1
|
Lichtblau M, Saxer S, Müller J, Appenzeller P, Berlier C, Schneider SR, Mayer L, Furian M, Schwarz EI, Swenson ER, Bloch KE, Ulrich S. Effect of 5 weeks of oral acetazolamide on patients with pulmonary vascular disease: A randomized, double-blind, cross-over trial. Pulmonology 2024; 30:362-369. [PMID: 36639329 DOI: 10.1016/j.pulmoe.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The carbonic anhydrase inhibitor acetazolamide stimulates ventilation through metabolic acidosis mediated by renal bicarbonate excretion. In animal models, acetazolamide attenuates acute hypoxia-induced pulmonary hypertension (PH), but its efficacy in treating patients with PH due to pulmonary vascular disease (PVD) is unknown. METHODS 28 PVD patients (15 pulmonary arterial hypertension, 13 distal chronic thromboembolic PH), 13 women, mean±SD age 61.6±15.0 years stable on PVD medications, were randomised in a double-blind crossover protocol to 5 weeks acetazolamide (250mg b.i.d) or placebo separated by a ≥2 week washout period. Primary endpoint was the change in 6-minute walk distance (6MWD) at 5 weeks. Additional endpoints included safety, tolerability, WHO functional class, quality of life, arterial blood gases, and hemodynamics (by echocardiography). RESULTS Acetazolamide had no effect on 6MWD compared to placebo (treatment effect: mean change [95%CI] -18 [-40 to 4]m, p=0.102) but increased arterial blood oxygenation through hyperventilation induced by metabolic acidosis. Other measures including pulmonary hemodynamics were unchanged. No severe adverse effects occurred, side effects that occurred significantly more frequently with acetazolamide vs. placebo were change in taste (22/0%), paraesthesia (37/4%) and mild dyspnea (26/4%). CONCLUSIONS In patients with PVD, acetazolamide did not change 6MWD compared to placebo despite improved blood oxygenation. Some patients reported a tolerable increase in dyspnoea during acetazolamide treatment, related to hyperventilation, induced by the mild drug-induced metabolic acidosis. Our findings do not support the use of acetazolamide to improve exercise in patients with PVD at this dosing. CLINICALTRIALS GOV IDENTIFIER NCT02755298.
Collapse
Affiliation(s)
- M Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - S Saxer
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - J Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - P Appenzeller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - C Berlier
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - S R Schneider
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - L Mayer
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - M Furian
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - E I Schwarz
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - E R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| | - K E Bloch
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland; Center for Human Integrative Physiology, and Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Switzerland
| | - S Ulrich
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland; Center for Human Integrative Physiology, and Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Switzerland.
| |
Collapse
|
2
|
Plunkett MJ, Sayegh ALC, McWilliams TJ, Sithamparanathan S, Paton JFR, Fisher JP. The effects of peripheral chemoreflex suppression on ventilatory efficiency and exercise duration in pulmonary arterial hypertension. Eur Respir J 2024; 64:2400307. [PMID: 38871376 DOI: 10.1183/13993003.00307-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Michael J Plunkett
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Ana Luiza C Sayegh
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tanya J McWilliams
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | | | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Waxman AB, Systrom DM, Manimaran S, de Oliveira Pena J, Lu J, Rischard FP. SPECTRA Phase 2b Study: Impact of Sotatercept on Exercise Tolerance and Right Ventricular Function in Pulmonary Arterial Hypertension. Circ Heart Fail 2024; 17:e011227. [PMID: 38572639 DOI: 10.1161/circheartfailure.123.011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND This study aims to assess the impact of sotatercept on exercise tolerance, exercise capacity, and right ventricular function in pulmonary arterial hypertension. METHODS SPECTRA (Sotatercept Phase 2 Exploratory Clinical Trial in PAH) was a phase 2a, single-arm, open-label, multicenter exploratory study that evaluated the effects of sotatercept by invasive cardiopulmonary exercise testing in participants with pulmonary arterial hypertension and World Health Organization functional class III on combination background therapy. The primary end point was the change in peak oxygen uptake from baseline to week 24. Cardiac magnetic resonance imaging was performed to assess right ventricular function. RESULTS Among the 21 participants completing 24 weeks of treatment, there was a significant improvement from baseline in peak oxygen uptake, with a mean change of 102.74 mL/min ([95% CIs, 27.72-177.76]; P=0.0097). Sotatercept demonstrated improvements in secondary end points, including resting and peak exercise hemodynamics, and 6-minute walk distance versus baseline measures. Cardiac magnetic resonance imaging showed improvements from baseline at week 24 in right ventricular function. CONCLUSIONS The clinical efficacy and safety of sotatercept demonstrated in the SPECTRA study emphasize the potential of this therapy as a new treatment option for patients with pulmonary arterial hypertension. Improvements in right ventricular structure and function underscore the potential for sotatercept as a disease-modifying agent with reverse-remodeling capabilities. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03738150.
