1
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|
2
|
Harman-McKenna VK, Eshraghisamani R, Shafer N, De Buck J. Lining the small intestine with mycobacteriophages protects from Mycobacterium avium subsp. paratuberculosis and eliminates fecal shedding. Proc Natl Acad Sci U S A 2024; 121:e2318627121. [PMID: 39102547 PMCID: PMC11331133 DOI: 10.1073/pnas.2318627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Johne's disease (JD), a chronic, infectious enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), affects wild and domestic ruminants. There is no cure or effective prevention, and current vaccines have substantial limitations, leaving this disease widespread in all substantial dairy industries causing economic, and animal welfare implications. Mycobacteriophages (MPs) have been gaining interest in recent years and are proposed as a promising solution to curtailing MAP infection. Using a well-validated infection model, we have demonstrated the preventative potential of MPs to protect dairy calves against MAP infection. Calves were supplemented daily with a phage cocktail from birth till weaning at 2 m of age and inoculated with MAP at 2 wk of age. Infection status was measured for 4.5 mo through blood, fecal, and postmortem tissue samples. Our findings highlight the remarkable efficacy of orally administered MPs. Notably, fecal shedding of MAP was entirely eliminated within 10 wk, in contrast to the infected control group where shedding continued for the entirety of the trial period. Postmortem tissue culture analysis further supported the effectiveness of MPs, with only 1 out of 6 animals in the phage-treated group testing positive for MAP colonized tissues compared to 6 out of 6 animals in the infected control group. Additionally, plaque assay results demonstrated the ability of phages to persist within the intestinal tract. Collectively, these results underscore the potential of orally administered MP cocktails as a highly effective intervention strategy to combat JD in dairy calves and by extension in the dairy industry.
Collapse
Affiliation(s)
| | | | - Natali Shafer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
3
|
Criado M, Silva M, Mendívil P, Molina E, Pérez V, Benavides J, Elguezabal N, Gutiérrez-Expósito D. No Evidence of Neutrophil Response Modulation in Goats after Immunization against Paratuberculosis with a Heat-Inactivated Vaccine. Animals (Basel) 2024; 14:1694. [PMID: 38891741 PMCID: PMC11171245 DOI: 10.3390/ani14111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Neutrophils are believed to play a role in the initial stages of paratuberculosis, and it has recently been demonstrated that vaccination can modulate their function via priming or through epigenetic and metabolic reprogramming (training). Modulation of the neutrophil response against Mycobacterium avium subspecies paratuberculosis (Map) through vaccination has been demonstrated in a rabbit model but not in ruminants. Therefore, in the present work, the effect of vaccination on the response of caprine neutrophils against Map was studied. Neutrophils were isolated from non-vaccinated (n = 7) and Gudair®-vaccinated goat kids (n = 7), before vaccination and 30 days post-vaccination. Then, several neutrophil functions were quantified ex vivo: cell-free and anchored neutrophil extracellular trap (NET) release, phagocytosis, and the differential expression of several cytokines and TLR2. The induction of cell-free NETosis and TLR2 expression by Map is reported for the first time. However, vaccination showed no significant effect on any of the functions studied. This suggests that the protection conferred by Gudair® vaccination is based on mechanisms that are independent of the neutrophil function modulation. Further research into the impact of alternative vaccination strategies or the paratuberculosis infection stage on ruminant neutrophil function could provide valuable insights into its role in paratuberculosis.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marta Silva
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Pedro Mendívil
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
4
|
Eshraghisamani R, Facciuolo A, Harman-McKenna V, Illanes O, De Buck J. Immunogenicity and efficacy of an oral live-attenuated vaccine for bovine Johne's disease. Front Immunol 2024; 14:1307621. [PMID: 38283338 PMCID: PMC10810994 DOI: 10.3389/fimmu.2023.1307621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of Johne's disease (JD) in ruminants, establishes a prolonged and often lifelong enteric infection. The implementation of control measures for bovine JD has faced obstacles due to the considerable expenses involved in disease surveillance and hindered by unreliable and inadequate diagnostic tests, emphasizing the need for an effective vaccine that can stimulate mucosal immunity in the gastrointestinal tract. Previous investigations have demonstrated that deletion of the BacA gene in MAP produces an attenuated strain that can transiently colonize the calf small intestine while retaining its capacity to stimulate systemic immune responses similar to wildtype MAP strains. This study assessed the efficacy of the BacA gene deletion MAP strain, referred to as the BacA vaccine, when administered orally to young calves. The research aimed to evaluate its effectiveness in controlling MAP intestinal infection and to investigate the immune responses elicited by mucosal vaccination. The study represents the first evaluation of an enteric modified live MAP vaccine in the context of an oral MAP challenge in young calves. Oral immunization with BacA reduced MAP colonization specifically in the ileum and ileocecal valve. This partially protective immune response was associated with an increased frequency of CD4+ and CD8+ T cells with a pro-inflammatory phenotype (IFNγ+/TNFα+) in vaccinated animals. Moreover, re-stimulated PBMCs from vaccinated animals showed increased expression of IFNγ, IP-10, IL-2, and IL-17 at 10- and 12-weeks post challenge. Furthermore, immunophenotyping of blood leukocytes revealed that vaccinated calves had increased levels of T cells expressing cell-surface markers consistent with long-term central memory. Overall, our findings provide new insights into the development and immunogenicity of a modified live MAP vaccine against bovine JD, demonstrating oral vaccination can stimulate host immune responses that can be protective against enteric MAP infection.
Collapse
Affiliation(s)
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Oscar Illanes
- College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Ingratta GG, Stempler A, Fernández B, Colavecchia SB, Jolly A, Minatel L, Paolicchi FA, Mundo SL. Early-stage findings in an experimental calf model infected with Argentinean isolates of Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2023; 259:110595. [PMID: 37058952 DOI: 10.1016/j.vetimm.2023.110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an important pathogen that causes granulomatous enteritis known as Johne's disease or paratuberculosis (PTB). In this study an experimental model of calves infected with Argentinean isolates of MAP for 180 days was used to provide more data of the early PTB stages. Calves were challenged by oral route with MAP strain IS900-RFLPA (MA; n = 3), MAP strain IS900-RFLPC (MC; n = 2) or mock infected (MI; n = 2), and response to infection was evaluated through peripheral cytokine expression, MAP tissue distribution and histopathological early-stage findings. Specific and varied levels of IFN-γ were only detected at 80 days post-infection in infected calves. These data indicate that specific IFN-γ is not a useful indicator for early detection of MAP infection in our calf model. At 110 days post-infection, TNF-α expression was higher than IL-10 in 4 of the 5 infected animals and a significant decrease of TNF-α expression was detected in infected vs. non-infected calves. All calves challenged were identified as infected by mesenteric lymph node tissue culture and real time IS900 PCR. In addition, for lymph nodes samples, the agreement between these techniques was almost perfect (κ = 0.86). Colonization of tissues and levels of tissue infection varied between individuals. Evidence of early MAP dissemination to extraintestinal tissues such as the liver was detected by culture in one animal (MAP strain IS900-RFLPA). In both groups microgranulomatous lesions were observed predominantly in the lymph nodes, with giant cells present only in the MA group. In summary, the findings described herein may indicate that local MAP strains induced specific immune responses with particularities that could suggest differences in their biological behavior. Further studies should be carried out in order to obtain an in-depth understanding of the influence of MAP strains in host-pathogen interactions and the outcome of disease.
Collapse
Affiliation(s)
- Giselle Gabriela Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina.
| | - Silvia Beatriz Colavecchia
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1417DSM Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Alberto Paolicchi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Laboratorio de Bacteriología, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina; Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Eshraghisamani R, Arrazuria R, Luo L, De Buck J. Evaluation of Mycobacterium avium subsp. paratuberculosis isocitrate lyase ( IcL) and ABC transporter ( BacA) knockout mutants as vaccine candidates. Front Cell Infect Microbiol 2023; 13:1149419. [PMID: 37065210 PMCID: PMC10098363 DOI: 10.3389/fcimb.2023.1149419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
There has been little success in controlling Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, due to suboptimal diagnostics and the ineffectiveness of available vaccines. By knocking out BacA and IcL, genes required for MAP survival in dairy calves, two live-attenuated vaccine candidates were created. This study evaluated the host-specific attenuation of MAP IcL and BacA mutants in mouse and calf models, as well as the elicited immune responses. Deletion mutants were generated in MAP strain A1-157 through specialized transduction and found viable in vitro. First, the mutants' attenuation and elicited cytokine secretion were assessed in a mouse model, 3 weeks after intraperitoneal inoculation with MAP strains. Later, vaccine strains were assessed in a natural host infection model where calves received 109CFU oral dose of MAP wild-type or mutant strains at 2 weeks old. Transcription levels of cytokines in PBMCs were evaluated at 12-, 14-, and 16-weeks post-inoculation (WPI) and MAP colonization in tissue was assessed at 4.5 months after inoculation. Whereas both vaccine candidates colonized mouse tissues similarly to wild-type strain, both failed to persist in calf tissues. In either mouse or calf models, gene deletion did not reduce immunogenicity. Instead, inoculation with ΔBacA induced a greater upregulation of proinflammatory cytokines than ΔIcL and wild-type in both models and a greater expansion of cytotoxic and memory T-cells than uninfected control in calves. ΔBacA and wild-type strains significantly increased secretion of IP-10, MIG, TNFα, and RANTES in mice serum compared to uninfected control. This agreed with upregulation of IL-12, IL-17, and TNFα in calves inoculated with ΔBacA at all time points. The ΔBacA also gave rise to greater populations of CD4+CD45RO+, and CD8+ cells than uninfected control calves at 16 WPI. Low survival rate of MAP in macrophages co-incubated with PBMCs isolated from the ΔBacA group indicated that these cell populations are capable of killing MAP. Overall, the immune response elicited by ΔBacA is stronger compared to ΔIcL and it is maintained over two different models and over time in calves. Further investigation is warranted to evaluate the BacA mutant's protection against MAP infection as a live attenuated vaccine candidate.
