gulati
- grid.47100.320000000419368710Seciton of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT USA
| | - Edward J. Miller
- grid.47100.320000000419368710Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT USA
| | - Marcus Bosenberg
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Pathology, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Immunobiology, Yale School of Medicine, New Haven, CT USA
| | - Richard A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT USA
| | - Brett King
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
McKee AS, Atif SM, Falta MT, Fontenot AP. Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1835-1843. [PMID: 35418504 PMCID: PMC9106315 DOI: 10.4049/jimmunol.2101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
Sarcoidosis and chronic beryllium disease are noninfectious lung diseases that are characterized by the presence of noncaseating granulomatous inflammation. Chronic beryllium disease is caused by occupational exposure to beryllium containing particles, whereas the etiology of sarcoidosis is not known. Genetic susceptibility for both diseases is associated with particular MHC class II alleles, and CD4+ T cells are implicated in their pathogenesis. The innate immune system plays a critical role in the initiation of pathogenic CD4+ T cell responses as well as the transition to active lung disease and disease progression. In this review, we highlight recent insights into Ag recognition in chronic beryllium disease and sarcoidosis. In addition, we discuss the current understanding of the dynamic interactions between the innate and adaptive immune systems and their impact on disease pathogenesis.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Liu A, Sharma L, Yan X, Dela Cruz CS, Herzog EL, Ryu C. Emerging insights in sarcoidosis: moving forward through reverse translational research. Am J Physiol Lung Cell Mol Physiol 2022; 322:L518-L525. [PMID: 35196896 PMCID: PMC8957321 DOI: 10.1152/ajplung.00266.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.
Collapse
Affiliation(s)
- Angela Liu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
32
|
Bhargava M, Liao SY, Crouser ED, Maier LA, Leach SM. The landscape of transcriptomic and proteomic studies in sarcoidosis. ERJ Open Res 2021; 8:00621-2021. [PMID: 35237683 PMCID: PMC8883173 DOI: 10.1183/23120541.00621-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/05/2022] Open
Abstract
Sarcoidosis is a systemic disease with gene/protein expression patterns that may be different among different tissues, based on the presence or absence of granulomas, and on subphenotypes with progressive or nonprogressive disease manifestations. There is a growing body of data evaluating global transcriptomic changes across multiple tissue compartments in sarcoidosis. However, whether similar biological pathways are involved is unknown. Furthermore, an understanding of the transcriptional impact on the proteome is required to validate molecular pathways driving heterogeneity in sarcoidosis. The purpose of this study was to compare biological inferences from published datasets and explore the compartment specificity of these responses in sarcoidosis. Common pathways identified across datasets or tissue types may serve as convenient biomarkers and could lead to the discovery of novel therapeutic targets. Multiple overlapping pathways are identified in tissue, BAL cells, PBMCs and a sarcoidosis in vitro granuloma model. Inferences from omic studies are constrained by small sample sizes. Studies comparing differences between sarcoidosis phenotypes are needed.https://bit.ly/30NaHz4
Collapse
|