Collapse
Affiliation(s)
- Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., D.M.S.)
| | - David M Systrom
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., D.M.S.)
| | - Solaiappan Manimaran
- Acceleron Pharma, a wholly owned subsidiary of Merck & Co Inc, Rahway, NJ (S.M.)
| | | | | | - Franz P Rischard
- Department of Medicine, Division of Pulmonary and Critical Care (F.P.R.), University of Arizona, Tucson
- Sarver Heart Center (F.R.), University of Arizona, Tucson
| |
Collapse
|
4
|
Zhang P, Da Silva Goncalves Bos D, Vang A, Feord J, McCullough DJ, Zimmer A, D'Silva N, Clements RT, Choudhary G. Reduced exercise capacity occurs before intrinsic skeletal muscle dysfunction in experimental rat models of pulmonary hypertension. Pulm Circ 2024; 14:e12358. [PMID: 38576776 PMCID: PMC10993156 DOI: 10.1002/pul2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Peng Zhang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Denielli Da Silva Goncalves Bos
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Pulmonary Division, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Alexander Vang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Julia Feord
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | | | - Alexsandra Zimmer
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Natalie D'Silva
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Richard T. Clements
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Gaurav Choudhary
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
5
|
Plunkett MJ, Sayegh ALC, McWilliams TJ, Sithamparanathan S, Paton JFR, Fisher JP. The skeletal muscle metaboreflex: a novel driver of ventilation, dyspnoea and pulmonary haemodynamics during exercise in pulmonary arterial hypertension. Eur Respir J 2024; 63:2300952. [PMID: 37678950 PMCID: PMC10764981 DOI: 10.1183/13993003.00952-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Impairment of exercise capacity, predominantly limited symptomatically by dyspnoea [1], affects most patients with pulmonary arterial hypertension (PAH) despite current therapies [2], with significant implication for patients, adversely impairing health-related quality of life [3] and clinical prognosis [4]. However, the underpinning physiological mechanisms behind dyspnoea and exercise limitation remain incompletely understood. Skeletal muscle metabolic and microcirculatory deficits are present in PAH [2], and likely lead to earlier and more pronounced accumulation of metabolites during exercise. We hypothesised that this would augment the activation of group III/IV afferents responsive to metabolites present in exercising limb muscles (i.e. muscle metaboreflex), and provide a novel driver for hyperventilation [5], pulmonary arterial pressure [6] and sensations of dyspnoea [7] in PAH. During exercise, the skeletal muscle metaboreflex is enhanced in pulmonary arterial hypertension, and drives excess ventilation and increased pulmonary artery pressure, and increases the perception of dyspnoea https://bit.ly/3OG46f6
Collapse
Affiliation(s)
- Michael J Plunkett
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Ana Luiza C Sayegh
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tanya J McWilliams
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | | | - Julian F R Paton
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Sánchez-Salcedo P, Llanos-González AB, Dorado Arenas S, Carrión Collado N, García AR, Sánchez Zaballos M, Alonso Pérez T. [Highlights 56th SEPAR Congress]. OPEN RESPIRATORY ARCHIVES 2023; 5:100265. [PMID: 37720490 PMCID: PMC10502405 DOI: 10.1016/j.opresp.2023.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
The Spanish Society of Pneumology and Thoracic Surgery (SEPAR) has held its 56th congress in Granada from 8 to 10 June 2023. The SEPAR congress has established itself as the leading scientific meeting for specialists in medicine and respiratory care, reaching a record of participation this year with 2600 attendees. Our society thus demonstrates its leadership in the management of respiratory diseases, as well as its growth and progress in order to achieve excellence. In this review, we offer a summary of some notable issues addressed in six selected areas of interest: chronic obstructive pulmonary disease (COPD), asthma, interstitial lung diseases (ILDs), tuberculosis and respiratory infections, pulmonary circulation, and respiratory nursing.