Collapse
|
7
|
Eshraghisamani R, Mirto AJ, Wang J, Behr MA, Barkema HW, De Buck J. Identification of essential genes in Mycobacterium avium subsp. paratuberculosis genome for persistence in dairy calves. Front Microbiol 2022; 13:994421. [PMID: 36338087 PMCID: PMC9631821 DOI: 10.3389/fmicb.2022.994421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2023] Open
Abstract
To cause disease Mycobacterium avium subsp. paratuberculosis needs to enter mammalian cells, arrest phagosomal maturation and manipulate the host immune system. The genetic basis of the bacterial capacity to achieve these outcomes remains largely unknown. Identifying these genes would allow us to gain a deeper understanding of MAP's pathogenesis and potentially develop a live attenuated Johne's disease vaccine by knocking out these genes. MAP genes demonstrated to be essential for colonization in the natural host, ruminants, are unknown. Genome-wide transposon mutagenesis and high-throughput sequencing were combined to evaluate the essentiality of each coding region in the bacterial genome to survive in dairy calves. A saturated library of 3,852 MAP Tn mutants, with insertions in 56% of TA sites, interrupting 88% of genes, was created using a MycoMarT7 phagemid containing a mariner transposon. Six calves were inoculated with a high dose of a library of MAP mutants, 1011 CFUs, (input) at 2 weeks of age. Following 2 months of incubation, MAP cells were isolated from the ileum, jejunum, and their associated lymph nodes of calves, resulting in approximately 100,000 colonies grown on solid media across 6 animals (output). Targeted next-generation sequencing was used to identify the disrupted genes in all the mutants in the input pool and the output pool recovered from the tissues to identify in vivo essential genes. Statistical analysis for the determination of essential genes was performed by a Hidden Markov Model (HMM), categorizing genes into essential genes that are devoid of insertions and growth-defect genes whose disruption impairs the growth of the organism. Sequence analysis identified 430 in vivo essential and 260 in vivo growth-defect genes. Gene ontology enrichment analysis of the in vivo essential and growth-defect genes with the highest reduction in the tissues revealed a high representation of genes involved in metabolism and respiration, cell wall and cell processing, virulence, and information pathway processes. This study has systematically identified essential genes for the growth and persistence of MAP in the natural host body.
Collapse
Affiliation(s)
- Razieh Eshraghisamani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda J. Mirto
- Environmental Health and Safety, University of Wisconsin-Madison, Madison, WI, United States
| | - Joyce Wang
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Marcel A. Behr
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
9
|
Yu Y, Zhang S, Xu G, Xu D, Zheng H, Li B, Shen K, Fu L. Identification of Mycobacterium avium subspecies paratuberculosis in sheep farms in Bayannaoer, Inner Mongolia, China (short communication). BMC Vet Res 2022; 18:281. [PMID: 35842628 PMCID: PMC9287916 DOI: 10.1186/s12917-022-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paratuberculosis is a widespread chronic infection of Mycobacterium avium subspecies paratuberculosis (MAP) that causes significant economic losses to the sheep industry. The current study investigated this disease, which causes diarrhea in sheep, particularly, in Bayannaoer, Inner Mongolia, China. Diagnosis was based on clinical symptoms, pathological autopsy, histopathological inspection, and serological and molecular methods. RESULTS MAP was confirmed using polymerase chain reaction using DNA extracted from tissue and fecal samples. Serum samples from 472 individual sheep were obtained to detect antibodies against MAP using an enzyme-linked immunosorbent assay. MAP antibodies were separately detected in 17.86% (35/196) and 18.48% (51/276) of sheep herds at approximately 6 months and ≥ 1 year of age, respectively. The tissue lesion and pathological section results were consistent with paratuberculosis infection. CONCLUSIONS To our knowledge, this is the first report of Mycobacterium avium subspecies paratuberculosis seroprevalence in Bayannaoer sheep in Inner Mongolia. Our findings show that MAP is not only prevalent, but also a potential threat to this region. Further investigations, including long-term epidemiological surveillance and isolation are needed for the awareness and effective treatment of paratuberculosis in sheep of Inner Mongolia.
Collapse
Affiliation(s)
- Yuandi Yu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Suhui Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Guoyang Xu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Dengfeng Xu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Hua Zheng
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Bo Li
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Kefei Shen
- Chongqing Academy of Animal Sciences, Chongqing, China. .,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China.
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, China. .,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China.
| |
Collapse
|
10
|
Rojas-Ponce G, Sauvageau D, Zemp R, Barkema HW, Evoy S. Use of uncoated magnetic beads to capture Mycobacterium smegmatis and Mycobacterium avium paratuberculosis prior detection by mycobacteriophage D29 and real-time-PCR. METHODS IN MICROBIOLOGY 2022; 197:106490. [PMID: 35595085 DOI: 10.1016/j.mimet.2022.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Uncoated tosyl-activated magnetic beads were evaluated to capture Mycobacterium smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) from spiked feces, milk, and urine. Centrifugation and uncoated magnetic beads recovered more than 99% and 93%, respectively, of 1.68 × 107 CFU/mL, 1.68 × 106 CFU/mL and 1.68 × 105 CFU/mL M. smegmatis cells resuspended in phosphate buffer saline. The use of magnetic beads was more efficient to concentrate cells from 1.68 × 104 CFU/mL of M. smegmatis than centrifugation. Likewise, the F57-qPCR detection of MAP cells was different whether they were recovered by beads or centrifugation; cycle threshold (Ct) was lower (p < 0.05) for the detection of MAP cells recovered by beads than centrifugation, indicative of greater recovery. Magnetic separation of MAP cells from milk, urine, and feces specimens was demonstrated by detection of F57 and IS900 sequences. Beads captured no less than 109 CFU/mL from feces and no less than 104 CFU/mL from milk and urine suspensions. In another detection strategy, M. smegmatis coupled to magnetic beads were infected by mycobacteriophage D29. Plaque forming units were observed after 24 h of incubation from urine samples containing 2 × 105 and 2 × 103 CFU/mL M. smegmatis. The results of this study provide a promising tool for diagnosis of tuberculosis and Johne's disease.
Collapse
Affiliation(s)
- Gabriel Rojas-Ponce
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Roger Zemp
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Evaluation of a virulent strain of Mycobacterium avium subsp. Paratuberculosis used as a heat-killed vaccine. Vaccine 2021; 39:7401-7412. [PMID: 34774361 DOI: 10.1016/j.vaccine.2021.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Bovine paratuberculosis is one of the most important chronic infectious diseases in livestock. This disease is difficult to control because of its inefficient management (test and cull strategy and inadequate biosecurity). Thus, the development of an effective vaccine is essential. In this study, we evaluated a local virulent strain (6611) of Mycobacterium avium subsp. paratuberculosis as an inactivated vaccine in comparison with the Silirum vaccine in mouse model and cattle. Regarding the mice model, only the groups vaccinated with 6611 showed lower colony forming unit (CFU) counts with a lower lesion score in the liver in comparison to the control group at 6 and 12 weeks post-challenge (wpc). The immune response was predominantly humoral (IgG1), although both vaccinated groups presented a cellular response with IFNγ production as well, but the 6611 group had also significant production of IL-2, IL-6, IL-17a, TNF, and IL-10. In cattle, the 6611 vaccinated group was the only one that maintained significant antibody values at the end of the trial, with significant production of IgG2 and IFNγ. No PPDb reactor was detected in the vaccinated animals, according to the intradermal caudal fold tuberculin test. Our results indicate that the 6611 local strain protected mice from challenge with a virulent strain, by inducing a humoral and cellular immune response. In the bovine, the natural host, the evaluated vaccine also induced humoral and cellular immune responses, with higher levels of CD4 + CD25+ and CD8 + CD25+ T cells populations than the commercial vaccine. Despite the encouraging results obtained in this study, an experimental challenge trial in cattle is mandatory to evaluate the efficacy of our candidate vaccine in the main host.
Collapse
|
12
|
Attempted Control of Paratuberculosis in Dairy Calves by Only Changing the Quality of Milk Fed to Calves. Animals (Basel) 2021; 11:ani11092569. [PMID: 34573535 PMCID: PMC8464944 DOI: 10.3390/ani11092569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the important routes of Mycobacterium avium subsp. paratuberculosis (MAP) transmission in dairy calves is milk. The aim of the present study was to assess the efficacy of milk treatments to prevent MAP infection transmission to calves. A one-year longitudinal study was carried out. Newborn calves were assigned to one of four experimental groups: 5 calves received naturally MAP-contaminated milk, 5 calves received copper treated milk, 4 calves were fed calf milk replacer, and 3 were fed UHT pasteurized milk. MAP load in milk was estimated. Infection progression was monitored monthly. After one year, calves were euthanized, and tissue samples were cultured and visually examined. MAP was undetectable in milk replacer and UHT milk. Copper ion treatment significantly reduced the number of viable MAP in naturally contaminated milk. Fecal shedding of MAP was observed in all study groups but began earlier in calves fed naturally contaminated milk. Paratuberculosis control programs must place multiple hurdles between the infection source, MAP-infected adult cows, and the most susceptible animals on the farm, young calves. As our study shows, strict dependence on a single intervention to block infection transmission, no matter how important, fails to control this insidious infection on dairy farms.