Collapse
Affiliation(s)
- Pablo Sánchez-Salcedo
- Servicio de Neumología, Hospital Universitario de Navarra, Pamplona, Navarra, España
| | - Ana Belén Llanos-González
- Servicio de Neumología, Complejo Hospitalario Universitario de Canarias, Santa Cruz de Tenerife, Tenerife, España
| | - Sandra Dorado Arenas
- Servicio de Neumología, Hospital Universitario de Galdakao (Osakidetza), Galdakao, Bizkaia, España
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, España
| | - Noelia Carrión Collado
- Servicio de Neumología, Consorcio Hospital General Universitario de Valencia, Valencia, España
| | - Agustín Roberto García
- Servicio de Neumología, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
| | - Marta Sánchez Zaballos
- Enfermería. Área de Gestión Clínica del Pulmón, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - Tamara Alonso Pérez
- Servicio de Neumología, Hospital Universitario La Princesa. Universidad Autónoma de Madrid, Madrid, España
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
7
|
Liu W, LeBar K, Roth K, Pang J, Ayers J, Chicco AJ, Puttlitz CM, Wang Z. Alterations of biaxial viscoelastic properties of the right ventricle in pulmonary hypertension development in rest and acute stress conditions. Front Bioeng Biotechnol 2023; 11:1182703. [PMID: 37324443 PMCID: PMC10266205 DOI: 10.3389/fbioe.2023.1182703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates. Methods: PH was induced in rats by monocrotaline treatment, and the RV function was quantified by echocardiography. After euthanasia, equibiaxial stress relaxation tests were performed on RVFWs from healthy and PH rats at various strain-rates and strain levels, which recapitulate physiological deformations at varied heart rates (at rest and under acute stress) and diastole phases (at early and late filling), respectively. Results and Discussion: We observed that PH increased RVFW viscoelasticity in both longitudinal (outflow tract) and circumferential directions. The tissue anisotropy was pronounced for the diseased RVs, not healthy RVs. We also examined the relative change of viscosity to elasticity by the damping capacity (ratio of dissipated energy to total energy), and we found that PH decreased RVFW damping capacity in both directions. The RV viscoelasticity was also differently altered from resting to acute stress conditions between the groups-the damping capacity was decreased only in the circumferential direction for healthy RVs, but it was reduced in both directions for diseased RVs. Lastly, we found some correlations between the damping capacity and RV function indices and there was no correlation between elasticity or viscosity and RV function. Thus, the RV damping capacity may be a better indicator of RV function than elasticity or viscosity alone. These novel findings on RV dynamic mechanical properties offer deeper insights into the role of RV biomechanics in the adaptation of RV to chronic pressure overload and acute stress.
Collapse
Affiliation(s)
- Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Kristen LeBar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Kellan Roth
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jassia Pang
- Laboratory Animal Resources, Colorado State University, Fort Collins, CO, United States
| | - Jessica Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, CO, United States
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Christian M. Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Zhou H, Wang Y, Li W, Yang L, Liao Y, Xu M, Zhang C, Ma H. Usefulness of the Duke Activity Status Index to Assess Exercise Capacity and Predict Risk Stratification in Patients with Pulmonary Arterial Hypertension. J Clin Med 2023; 12:jcm12082761. [PMID: 37109099 PMCID: PMC10142524 DOI: 10.3390/jcm12082761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Exercise capacity is an important component of risk assessment for pulmonary arterial hypertension (PAH). We investigated the association of the Duke Activity Status Index (DASI) with peak oxygen consumption (peakVO2) and explored whether the DASI can discriminate the high-risk individuals in patients with PAH, according to peakVO2 < 11 mL/min/kg. A total of 89 patients were evaluated using cardiopulmonary exercise testing (CPET) and DASI. The correlation between the DASI and peakVO2 was measured by univariate analysis, and a receiver operating characteristic (ROC) curve analysis was conducted. The DASI was correlated with peakVO2 in the univariate analysis. The ROC curve analysis revealed that the DASI had a discriminative value for identifying the individuals with a high risk in PAH patients (p < 0.001), with an area under ROC curve (AUC) of 0.79 (95% CI: 0.67-0.92). Similar results were observed in patients with PAH associated with congenital heart disease (CHD-PAH), (p = 0.001), with an AUC of 0.80 (95% CI: 0.658-0.947). Therefore, DASI reflects exercise capacity in patients with PAH and has good ability to discriminate patients with a low risk and a high risk, and it may be included in the risk assessment of PAH.
Collapse
Affiliation(s)
- Haofeng Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Weiya Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Lifang Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yingxue Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Mingyu Xu
- School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Caojin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
9
|
Zhao X, Leng S, Tan RS, Chai P, Yeo TJ, Bryant JA, Teo LLS, Fortier MV, Ruan W, Low TT, Ong CC, Zhang S, van der Geest RJ, Allen JC, Hughes M, Garg P, Tan TH, Yip JW, Tan JL, Zhong L. Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension. J Cardiovasc Magn Reson 2022; 24:61. [PMID: 36451198 PMCID: PMC9714144 DOI: 10.1186/s12968-022-00896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) offers comprehensive right ventricular (RV) evaluation in pulmonary arterial hypertension (PAH). Emerging four-dimensional (4D) flow CMR allows visualization and quantification of intracardiac flow components and calculation of phasic blood kinetic energy (KE) parameters but it is unknown whether these parameters are associated with cardiopulmonary exercise test (CPET)-assessed exercise capacity, which is a surrogate measure of survival in PAH. We compared 4D flow CMR parameters in PAH with healthy controls, and investigated the association of these parameters with RV remodelling, RV functional and CPET outcomes. METHODS PAH patients and healthy controls from two centers were prospectively enrolled to undergo on-site cine and 4D flow CMR, and CPET within one week. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes (EDV). Phasic (peak systolic, average systolic, and peak E-wave) LV and RV blood flow KE indexed to EDV (KEIEDV) and ventricular LV and RV flow components (direct flow, retained inflow, delayed ejection flow, and residual volume) were calculated. Oxygen uptake (VO2), carbon dioxide production (VCO2) and minute ventilation (VE) were measured and recorded. RESULTS 45 PAH patients (46 ± 11 years; 7 M) and 51 healthy subjects (46 ± 14 years; 17 M) with no significant differences in age and gender were analyzed. Compared with healthy controls, PAH had significantly lower median RV direct flow, RV delayed ejection flow, RV peak E-wave KEIEDV, peak VO2, and percentage (%) predicted peak VO2, while significantly higher median RV residual volume and VE/VCO2 slope. RV direct flow and RV residual volume were significantly associated with RV remodelling, function, peak VO2, % predicted peak VO2 and VE/VCO2 slope (all P < 0.01). Multiple linear regression analyses showed RV direct flow to be an independent marker of RV function, remodelling and exercise capacity. CONCLUSION In this 4D flow CMR and CPET study, RV direct flow provided incremental value over RVEF for discriminating adverse RV remodelling, impaired exercise capacity, and PAH with intermediate and high risk based on risk score. These data suggest that CMR with 4D flow CMR can provide comprehensive assessment of PAH severity, and may be used to monitor disease progression and therapeutic response. TRIAL REGISTRATION NUMBER https://www. CLINICALTRIALS gov . Unique identifier: NCT03217240.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ping Chai