Collapse
|
13
|
What is the evidence that mycobacteria are associated with the pathogenesis of Sjogren's syndrome? J Transl Autoimmun 2021; 4:100085. [PMID: 33665595 PMCID: PMC7902540 DOI: 10.1016/j.jtauto.2021.100085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Sjogren's syndrome (SS) is a common, systemic autoimmune disorder primarily affecting the exocrine glands resulting in xerostomia and xerophthalmia. SS may also manifest with polyarthralgia, polyarthritis, polymyalgia, cutaneous/other organ vasculitis, interstitial lung disease, and/or various other disorders. The primary autoantibodies associated with SS and used as adjuncts to diagnosis are anti-Ro (SSA) and anti-La (SSB). The pathogenesis of SS is considered to involve genetic susceptibility and environmental triggers. An identified genetic susceptibility for SS lies in variants of the tumor necrosis factor alpha inducible protein 3 (TNFAIP3) gene, the product of which is known as A20. Deficiency or dysfunction of A20 is known to induce macrophage inflammatory response to mycobacteria, potentially increasing the repertoire of mycobacterial antigens available and predisposing to autoimmunity via the paradigm of molecular mimicry; i.e., providing a mechanistic link between genetic susceptibility to SS and exposure to environmental non-tuberculous mycobacteria (NTM). Mycobacterium avium ss. paratuberculosis (MAP) is an NTM that causes Johne's disease, an enteritis of ruminant animals. Humans are broadly exposed to MAP or its antigens in the environment and in food products from infected animals. MAP has also been implicated as an environmental trigger for a number of autoimmune diseases via cross reactivity of its heat shock protein 65 (hsp65) with host-specific proteins. In the context of SS, mycobacterial hsp65 shares epitope homology with the Ro and La proteins. A recent study showed a strong association between SS and antibodies to mycobacterial hsp65. If and when this association is validated, it would be important to determine whether bacillus Calmette-Guerin (BCG) vaccination (known to be protective against NTM likely through epigenetic alteration of innate and adaptive immunity) and anti-mycobacterial drugs (to decrease mycobacterial antigenic load) may have a preventive or therapeutic role against SS. Evidence to support this concept is that BCG has shown benefit in type 1 diabetes mellitus and multiple sclerosis, autoimmune diseases that have been linked to MAP via hsp65 and disease-specific autoantibodies. In conclusion, a number of factors lend credence to the notion of a pathogenic link between environmental mycobacteria and SS, including the presence of antibodies to mycobacterial hsp65 in SS, the homology of hsp65 with SS autoantigens, and the beneficial effects seen with BCG vaccination against certain autoimmune diseases. Furthermore, given that BCG may protect against NTM, has immune modifying effects, and has a strong safety record of billions of doses given, BCG and/or anti-mycobacterial therapeutics should be studied in SS.
Collapse
|
14
|
Rasmussen P, Barkema HW, Mason S, Beaulieu E, Hall DC. Economic losses due to Johne's disease (paratuberculosis) in dairy cattle. J Dairy Sci 2021; 104:3123-3143. [PMID: 33455766 DOI: 10.3168/jds.2020-19381] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023]
Abstract
Johne's disease (JD), or paratuberculosis, is an infectious inflammatory disorder of the intestines primarily associated with domestic and wild ruminants including dairy cattle. The disease, caused by an infection with Mycobacterium avium subspecies paratuberculosis (MAP) bacteria, burdens both animals and producers through reduced milk production, premature culling, and reduced salvage values among MAP-infected animals. The economic losses associated with these burdens have been measured before, but not across a comprehensive selection of major dairy-producing regions within a single methodological framework. This study uses a Markov chain Monte Carlo approach to estimate the annual losses per cow within MAP-infected herds and the total regional losses due to JD by simulating the spread and economic impact of the disease with region-specific economic variables. It was estimated that approximately 1% of gross milk revenue, equivalent to US$33 per cow, is lost annually in MAP-infected dairy herds, with those losses primarily driven by reduced production and being higher in regions characterized by above-average farm-gate milk prices and production per cow. An estimated US$198 million is lost due to JD in dairy cattle in the United States annually, US$75 million in Germany, US$56 million in France, US$54 million in New Zealand, and between US$17 million and US$28 million in Canada, one of the smallest dairy-producing regions modeled.
Collapse
Affiliation(s)
- Philip Rasmussen
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Steve Mason
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Eugene Beaulieu
- Department of Economics, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - David C Hall
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada T2N 1N4.
| |
Collapse
|
15
|
Barden M, Smith RF, Higgins HM. The interpretation of serial Johne's disease milk antibody results is affected by test characteristics, pattern of test results and parallel bovine tuberculosis testing. Prev Vet Med 2020; 183:105134. [PMID: 32912605 DOI: 10.1016/j.prevetmed.2020.105134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the UK, quarterly Johne's disease milk antibody ELISAs (JD-mELISAs) are commonly used to classify animals which are likely to be infectious, termed "red cows". "Red cows" are classified following two positive results from the previous four tests (e.g. + - - +). All cattle are also regularly screened for bovine tuberculosis using intradermal avian and bovine tuberculin, and it is advised to maintain a 60 day interval between a tuberculosis test and JD-mELISA. AIMS To evaluate the impact of bovine tuberculosis testing on JD-mELISAs, and to quantify the impact of test specificity and "red cow" classification test pattern on the probability of infection. METHODS Four years of individual cow milk records with JD-mELISA results were collated from 735 dairy farms and matched to tuberculosis testing records. A two-level multivariable logistic regression model quantified the effect of tuberculosis testing on JD-mELISA result. The specificity and age-dependent sensitivity of a single JD-mELISA were estimated and used to calculate likelihood ratios following each test. Using Bayes' theorem, the posterior probability of infection with Johne's disease was calculated for different specificities, ages of cow, and patterns of test results. RESULTS There were increased odds of a positive JD-mELISA if it was ≤30 days (OR: 2.1) or 31-60 days (OR: 1.2) after a tuberculosis test, compared to >90 days. A larger avian skin reaction at the tuberculosis test was also associated with increased odds of a positive JD-mELISA. The proportion of cows which tested exclusively negative after their first positive JD-mELISA was higher if that JD-mELISA was ≤30 days after a tuberculosis test compared to >90 days. The posterior probability of infection reduced substantially when the test specificity was slightly reduced. In "red cows" classified following two consecutive positive tests, if the test specificity was reduced to 0.95, then the posterior probability of infection was only >95 % if the prior probability was >13 %. If the "red cow" classification was due to two non-consecutive positive tests (+ - - +), the posterior probability of infection was only >95 % if the prior probability was >43 %. CONCLUSIONS Testing for Johne's disease within 60 days of a tuberculosis test is associated with a higher chance of a positive JD-mELISA and this may reflect a reduction in the ELISA specificity. Relatively small reductions in JD-mELISA specificity can markedly reduce the posterior probability of infection which also depends on the pattern of test results which classifies "red cows".
Collapse
Affiliation(s)
- M Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, United Kingdom.
| | - R F Smith
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, United Kingdom
| | - H M Higgins
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, United Kingdom
| |
Collapse
|
16
|
Jordan AG, Citer LR, McAloon CG, Graham DA, Sergeant ESG, More SJ. Johne's disease in Irish dairy herds: considerations for an effective national control programme. Ir Vet J 2020; 73:18. [PMID: 32818053 PMCID: PMC7427772 DOI: 10.1186/s13620-020-00166-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 11/10/2022] Open
Abstract
The Irish dairy industry has established a reputation for the production of safe and healthy dairy products and is seeking to further expand its export market for high value dairy products. To support its reputation, stakeholders aim to control Johne’s disease. To assist decision-makers determine the most appropriate design for an Irish programme, a narrative review of the scientific literature on the epidemiology of Johne’s disease, and selected control programmes throughout the world was undertaken. Two modelling studies specifically commissioned by Animal Health Ireland to assess testing methods used to demonstrate confidence of freedom in herds and to evaluate a range of possible surveillance strategies provided additional information. The majority of control programmes tend to be voluntary, because of the unique epidemiology of Johne’s disease and limited support for traditional regulatory approaches. While acknowledging that test performance and sub-clinical sero-negative shedders contributes to the spread of infection, a range of socio-political issues also exist that influence programme activities. The paper provides a rationale for the inclusion of a Veterinary Risk Assessment and Management Plan (VRAMP), including voluntary whole herd testing to identify infected herds and to support assurance-based trading through repeated rounds of negative testing, national surveillance for herd-level case-detection, and improved understanding of biosecurity management practices. Identification and promotion of drivers for industry and producer engagement in Ireland is likely to guide the future evolution of the Irish Johne’s Control Programme (IJCP) and further enhance its success. The provision of training, education and extension activities may encourage farmers to adopt relevant farm management practices and help them recognize that they are ultimately responsible for their herd’s health and biosecurity.
Collapse
Affiliation(s)
| | - L R Citer
- Animal Health Ireland, 2-5 The Archways, Carrick on Shannon, Co. Leitrim, N41 WN27 Ireland
| | - C G McAloon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland.,UCD Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - D A Graham
- Animal Health Ireland, 2-5 The Archways, Carrick on Shannon, Co. Leitrim, N41 WN27 Ireland
| | | | - S J More
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland.,UCD Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| |
Collapse
|
17
|
Facciuolo A, Lee AH, Gonzalez Cano P, Townsend HGG, Falsafi R, Gerdts V, Potter A, Napper S, Hancock REW, Mutharia LM, Griebel PJ. Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Front Immunol 2020; 11:1020. [PMID: 32547548 PMCID: PMC7272674 DOI: 10.3389/fimmu.2020.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H. Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugh G. G. Townsend
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Volker Gerdts
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - R. E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Lucy M. Mutharia
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philip J. Griebel
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Luo L, De Buck J. Inducing cellular immune responses with a marked Mycobacterium avium subsp. paratuberculosis strain in dairy calves. Vet Microbiol 2020; 244:108665. [PMID: 32402345 DOI: 10.1016/j.vetmic.2020.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a chronic granulomatous enteritis with a high global prevalence in dairy cattle. This disease causes significant economic loss in the dairy industry and has been challenging to control, as current diagnostic assays are low in sensitivity and specificity, and previously developed vaccines do not prevent infection and face regulatory concerns due to interference with bovine tuberculosis diagnostics. To remediate this issue, positive and negative immune markers were created in a MAP strain as a step towards a vaccine capable of differentiating infected from vaccinated animals (DIVA). A gene coding for an immunogenic protein (MAP1693c) in the MAP genome was replaced with a library of epitope-tagged immunogenic genes (pepA) via a stable allelic exchange method. These markers were evaluated in a calf infection trial, where Holstein-Friesian dairy calves were inoculated at two weeks of age with either the marked strain or the parent strain, or remained uninfected controls. Cellular immune responses to the markers were measured using an interferon gamma release assay (IGRA). There were no MAP1693c marker-specific differences in cellular immune responses between infection groups. A scrambled version of the HA (human influenza hemagglutinin) epitope, but not the actual HA epitope, induced a significant IFN-γ response in marker-infected calves compared to WT-infected and uninfected groups at 4.5 months post-inoculation. This scrambled HA epitope thus holds potential as a diagnostic tool as part of a DIVA vaccine for Johne's disease.
Collapse
Affiliation(s)
- Lucy Luo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Corbett CS, de Jong MCM, Orsel K, De Buck J, Barkema HW. Quantifying transmission of Mycobacterium avium subsp. paratuberculosis among group-housed dairy calves. Vet Res 2019; 50:60. [PMID: 31429807 PMCID: PMC6701154 DOI: 10.1186/s13567-019-0678-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/01/2019] [Indexed: 11/10/2022] Open
Abstract
Johne’s disease (JD) is a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), with control primarily aimed at preventing new infections among calves. The aim of the current study was to quantify calf-to-calf transmission of MAP among penmates in an experimental trial. Newborn Holstein bull calves (n = 32) were allocated into pens of 4, with 2 inoculated (IN) calves and 2 calves that were contact exposed (CE). Calves were group-housed for 3 months, with frequent collection of fecal and blood samples and tissue collection after euthanasia. The basic reproduction ratio (R0) was estimated using a final size (FS) model with a susceptible-infected model, based on INF-γ ELISA and tissue culture followed by qPCR. In addition, the transmission rate parameter (β) for new shedding events was estimated using a general linearized method (GLM) model with a susceptible-infected-susceptible model based on culture, followed by qPCR, of fecal samples collected during group housing. The R0 was derived for IN and CE calves separately, due to a difference in susceptibility, as well as differences in duration of shedding events. Based on the FS model, interferon-γ results from blood samples resulted in a R0IG of 0.90 (0.24, 2.59) and tissue culture resulted in a R0T of 1.36 (0.45, 3.94). Based on the GLM model, the R0 for CE calves to begin shedding (R0CE) was 3.24 (1.14, 7.41). We concluded that transmission of MAP infection between penmates occurred and that transmission among calves may be an important cause of persistent MAP infection on dairy farms that is currently uncontrolled for in current JD control programs.
Collapse
Affiliation(s)
- Caroline S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen University, Droevendaalsesteeg 1, 6702 WD, Wageningen, The Netherlands
| | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
20
|
Ludwig L, Egan R, Baquero M, Mansz A, Plattner BL. WC1 + and WC1 neg γδ T lymphocytes in intestinal mucosa of healthy and Mycobacterium avium subspecies paratuberculosis-infected calves. Vet Immunol Immunopathol 2019; 216:109919. [PMID: 31446207 DOI: 10.1016/j.vetimm.2019.109919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Mucosal surfaces such as the gastrointestinal tract, and skin are the front line of host defence and immunity against many pathogens. Gamma delta (γδ) T lymphocytes preferentially localize to the mucosal surfaces in several species including cattle, and are thought to play crucial roles in immunosurveillance and host defence, particularly against mycobacteria. Many γδ T cells are present in young calves, which is the period when calves are thought to be initially exposed to Mycobacterium avium subspecies paratuberculosis (Map). The role of mucosal γδ T cells in cattle, especially during host-pathogen interactions during early pre-clinical phases of infectious disease remains unclear. The purposes of this study were to investigate and characterize WC1+ and WC1neg γδ T cell subsets in various segments of the gastrointestinal (GI) tract of young calves, and then to examine γδ T cell subsets in the distal small intestine of calves after experimental intestinal Map infection by direct Peyer's patch inoculation. We show that in healthy calves, the relative proportion of γδ T cells is constant throughout the GI mucosa, though the ileum has significantly more γδ T cells. In the distal intestine, γδ T cells are mainly WC1neg and primarily located within the lamina propria of the jejunum and ileum. In Map-infected intestine, there are higher numbers of γδ T cells in the lamina propria and a greater proportion of WC1+ cells within the epithelial layer compared to control calves. While WC1neg γδ T cells preferentially localize to the distal small intestine of healthy calves, WC1+ γδ T cells are increased in the intestinal mucosa during Map infection, which is suggestive of effector cell function. Further, spectral microscopy and flow cytometry in tandem will lead to improved understanding of the functions of these cells during health and disease.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rebecca Egan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Monica Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Amanda Mansz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
21
|
McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, O'Grady L, Green MJ, Doherty ML. A review of paratuberculosis in dairy herds - Part 1: Epidemiology. Vet J 2019; 246:59-65. [PMID: 30902190 DOI: 10.1016/j.tvjl.2019.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/24/2022]
Abstract
Bovine paratuberculosis is a chronic infectious disease of cattle caused by Mycobacterium avium subspecies paratuberculosis (MAP). This is the first in a two-part review of the epidemiology and control of paratuberculosis in dairy herds. Paratuberculosis was originally described in 1895 and is now considered endemic among farmed cattle worldwide. MAP has been isolated from a wide range of non-ruminant wildlife as well as humans and non-human primates. In dairy herds, MAP is assumed to be introduced predominantly through the purchase of infected stock with additional factors modulating the risk of persistence or fade-out once an infected animal is introduced. Faecal shedding may vary widely between individuals and recent modelling work has shed some light on the role of super-shedding animals in the transmission of MAP within herds. Recent experimental work has revisited many of the assumptions around age susceptibility, faecal shedding in calves and calf-to-calf transmission. Further efforts to elucidate the relative contributions of different transmission routes to the dissemination of infection in endemic herds will aid in the prioritisation of efforts for control on farm.
Collapse
Affiliation(s)
- Conor G McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland.
| | - Steven Roche
- Department of Population Medicine, University of Guelph, 50 Stone Rd., Guelph, ON, N1G 2W1, Canada
| | - Caroline Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Paul Whyte
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Simon J More
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Luke O'Grady
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Martin J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Michael L Doherty
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| |
Collapse
|
22
|
Park HT, Park HE, Park WB, Kim S, Hur TY, Jung YH, Yoo HS. Genetic diversity of bovine Mycobacterium avium subsp. paratuberculosis discriminated by IS 1311 PCR-REA, MIRU-VNTR, and MLSSR genotyping. J Vet Sci 2018; 19:627-634. [PMID: 29929361 PMCID: PMC6167339 DOI: 10.4142/jvs.2018.19.5.627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to describe the genetic diversity of Mycobacterium avium subsp. paratuberculosis (MAP) obtained from individual cows in Korea. Twelve MAP-positive fecal DNA samples and 19 MAP isolates were obtained from 10 cattle herds located in 5 provinces in Korea. In addition, 5 MAP isolates obtained from the Czech Republic and Slovakia and 3 isolates from Australia were genotyped for comparison with the domestic isolates. The most prevalent strains in Korea were of the “bison-type” genotype (23 of 31 fecal DNA/isolates) and were distributed nationwide. The remaining MAP isolates (8) and all of the foreign isolates were identified as “cattle-type”. The bison-type strains which were discriminated only as INMV 68 in variable-number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing. Multilocus short sequence repeat (MLSSR) typing differentiated the bison-type strains into 3 different subtypes. The cattle-type strains were divided into 3 subtypes by MIRU-VNTR and 8 subtypes by MLSSR. The allelic diversities in the MIRU-VNTR and MLSSR results were calculated as 0.567 and 0.866, respectively. These results suggest that MIRU-VNTR typing cannot provide a sufficient description of the epidemiological situation of MAP. Therefore, an alternative method, such as MLSSR, is needed for typing of MAP strains to elucidate the molecular epidemiology of MAP infections. Overall, this study is the first epidemiological survey report in Korea using both MIRU-VNTR and MLSSR typing methods, and it has provided basic data necessary to elucidate the characteristics of MAP infections in Korea.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyun-Eui Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Woo Bin Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Tai Young Hur
- Department of Animal Resources Development, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Young-Hoon Jung
- Department of Animal Resources Development, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
23
|
Corbett CS, De Buck J, Barkema HW. Effects of freezing on ability to detect Mycobacterium avium subsp. paratuberculosis from bovine tissues following culture. J Vet Diagn Invest 2018; 30:743-746. [PMID: 30029576 DOI: 10.1177/1040638718790781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the bacterium that causes Johne's disease in cattle. Although infected cattle can be identified by examining fecal, blood, or milk samples, the gold standard is identification of MAP in tissue samples postmortem. Although tissue samples are commonly frozen, the ability to detect MAP in frozen-thawed tissue samples has apparently not been reported. We therefore determined the ability to detect MAP in tissue samples following freezing. Tissue samples were collected from calves that were either inoculated (IN) 3 mo prior, or contact-exposed (CE) for 3 mo. Following autopsy, tissues were immediately processed for culture, followed by DNA extraction and detection by qPCR. Samples were categorized as positive or negative based on the cycle threshold (Ct) value. The remaining unprocessed tissue samples were frozen at -80°C. After 18 mo, 50 tissue samples designated MAP-positive were thawed and processed for detection of MAP. Four (8%) samples were qPCR-negative, and Ct values of the remaining 46 samples were higher after freezing. Given the small numerical change in Ct values for MAP-positive samples after 18 mo of frozen storage, freezing and thawing may have had some deleterious effects on MAP detection in tissues. Although the decrease in ability to detect MAP-positive samples was minor for IN calves, there may be a greater effect for CE calves that should be considered when freezing tissue samples.