- National University Hospital Singapore, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tee Joo Yeo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jennifer Ann Bryant
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lynette L S Teo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marielle V Fortier
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Wen Ruan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Ting Ting Low
- National University Hospital Singapore, Singapore, Singapore
| | - Ching Ching Ong
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shuo Zhang
- Philips Healthcare Germany, Hamburg, Germany
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marina Hughes
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Pankaj Garg
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Teng Hong Tan
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
| | - James W Yip
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Le Tan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
10
|
Neder JA, Phillips DB, O'Donnell DE, Dempsey JA. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J 2022; 60:13993003.00144-2022. [PMID: 35618273 DOI: 10.1183/13993003.00144-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Increased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom. Reduced bulk oxygen transfer induced by cardiac output limitation and/or right ventricle-pulmonary arterial uncoupling increase neurochemical afferent stimulation and (largely chemo-) receptor sensitivity, leading to alveolar hyperventilation in HFrEF, PAH and small-vessel, distal CTEPH. As such, interventions geared to improve central haemodynamics and/or reduce chemosensitivity have been particularly effective in lessening their excess ventilation. In contrast, 1) high filling pressures in HFpEF and 2) impaired lung perfusion leading to ventilation/perfusion mismatch in proximal CTEPH conspire to increase physiological dead space. Accordingly, 1) decreasing pulmonary capillary pressures and 2) mechanically unclogging larger pulmonary vessels (pulmonary endarterectomy and balloon pulmonary angioplasty) have been associated with larger decrements in excess ventilation. Exercise training has a strong beneficial effect across diseases. Addressing some major unanswered questions on the link of excess ventilation with exertional dyspnoea under the modulating influence of pharmacological and nonpharmacological interventions might prove instrumental to alleviate the devastating consequences of these prevalent diseases.
Collapse
Affiliation(s)
- J Alberto Neder
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Denis E O'Donnell
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Dept of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Long GM, Troutman AD, Gray DA, Fisher AJ, Lahm T, Coggan AR, Brown MB. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2022; 323:R561-R570. [PMID: 36036455 PMCID: PMC9602702 DOI: 10.1152/ajpregu.00327.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.
Collapse
Affiliation(s)
- Gary Marshall Long
- Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Derrick A Gray
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Amanda J Fisher
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Tim Lahm
- Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Skeletal Muscle Dysfunction in Experimental Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms231810912. [PMID: 36142826 PMCID: PMC9501428 DOI: 10.3390/ijms231810912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious, progressive, and often fatal disease that is in urgent need of improved therapies that treat it. One of the remaining therapeutic challenges is the increasingly recognized skeletal muscle dysfunction that interferes with exercise tolerance. Here we report that in the adult rat Sugen/hypoxia (SU/Hx) model of severe pulmonary hypertension (PH), there is highly significant, almost 50%, decrease in exercise endurance, and this is associated with a 25% increase in the abundance of type II muscle fiber markers, thick sarcomeric aggregates and an increase in the levels of FoxO1 in the soleus (a predominantly type I fiber muscle), with additional alterations in the transcriptomic profiles of the diaphragm (a mixed fiber muscle) and the extensor digitorum longus (a predominantly Type II fiber muscle). In addition, soleus atrophy may contribute to impaired exercise endurance. Studies in L6 rat myoblasts have showed that myotube differentiation is associated with increased FoxO1 levels and type II fiber markers, while the inhibition of FoxO1 leads to increased type I fiber markers. We conclude that the formation of aggregates and a FoxO1-mediated shift in the skeletal muscle fiber-type specification may underlie skeletal muscle dysfunction in an experimental study of PH.