Collapse
Affiliation(s)
- Caroline S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Camanes G, Joly A, Fourichon C, Ben Romdhane R, Ezanno P. Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Vet Res 2018; 49:60. [PMID: 30005698 PMCID: PMC6044053 DOI: 10.1186/s13567-018-0557-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Paratuberculosis, a gastrointestinal disease caused by Mycobacterium avium subsp. paratuberculosis (Map), can lead to severe economic losses in dairy cattle farms. Current measures are aimed at controlling prevalence in infected herds, but are not fully effective. Our objective was to determine the most effective control measures to prevent an increase in adult prevalence in infected herds. We developed a new individual-based model coupling population and infection dynamics. Animals are characterized by their age (6 groups) and health state (6 states). The model accounted for all transmission routes and two control measures used in the field, namely reduced calf exposure to adult faeces and test-and-cull. We defined three herd statuses (low, moderate, and high) based on realistic prevalence ranges observed in French dairy cattle herds. We showed that the most relevant control measures depend on prevalence. Calf management and test-and-cull both were required to maximize the probability of stabilizing herd status. A reduced calf exposure was confirmed to be the most influential measure, followed by test frequency and the proportion of infected animals that were detected and culled. Culling of detected high shedders could be delayed for up to 3 months without impacting prevalence. Management of low prevalence herds is a priority since the probability of status stabilization is high after implementing prioritized measures. On the contrary, an increase in prevalence was particularly difficult to prevent in moderate prevalence herds, and was only feasible in high prevalence herds if the level of control was high.
Collapse
Affiliation(s)
- Guillaume Camanes
- Groupement de Défense Sanitaire de Bretagne, 56019 Vannes, France
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| | - Alain Joly
- Groupement de Défense Sanitaire de Bretagne, 56019 Vannes, France
| | | | | | - Pauline Ezanno
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| |
Collapse
|
25
|
Begg DJ, Plain KM, de Silva K, Gurung R, Gunn A, Purdie AC, Whittington RJ. Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol 2018; 219:53-62. [PMID: 29778205 DOI: 10.1016/j.vetmic.2018.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
Abstract
Johne's disease (JD) or paratuberculosis is an economically significant, chronic enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Experimental models of JD in cattle are logistically challenging due to the need for long term monitoring, because the clinical disease can take years to manifest. Three trials were undertaken, the largest involving 20 cattle exposed orally to a low dose of C strain MAP and 10 controls studied for 4.75 years. Frequent blood and faecal sampling was used to monitor immunological and infection parameters, and intestinal biopsies were performed at two time points during the subclinical disease phase. Although clinical disease was not seen, there was evidence of infection in 35% of the animals and at necropsy 10% had histopathological lesions consistent with JD, similar to the proportions expected in naturally infected herds. Faecal shedding occurred in two distinct phases: firstly there was intermittent shedding <∼9 months post-exposure that did not correlate with disease outcomes; secondly, in a smaller cohort of animals, this was followed by more consistent shedding of increasing quantities of MAP, associated with intestinal pathology. There was evidence of regression of histopathological lesions in the ileum of one animal, which therefore had apparently recovered from the disease. Both cattle with histopathological lesions of paratuberculosis at necropsy had low MAP-specific interferon-gamma responses at 4 months post-exposure and later had consistently shed viable MAP; they also had the highest loads of MAP DNA in faeces 4.75 year s post-exposure. In a trial using a higher dose of MAP, a higher proportion of cattle developed paratuberculosis. The information derived from these trials provides greater understanding of the changes that occur during the course of paratuberculosis in cattle.
Collapse
Affiliation(s)
- Douglas J Begg
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Karren M Plain
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Kumudika de Silva
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Ratna Gurung
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Alison Gunn
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Auriol C Purdie
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Richard J Whittington
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia.
| |
Collapse
|
26
|
Association between combinations of genetic polymorphisms and epidemiopathogenic forms of bovine paratuberculosis. Heliyon 2018; 4:e00535. [PMID: 29552658 PMCID: PMC5852290 DOI: 10.1016/j.heliyon.2018.e00535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023] Open
Abstract
Control of major mycobacterial diseases affecting livestock is a challenging issue that requires different approaches. The use of genetic markers for improving resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle has been explored as a promising population strategy We performed paratuberculosis epidemiopathogenic phenotypic and genotypic characterization involving 24 SNPs in six candidate genes (NOD2, CD209, SLC11A1, SP110, TLR2 and TLR4) on 502 slaughtered Friesian cows. In the current study, we investigate whether recently proposed paratuberculosis (PTB) epidemiopathogenic (EP) forms (apparently free-AF, latent-LAT and patent-PAT) could be associated with some combination of these 24 SNPs. Best EP form grouping was obtained using a combination of 5 SNPs in four genes (CD209: rs210748127; SLC11A1: rs110090506; SP110: rs136859213 and rs110480812; and TLR2: rs41830058). These groups were defined according to the level of infection progression risk to patent epidemiopathogenic forms and showed the following distributions: LOWIN (low) with 39 (8%) cases (94.9% AF/5.1% LAT/0% PAT); LATIN (low) with 17 (3%) cases (5.9% AF/94.1% LAT/0% PAT); AVERIN (average) with 413 (82%) cases (52.1% AF/38.5% LAT/9.4% PAT) and PATIN (patent) with 33 (7%) cases (36.4% AF/24.2% LAT/39.4% PAT). Age of slaughter was significantly higher for LATIN (88.3 months) compared to AVERIN (65.3 months; p = 0.0007) and PATIN (59.1 months; p = 0.0004), and for LOWIN (73.9 months) compared to PATIN (p = 0.0233), and nearly significant compared to AVERIN (p = 0.0572) These results suggest that some selected genetic polymorphisms have a potential use as markers of PTB EP forms and thus add a new tool for the control of this widespread infection.
Collapse
|
27
|
Evaluation of fecal shedding and antibody response in dairy cattle infected with paratuberculosis using national surveillance data in Japan. Prev Vet Med 2017; 149:38-46. [PMID: 29290299 DOI: 10.1016/j.prevetmed.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
Abstract
Paratuberculosis or Johne's disease (JD), is a chronic infectious disease causing intractable diarrhea in cattle, which leads to less productivity, such as decreased milk yield, and lower daily weight gain. As a control measure against JD in cattle, national serological surveillance has been conducted in Japan since 1998. To conduct modeling studies that are useful to evaluate the effectiveness of control measures against JD, reliable parameter values, such as length of time from infection to the start of fecal shedding or antibody expression, are especially important. These parameters in the Japanese cattle population are assumed to be different from those in other countries with a higher prevalence of JD or in experimental infection settings; therefore, they must be estimated for the cattle population in Japan. Data from national surveillance conducted in Tokachi District, Hokkaido Prefecture, were used for this study. Using data from JD diagnostic tests for all cattle in Tokachi District between 1998 and 2014, all testing histories for infected animals were estimated as the number of tested cattle and positive cattle at each age of month for both fecal and antibody tests. A deterministic mathematical model for JD development, from infection to fecal shedding and antibody expression in infected cattle, was constructed to obtain the probability of testing positive when applied to both fecal and antibody tests at a given age. Likelihood was obtained from these estimated test results and best values for parameters were obtained using the Markov Chain Monte-Carlo method. Fifty-five percent of infected cattle were projected to have a transient shedding period, which was estimated to start 12 months after infection and last for 4 months. Persistent shedding was projected to occur in all infected cattle, and estimated to begin 7-84 months from infection. Following persistent shedding, antibody expression was estimated to start 7 months later. These values are useful for developing models to evaluate the status of JD infection and the effectiveness of control measures in the Japanese cattle population.
Collapse
|
28
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
29
|
Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, Mackintosh CG, Manning EJ, Weber MF, Heuer C, Forde TL, Ritter C, Roche S, Corbett CS, Wolf R, Griebel PJ, Kastelic JP, De Buck J. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis 2017; 65 Suppl 1:125-148. [PMID: 28941207 DOI: 10.1111/tbed.12723] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/17/2022]
Abstract
In the last decades, many regional and country-wide control programmes for Johne's disease (JD) were developed due to associated economic losses, or because of a possible association with Crohn's disease. These control programmes were often not successful, partly because management protocols were not followed, including the introduction of infected replacement cattle, because tests to identify infected animals were unreliable, and uptake by farmers was not high enough because of a perceived low return on investment. In the absence of a cure or effective commercial vaccines, control of JD is currently primarily based on herd management strategies to avoid infection of cattle and restrict within-farm and farm-to-farm transmission. Although JD control programmes have been implemented in most developed countries, lessons learned from JD prevention and control programmes are underreported. Also, JD control programmes are typically evaluated in a limited number of herds and the duration of the study is less than 5 year, making it difficult to adequately assess the efficacy of control programmes. In this manuscript, we identify the most important gaps in knowledge hampering JD prevention and control programmes, including vaccination and diagnostics. Secondly, we discuss directions that research should take to address those knowledge gaps.
Collapse
Affiliation(s)
- H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S S Nielsen
- University of Copenhagen, Copenhagen, Denmark
| | - A P Koets
- Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - V P M G Rutten
- Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | - G P Keefe
- University of Prince Edward Island, Charlottetown, Canada
| | | | - S J Wells
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - M F Weber
- GD Animal Health, Deventer, The Netherlands
| | - C Heuer
- Massey University, Palmerston North, New Zealand
| | | | - C Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S Roche
- University of Guelph, Guelph, Canada
| | - C S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - R Wolf
- Amt der Steiermärkischen Landesregierung, Graz, Austria
| | | | - J P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
McAloon CG, Doherty ML, Whyte P, More SJ, O'Grady L, Citer L, Green MJ. Relative importance of herd-level risk factors for probability of infection with paratuberculosis in Irish dairy herds. J Dairy Sci 2017; 100:9245-9257. [PMID: 28888596 DOI: 10.3168/jds.2017-12985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
Control of paratuberculosis is challenging due to the relatively poor performance of diagnostic tests, a prolonged incubation period, and protracted environmental survival. Prioritization of herd-level interventions is not possible because putative risk factors are often not supported by risk factor studies. The objective for this study was to investigate the relative importance of risk factors for an increased probability of herd paratuberculosis infection. Risk assessment data, comprehensive animal purchase history, and diagnostic test data were available for 936 Irish dairy herds. Both logistic regression and a Bayesian β regression on the outcome of a latent class analysis were conducted. Population attributable fractions and proportional reduction in variance explained were calculated for each variable in the logistic and Bayesian models, respectively. Routine use of the calving area for sick or lame cows was found to be a significant explanatory covariate in both models. Purchasing behavior for the previous 10 yr was not found to be significant. For the logistic model, length of time calves spend in the calving pen (25%) and routine use of the calving pen for sick or lame animals (14%) had the highest attributable fractions. For the Bayesian model, the overall R2 was 16%. Dry cow cleanliness (7%) and routine use of the calving area for sick or lame cows (6%) and had the highest proportional reduction in variance explained. These findings provide support for several management practices commonly recommended as part of paratuberculosis control programs; however, a large proportion of the observed variation in probability of infection remained unexplained, suggesting other important risks factors may exist.
Collapse
Affiliation(s)
- Conor G McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, D04 W6F6.
| | - Michael L Doherty
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, D04 W6F6
| | - Paul Whyte
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, D04 W6F6
| | - Simon J More
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, D04 W6F6
| | - Luke O'Grady
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, D04 W6F6
| | - Lorna Citer
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland, D04 W6F6
| | - Martin J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom, LE12 5RD
| |
Collapse
|
31
|
Donat K, Schmidt M, Köhler H, Sauter-Louis C. Management of the calving pen is a crucial factor for paratuberculosis control in large dairy herds. J Dairy Sci 2017; 99:3744-3752. [PMID: 26947285 DOI: 10.3168/jds.2015-10625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 12/31/2022]
Abstract
Improvement of hygiene and herd management to reduce the contact of calves with adult cow feces to prevent new infections is one of the basic strategies to manage paratuberculosis-affected dairy herds. Control programs should recommend an evidence-based selection of factors that demonstrably reduce the transmission of the infectious agent and decrease the prevalence of infected cattle to improve acceptance and implementation of the recommended measures among farmers. This study aimed to assess the influence of several management measures on control success in a longitudinal study in 28 large dairy herds with a median size of 415 cows in Thuringia, Germany. The cumulative incidence of cows shedding Mycobacterium avium ssp. paratuberculosis (MAP) per year was determined by individual fecal culture of all cows during 5 consecutive years. Relevant management practices as well as herd size, milk yield, and purchase of cattle were recorded by on-farm risk assessment. Mean holding time of MAP shedders within the herd was calculated from individual data of each shedding cow. Using multiple regression models, separate calving pens for shedders and disinfection of the pen after use were identified as significant risk factors that reduced the cumulative incidence of MAP shedders per year on the herd level. The results provide evidence that, in addition to other factors, calving hygiene and management of the calving pens are crucial for paratuberculosis control, particularly in large dairy herds. Considered together with the outcome from other studies, these results might be important to weight various risk factors and to avoid overburdening and overwhelming farmers and keeping them committed.
Collapse
Affiliation(s)
- Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, Victor-Goerttler-Straße 4, 07775 Jena, Germany.
| | - Mandy Schmidt
- Animal Health Service, Saxon Animal Diseases Fund, Löwenstraße 7a, 01099 Dresden, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Carola Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
32
|
Corbett CS, De Buck J, Orsel K, Barkema HW. Fecal shedding and tissue infections demonstrate transmission of Mycobacterium avium subsp. paratuberculosis in group-housed dairy calves. Vet Res 2017; 48:27. [PMID: 28454560 PMCID: PMC5410103 DOI: 10.1186/s13567-017-0431-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Current Johne’s disease control programs primarily focus on decreasing transmission of Mycobacterium avium subsp. paratuberculosis (MAP) from infectious adult cows to susceptible calves. However, potential transmission between calves is largely overlooked. The objective was to determine the extent of MAP infection in calves contact-exposed to infectious penmates. Thirty-two newborn Holstein–Friesian calves were grouped into 7 experimental groups of 4, consisting of 2 inoculated (IN) calves, and 2 contact-exposed (CE) calves, and 1 control pen with 4 non-exposed calves. Calves were group housed for 3 months, with fecal samples were collected 3 times per week, blood and environmental samples weekly, and tissue samples at the end of the trial. The IN calves exited the trial after 3 months of group housing, whereas CE calves were individually housed for an additional 3 months before euthanasia. Control calves were group-housed for the entire trial. All CE and IN calves had MAP-positive fecal samples during the period of group housing; however, fecal shedding had ceased at time of individual housing. All IN calves had MAP-positive tissue samples at necropsy, and 7 (50%) of the CE had positive tissue samples. None of the calves had a humoral immune response, whereas INF-γ responses were detected in all IN calves and 5 (36%) CE calves. In conclusion, new MAP infections occurred due to exposure of infectious penmates to contact calves. Therefore, calf-to-calf transmission is a potential route of uncontrolled transmission on cattle farms.
Collapse
Affiliation(s)
- Caroline S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
33
|
Verhegghe M, Rasschaert G, Herman L, Goossens K, Vandaele L, De Bleecker K, Vlaemynck G, Heyndrickx M, De Block J. Reduction of Mycobacterium avium ssp. paratuberculosis in colostrum: Development and validation of 2 methods, one based on curdling and one based on centrifugation. J Dairy Sci 2017; 100:3497-3512. [PMID: 28318591 DOI: 10.3168/jds.2016-12355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
The aim of this study was to develop and validate 2 protocols (for use on-farm and at a central location) for the reduction of Mycobacterium avium ssp. paratuberculosis (MAP) in colostrum while preserving beneficial immunoglobulins (IgG). The on-farm protocol was based on curdling of the colostrum, where the IgG remain in the whey and the MAP bacteria are trapped in the curd. First, the colostrum was diluted with water (2 volumes colostrum to 1 volume water) and 2% rennet was added. After incubation (1 h at 32°C), the curd was cut and incubated again, after which whey and curd were separated using a cheesecloth. The curd was removed and milk powder was added to the whey. Approximately 1 log reduction in MAP counts was achieved. A reduction in total proteins and IgG was observed due to initial dilution of the colostrum. After curd formation, more than 95% of the immunoglobulins remained in the whey fraction. The semi-industrial protocol was based on centrifugation, which causes MAP to precipitate, while the IgG remain in the supernatant. This protocol was first developed in the laboratory. The colostrum was diluted with skimmed colostrum (2 volumes colostrum to 1 volume skimmed colostrum), then skimmed and centrifuged (at 15,600 × g for 30 min at room temperature). We observed on average 1.5 log reduction in the MAP counts and a limited reduction in proteins and IgG in the supernatant. To obtain a semi-industrial protocol, dairy pilot appliances were evaluated and the following changes were applied to the protocol: after 2:1 dilution as above, the colostrum was skimmed and subsequently clarified, after which the cream was heat treated and added to the supernatant. To investigate the effect of the colostrum treatment on the nutritional value and palatability of the colostrum and the IgG transfer, an animal experiment was conducted with 24 calves. Six received the dam's colostrum, 6 were given untreated purchased colostrum (control), and 2 groups of 6 calves received colostrum treated according to both of the above-mentioned methods. No significant differences were found between the test groups and the dam's colostrum group in terms of animal health, IgG uptake in the blood serum, milk, or forage uptake. Two protocols to reduce MAP in colostrum (for use on-farm or at a central location) were developed. Both methods preserve the vital IgG.
Collapse
Affiliation(s)
- M Verhegghe
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium.
| | - G Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - L Herman
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - K Goossens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| | - L Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| | - K De Bleecker
- Diergezondheidszorg Vlaanderen (DGZ), Deinze Horsweg 1, 9040 Drongen, Belgium
| | - G Vlaemynck
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - M Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - J De Block
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
34
|
Mycobacterium avium subsp. paratuberculosis – An Overview of the Publications from 2011 to 2016. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Roy GL, De Buck J, Wolf R, Mortier RA, Orsel K, Barkema HW. Experimental infection with Mycobacterium avium subspecies paratuberculosis resulting in decreased body weight in Holstein-Friesian calves. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2017; 58:296-298. [PMID: 28246421 PMCID: PMC5302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fifty calves inoculated at either 2 weeks or at 3, 6, 9, or 12 months of age with either a low or high dose of Mycobacterium avium subspecies paratuberculosis (MAP) were on average 32 and 39 kg lower in body weight, respectively, compared to negative controls at 17 months of age.
Collapse
|
36
|
NARNAWARE SHIRISHDADARAO, TRIPATHI BHUPENDRANATH. Seroepidemiology of paratuberculosis in cattle population of organized and unorganized farms of India. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i1.66797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Serum samples (531) collected randomly from cattle of organized (200) and unorganized (331) farms of Central and Northern parts of India were subjected to a commercial ELISA to know the seroprevalence of paratuberculosis. These serum samples were also tested by an in-house absorbed ELISA developed in the laboratory and the results were compared. The overall seroprevalence of paratuberculosis in cattle was 8.09% with significantly higher prevalence in cattle of organized farms (13.5%) than unorganized farms (4.83%). The seroprevalence was also significantly higher in calves (17.24%) than adults (7.57%); whereas there was no significant difference in prevalence rate among male (6.71%) and female (9.87%) cattle. Region wise the seroprevalence was slightly higher in organized farms of Northern India (16.43%) than that of Central India (11.81%). The sensitivity and specificity of in-house ELISA were 71.11% and 98.76%, respectively, with the accuracy of over 96%. On the basis of Kappa-test, the inhouse ELISA was in good agreement with commercial Pourquier ® ELISA and can be recommended for screening of paratuberculosis infection in cattle in India.