Collapse
|
13
|
Oknińska M, Mackiewicz U, Zajda K, Kieda C, Mączewski M. New potential treatment for cardiovascular disease through modulation of hemoglobin oxygen binding curve: Myo-inositol trispyrophosphate (ITPP), from cancer to cardiovascular disease. Biomed Pharmacother 2022; 154:113544. [PMID: 35988421 DOI: 10.1016/j.biopha.2022.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The human body is a highly aerobic organism, which needs large amount of oxygen, especially in tissues characterized by high metabolic demand, such as the heart. Inadequate oxygen delivery underlies cardiovascular diseases, such as coronary artery disease, heart failure and pulmonary hypertension. Hemoglobin, the oxygen-transport metalloprotein in the red blood cells, gives the blood enormous oxygen carrying capacity; thus oxygen binding to hemoglobin in the lungs and oxygen dissociation in the target tissues are crucial points for oxygen delivery as well as potential targets for intervention. Myo-inositol trispyrophosphate (ITPP) acts as an effector of hemoglobin, shifting the oxygen dissociation curve to the right and increasing oxygen release in the target tissues, especially under hypoxic conditions. ITPP has been successfully used in cancer studies, demonstrating anti-cancer properties due to prevention of tumor hypoxia. Currently it is being tested in phase 2 clinical trials in humans with various tumors. First preclinical evidence also indicates that it can successfully alleviate myocardial hypoxia and prevent adverse left ventricular and right ventricular remodeling in post-myocardial infarction heart failure and pulmonary hypertension. The aim of the article is to summarize the current knowledge on ITTP, as well as to determine the prospects for its potential use in the treatment of many cardiovascular disorders.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland; Center for Molecular Biophysics, UPR 4301 CNRS, Orleans, France
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
14
|
Avitabile CM, McBride MG, Harris MA, Whitehead KK, Fogel MA, Paridon SM, Zemel BS. Skeletal muscle deficits are associated with worse exercise performance in pediatric pulmonary hypertension. Front Pediatr 2022; 10:1025420. [PMID: 36275051 PMCID: PMC9579321 DOI: 10.3389/fped.2022.1025420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Skeletal muscle deficits are associated with worse exercise performance in adults with pulmonary hypertension (PH) but the impact is poorly understood in pediatric PH. OBJECTIVE To study muscle deficits, physical inactivity, and performance on cardiopulmonary exercise test (CPET) and exercise cardiac magnetic resonance (eCMR) in pediatric PH. METHODS Youth 8-18 years participated in a prospective, cross-sectional study including densitometry (DXA) for measurement of leg lean mass Z-score (LLMZ), handheld dynamometer with generation of dominant and non-dominant handgrip Z-scores, Physical Activity Questionnaire (PAQ), CPET, and optional eCMR. CPET parameters were expressed relative to published reference values. CMR protocol included ventricular volumes and indexed systemic flow at rest and just after supine ergometer exercise. Relationships between LLMZ, PAQ score, and exercise performance were assessed by Pearson correlation and multiple linear regression. RESULTS There were 25 participants (13.7 ± 2.8 years, 56% female, 64% PH Group 1, 60% functional class I); 12 (48%) performed both CPET and eCMR. Mean LLMZ (-0.96 ± 1.14) was associated with PAQ score (r = 50, p = 0.01) and with peak oxygen consumption (VO2) (r = 0.74, p = < 0.001), VO2 at anaerobic threshold (r = 0.65, p < 0.001), and peak work rate (r = 0.64, p < 0.01). Higher handgrip Z-scores were associated with better CPET and eCMR performance. On regression analysis, LLMZ and PAQ score were positively associated with peak VO2, while handgrip Z-score and PAQ score were positively associated with peak work rate. CONCLUSION Muscle mass and strength are positively associated with exercise performance in pediatric PH. Future studies should determine the effect of rehabilitation programs on muscle properties and exercise performance.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Michael G McBride
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Matthew A Harris
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kevin K Whitehead
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mark A Fogel
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Stephen M Paridon
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|