Collapse
|
37
|
Kirkeby C, Græsbøll K, Nielsen SS, Christiansen LE, Toft N, Rattenborg E, Halasa T. Simulating the Epidemiological and Economic Impact of Paratuberculosis Control Actions in Dairy Cattle. Front Vet Sci 2016; 3:90. [PMID: 27777933 PMCID: PMC5056316 DOI: 10.3389/fvets.2016.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
We describe a new mechanistic bioeconomic model for simulating the spread of Mycobacterium avium subsp. paratuberculosis (MAP) within a dairy cattle herd. The model includes age-dependent susceptibility for infection; age-dependent sensitivity for detection; environmental MAP build up in five separate areas of the farm; in utero infection; infection via colostrum and waste milk, and it allows for realistic culling (i.e., due to other diseases) by including a ranking system. We calibrated the model using a unique dataset from Denmark, including 102 random farms with no control actions against spread of MAP. Likewise, four control actions recommended in the Danish MAP control program were implemented in the model based on reported management strategies in Danish dairy herds in a MAP control scheme. We tested the model parameterization in a sensitivity analysis. We show that a test-and-cull strategy is on average the most cost-effective solution to decrease the prevalence and increase the total net revenue on a farm with low hygiene, but not more profitable than no control strategy on a farm with average hygiene. Although it is possible to eradicate MAP from the farm by implementing all four control actions from the Danish MAP control program, it was not economically attractive since the expenses for the control actions outweigh the benefits. Furthermore, the three most popular control actions against the spread of MAP on the farm were found to be costly and inefficient in lowering the prevalence when used independently.
Collapse
Affiliation(s)
- Carsten Kirkeby
- DTU VET, Section for Epidemiology, Technical University of Denmark , Frederiksberg , Denmark
| | - Kaare Græsbøll
- DTU VET, Section for Epidemiology, Technical University of Denmark, Frederiksberg, Denmark; DTU Compute, Section for Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Frederiksberg, Denmark
| | - Søren Saxmose Nielsen
- Section for Animal Welfare and Disease Control, Department of Large Animal Sciences, University of Copenhagen , Frederiksberg , Denmark
| | - Lasse E Christiansen
- DTU Compute, Section for Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark , Frederiksberg , Denmark
| | - Nils Toft
- DTU VET, Section for Epidemiology, Technical University of Denmark , Frederiksberg , Denmark
| | | | - Tariq Halasa
- DTU VET, Section for Epidemiology, Technical University of Denmark , Frederiksberg , Denmark
| |
Collapse
|
38
|
Milk yield and lactation stage are associated with positive results to ELISA for Mycobacterium avium subsp. paratuberculosis in dairy cows from Northern Antioquia, Colombia: a preliminary study. Trop Anim Health Prod 2016; 48:1191-200. [PMID: 27165342 DOI: 10.1007/s11250-016-1074-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Paratuberculosis is a slow-developing infectious disease characterized by chronic granulomatous enterocolitis. This disease has a variable incubation period from 6 months to over 15 years and is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Some studies have been conducted in cattle during the last decades in Colombia. However, those studies were designed using relatively small populations and were not aimed to establish prevalence. This study aimed to determine the MAP seroprevalence in selected dairy herds and to explore risk factors associated with the serology results. Serum samples and related data were collected from 696 randomly selected bovines in 28 dairy herds located in 12 different districts in one of the main dairy municipalities in Colombia (San Pedro de los Milagros). The samples were analyzed using a commercial ELISA kit. The information on risk factors was analyzed using a logistic regression. The apparent seroprevalence was 3.6 % (1/28) at the herd level and 2 % (14/696) at the animal level. The number of days in milk production between 100 and 200 days, and over 200 days as well as the daily milk production between 20 and 40 L/cow, and over 40 L/cow were associated with MAP seropositivity with odds ratios of 4.42, 3.45, 2.53, and 20.38, respectively. This study demonstrates the MAP seroprevalence in dairy herds from Antioquia, Colombia and the possible relationship between MAP seropositivity, milk yield, and lactation stage.
Collapse
|
39
|
Derakhshani H, De Buck J, Mortier R, Barkema HW, Krause DO, Khafipour E. The Features of Fecal and Ileal Mucosa-Associated Microbiota in Dairy Calves during Early Infection with Mycobacterium avium Subspecies paratuberculosis. Front Microbiol 2016; 7:426. [PMID: 27065983 PMCID: PMC4814471 DOI: 10.3389/fmicb.2016.00426] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Current diagnostic tests for Johne's disease (JD), a chronic granulomatous inflammation of the gastrointestinal tract of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP), lack the sensitivity to identify infected animals at early (asymptomatic) stages of the disease. The objective was to determine the pattern of MAP-associated dysbiosis of intestinal microbiota as a potential biomarker for early detection of infected cattle. To that end, genomic DNA was extracted from ileal mucosa and fecal samples collected from 28 MAP-positive and five control calves. High-throughput Illumina sequencing of the V4 hypervariable region of the 16S rRNA gene was used for community profiling of ileal mucosa-associated (MAM) or fecal microbiota. The PERMANOVA analysis of unweighted UniFrac distances revealed distinct clustering of ileal MAM (P = 0.049) and fecal microbiota (P = 0.068) in MAP-infected vs. control cattle. Microbiota profile of MAP-infected animals was further investigated by linear discriminant analysis effective size (LEfSe); several bacterial taxa within the phylum Proteobacteria were overrepresented in ileal MAM of control calves. Moreover, based on reconstructed metagenomes (PICRUSt) of ileal MAM, functional pathways associated with MAP infection were inferred. Enrichment of lysine and histidine metabolism pathways, and underrepresentation of glutathione metabolism and leucine and isoleucine degradation pathways in MAP-infected calves suggested potential contributions of ileal MAM in development of intestinal inflammation. Finally, simultaneous overrepresentation of families Planococcaceae and Paraprevotellaceae, as well as underrepresentation of genera Faecalibacterium and Akkermansia in the fecal microbiota of infected cattle, served as potential biomarker for identifying infected cattle during subclinical stages of JD. Collectively, based on compositional and functional shifts in intestinal microbiota of infected cattle, we inferred that this dynamic network of microorganisms had an active role in intestinal homeostasis.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary Calgary, AB, Canada
| | - Rienske Mortier
- Department of Production Animal Health, University of Calgary Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary Calgary, AB, Canada
| | - Denis O Krause
- Department of Animal Science, University of ManitobaWinnipeg, MB, Canada; Department of Medical Microbiology, University of ManitobaWinnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of ManitobaWinnipeg, MB, Canada; Department of Medical Microbiology, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
40
|
Wolf R, Barkema HW, De Buck J, Orsel K. Dairy farms testing positive for Mycobacterium avium ssp. paratuberculosis have poorer hygiene practices and are less cautious when purchasing cattle than test-negative herds. J Dairy Sci 2016; 99:4526-4536. [PMID: 26995127 DOI: 10.3168/jds.2015-10478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/13/2016] [Indexed: 11/19/2022]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP), the causative agent of Johne's disease, is present on most dairy farms in Alberta, causing economic losses and presenting a potential public health concern. The objective of this cross-sectional study was to identify risk factors for Alberta dairy herds being MAP-positive based on environmental samples (ES). Risk assessments were conducted and ES were collected on 354 Alberta dairy farms (62% of eligible producers) voluntarily participating in the Alberta Johne's Disease Initiative. In univariate logistic regression, risk factors addressing animal and pen hygiene, as well as the use of feeding equipment to remove manure and manure application on pastures, were all associated with the number of positive ES. Furthermore, based on factor analysis, risk factors were clustered and could be summarized as 4 independent factors: (1) animal, pen, and feeder contamination; (2) shared equipment and pasture contamination; (3) calf diet; and (4) cattle purchase. Using these factor scores as independent variables in multivariate logistic regression models, a 1-unit increase in animal, pen, and feeder contamination resulted in 1.31 times higher odds of having at least 1 positive ES. Furthermore, a 1-unit increase in cattle purchase also resulted in 1.31 times the odds of having at least 1 positive ES. Finally, a 100-cow increase in herd size resulted in an odds ratio of 2.1 for having at least 1 positive ES. In conclusion, cleanliness of animals, pens, and feeders, as well as cattle purchase practices, affected risk of herd infection with MAP. Therefore, improvements in those management practices should be the focus of effective tools to control MAP on dairy farms.
Collapse
Affiliation(s)
- R Wolf
- Amt der Steiermärkischen Landesregierung, 8010 Graz, Austria; Department of Production Animal Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - H W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - J De Buck
- Department of Production Animal Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - K Orsel
- Department of Production Animal Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
41
|
Fechner K, Schäfer J, Wiegel C, Ludwig J, Münster P, Sharifi AR, Wemheuer W, Czerny CP. Distribution of Mycobacterium avium subsp. paratuberculosis in a Subclinical Naturally Infected German Fleckvieh Bull. Transbound Emerg Dis 2015; 64:916-928. [PMID: 26671341 DOI: 10.1111/tbed.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 12/13/2022]
Abstract
Although it has been known for years that Mycobacterium avium subsp. paratuberculosis (MAP) is detectable in the reproductive organs and semen of infected bulls, only few studies have been conducted on this topic worldwide. This study surveyed the MAP status of a bull, naturally infected due to close contact with its subclinically infected parents over a period of 4 years. From the age of 7 weeks to necropsy, faecal, blood and, after sexual maturity, semen samples were drawn repeatedly. Already at the first sampling day, MAP-DNA was detected in faeces by semi-nested PCR. True infection was confirmed by the detection of MAP-DNA in blood at the age of 40 weeks. In total, MAP-DNA was present in 25% faecal (34/139), 16% blood (23/140) and 5% semen (4/89) samples, including MAP-free intervals of up to 9 weeks. MAP genome equivalents (MAP-GE) of up to 6.3 × 106 /g faeces and 1.8 × 105 /ml blood were determined. Cultivation of MAP occurred only in three of 137 faecal and two of 109 blood, but never in semen samples. Over the whole period, the bull was a serological negative MAP shedder. During necropsy, 42 tissue samples were collected. Neither macroscopic nor histological lesions characteristic of a MAP infection were observed. Cultivation of MAP in tissue sections failed. However, MAP-DNA was spread widely in the host, including in tissues of the lymphatic system (7/15), digestive tract (5/14) and the urogenital tract (5/9) with concentrations of up to 3.9 × 106 MAP-GE/g tissue. The study highlighted the detection of MAP in male reproductive organs and semen. It supports the hypothesis that bulls may probably transmit MAP, at least under natural mating conditions. In artificial insemination, this might not be relevant, due to antibiotics included currently in semen extenders. However, the survivability of MAP in this microenvironment should be investigated in detail.
Collapse
Affiliation(s)
- K Fechner
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - J Schäfer
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - C Wiegel
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - J Ludwig
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - P Münster
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - A R Sharifi
- Division of Animal Breeding and Genetics, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - W Wemheuer
- Division of Reproduction and Biotechnology, Department of Animal Science, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - C-P Czerny
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| |
Collapse
|
42
|
Mortier RA, Barkema HW, Orsel K, Muench GP, Bystrom JM, Illanes O, De Buck J. Longitudinal evaluation of diagnostics in experimentally infected young calves during subclinical and clinical paratuberculosis. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:1266-1270. [PMID: 26663923 PMCID: PMC4668818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Five calves were inoculated orally at 2 weeks of age with a dose of 5 × 10(9) colony-forming units of Mycobacterium avium subspecies paratuberculosis (MAP) on 2 consecutive days. Two calves developed clinical Johne's disease at 12 and 16 months of age after being consistently positive for MAP on fecal culture and antibody enzyme-linked immunosorbent assay (ELISA), starting 2 to 3 weeks and 4 to 5 months after inoculation, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen De Buck
- Address all correspondence to Dr. Jeroen De Buck; e-mail:
| |
Collapse
|
43
|
Laurin E, McKenna S, Chaffer M, Keefe G. Sensitivity of solid culture, broth culture, and real-time PCR assays for milk and colostrum samples from Mycobacterium avium ssp. paratuberculosis-infectious dairy cows. J Dairy Sci 2015; 98:8597-609. [PMID: 26476944 DOI: 10.3168/jds.2014-8758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/20/2015] [Indexed: 11/19/2022]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) can be shed in feces, milk, and colostrum. The goal of this study was to assess assays that detect MAP in these sample types, including effects of lactation stage or season. Understanding the performance of these assays could improve how they are used, limiting the risk of infection to calves. Forty-six previously confirmed MAP-positive cows from 7 Atlantic Canadian dairy farms were identified for colostrum sampling and monthly sampling of milk and feces over a 12-mo period. Samples were assayed for MAP using solid culture, broth culture, and direct real-time PCR (qPCR). Across assay types, test sensitivity when applied to milk samples averaged 25% of that when applied to fecal samples. For colostrum samples, sensitivity depended on assay type, with sensitivity of qPCR being approximately 46% of that in feces. Across sample types, sensitivity of qPCR was higher than that of the other assays. Sensitivity of qPCR, when applied to milk samples, was significantly higher in summer than in other seasons. Summer was also the season with highest agreement between milk and fecal samples collected within the same month. Our results suggest that qPCR would detect more cows shedding MAP in their milk and colostrum than solid or broth culture assays, particularly during the summer, thus providing better management information to limit exposure of calves to this infectious organism.
Collapse
Affiliation(s)
- Emilie Laurin
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | - Shawn McKenna
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Marcelo Chaffer
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Greg Keefe
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
44
|
Mortier RAR, Barkema HW, De Buck J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev Vet Med 2015; 121:189-98. [PMID: 26321657 DOI: 10.1016/j.prevetmed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/31/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
The primary objectives of paratuberculosis control programs are reducing exposure of calves to Mycobacterium avium subspecies paratuberculosis (MAP), reducing herd infection pressure and regular testing of cattle >36 months of age. Although control programs based on these principles have reduced prevalence of MAP infection in dairy herds, they have generally not eliminated the infection. Recent infection trial(s) have yielded new knowledge regarding diagnostic testing and age- and dose-dependent susceptibility to MAP infection. Calves up to 1 year of age are still susceptible to MAP infection; therefore, control programs should refrain from referring to specific ages with respect to susceptibility and prevention of new infections. Notwithstanding, lesions were more severe when calves were inoculated at 2 weeks versus 1 year of age. Furthermore, a high inoculation dose resulted in more pronounced lesions than a low inoculation dose, especially in young calves. Consequently, keeping infection pressure low should decrease the incidence of new MAP infections and severity of JD in cattle that do acquire the infection. It was also evident that early diagnosis of MAP infection was possible and could improve efficacy of control programs. Although its use will still need to be validated in the field, a combination of antibody ELISA and fecal culture in young stock, in addition to testing cattle >36 months of age when screening a herd for paratuberculosis, was expected to improve detection of dairy cattle infected with MAP. Although calves were inoculated using a standardized method in a controlled environment, there were substantial differences among calves with regards to immune response, shedding and pathology. Therefore, we inferred there were genetic differences in susceptibility. Important insights were derived from experimental infection trials. Therefore, it was expected that these could improve paratuberculosis control programs by reducing severity and incidence of JD by lowering infection pressure on-farm, and reducing exposure of young calves and older cattle. Furthermore, an earlier diagnosis could be achieved by combining ELISA and fecal shedding in young stock, in addition to testing cattle >36 months of age.
Collapse
Affiliation(s)
- Rienske A R Mortier
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| |
Collapse
|
45
|
Dam Mycobacterium avium subspecies paratuberculosis (MAP) infection status does not predetermine calves for future shedding when raised in a contaminated environment: a cohort study. Vet Res 2015; 46:70. [PMID: 26091807 PMCID: PMC4474464 DOI: 10.1186/s13567-015-0191-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/11/2015] [Indexed: 12/22/2022] Open
Abstract
Uptake of Mycobacterium avium subsp. paratuberculosis (MAP) by calves in the first days of life from colostrum, milk and faeces is regarded an important moment of transmission. The objective of this study was to quantify the association between the MAP status of dams as determined by the presence of MAP DNA and antibody in colostrum and that of DNA in faeces and the environment with subsequent MAP shedding of their daughters. A cohort of 117 dam-daughter pairs giving birth/being born on eight commercial dairy farms with endemic paratuberculosis was followed where colostrum, faecal and environmental samples (dust) were analysed for the presence of MAP using an IS900 real-time PCR. Antibodies in colostrum were measured by ELISA. Analysis of dust samples showed that on all farms environmental MAP exposure occurred continuously. In significantly more colostrum samples (48%) MAP DNA was detected compared to faecal samples (37%). MAP specific antibodies were present in 34% of the colostrum samples. In total MAP DNA was present in faecal samples of 41% of the daughters at least once during the sampling period. The association between faecal shedding in the offspring and the dam MAP status defined by MAP PCR on colostrum, MAP PCR on faeces or ELISA on colostrum was determined by an exact cox regression analysis for discrete data. The model indicated that the hazard for faecal shedding in daughters born to MAP positive dams was not significantly different compared to daughters born to MAP negative dams. When born to a dam with DNA positive faeces the HR was 1.05 (CI 0.6; 1.8) and with DNA positive colostrum the HR was 1.17 (CI 0.6; 2.3). When dam status was defined by a combination of both PCR outcomes (faeces and colostrum) and the ELISA outcome the HR was 1.26 (CI 0.9; 1.9). Therefore, this study indicates that neither the presence of MAP DNA in colostrum, MAP DNA in faeces nor the presence of MAP antibodies in colostrum of the dam significantly influences the hazard of MAP shedding in their subsequent daughters up to the age of two years when raised in a contaminated environment.
Collapse
|
46
|
Forde T, Pruvot M, De Buck J, Orsel K. A high-morbidity outbreak of Johne's disease in game-ranched elk. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:479-483. [PMID: 25969580 PMCID: PMC4399733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Following an outbreak of Johne's disease on an elk farm in northern Alberta, Canada, fecal culture, fecal polymerase chain reaction (PCR), and serum enzyme-linked immunosorbent assay (ELISA) tests were performed on individual animals. The magnitude of the outbreak is described and the challenges associated with poor test agreement, as well as herd management options, are discussed.
Collapse
Affiliation(s)
| | | | | | - Karin Orsel
- Address all correspondence to Dr. Karin Orsel; e-mail
| |
Collapse
|
47
|
De Buck J, Shaykhutdinov R, Barkema HW, Vogel HJ. Metabolomic profiling in cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 2014; 9:e111872. [PMID: 25372282 PMCID: PMC4221196 DOI: 10.1371/journal.pone.0111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
The sensitivity of current diagnostics for Johne's disease, a slow, progressing enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), is too low to reliably detect all infected animals in the subclinical stage. The objective was to identify individual metabolites or metabolite profiles that could be used as biomarkers of early MAP infection in ruminants. In a monthly follow-up for 17 months, calves infected at 2 weeks of age were compared with aged-matched controls. Sera from all animals were analyzed by 1H nuclear magnetic resonance spectrometry. Spectra were acquired, processed, and quantified for analysis. The concentration of many metabolites changed over time in all calves, but some metabolites only changed over time in either infected or non-infected groups and the change in others was impacted by the infection. Hierarchical multivariate statistical analysis achieved best separation between groups between 300 and 400 days after infection. Therefore, a cross-sectional comparison between 1-year-old calves experimentally infected at various ages with either a high- or a low-dose and age-matched non-infected controls was performed. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS DA) yielded distinct separation of non-infected from infected cattle, regardless of dose and time (3, 6, 9 or 12 months) after infection. Receiver Operating Curves demonstrated that constructed models were high quality. Increased isobutyrate in the infected cattle was the most important agreement between the longitudinal and cross-sectional analysis. In general, high- and low-dose cattle responded similarly to infection. Differences in acetone, citrate, glycerol and iso-butyrate concentrations indicated energy shortages and increased fat metabolism in infected cattle, whereas changes in urea and several amino acids (AA), including the branched chain AA, indicated increased protein turnover. In conclusion, metabolomics was a sensitive method for detecting MAP infection much sooner than with current diagnostic methods, with individual metabolites significantly distinguishing infected from non-infected cattle.
Collapse
Affiliation(s)
- Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Rustem Shaykhutdinov
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Gene-expression profiling of calves 6 and 9 months after inoculation with Mycobacterium avium subspecies paratuberculosis. Vet Res 2014; 45:96. [PMID: 25294045 PMCID: PMC4198621 DOI: 10.1186/s13567-014-0096-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Early detection of Johne’s disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is essential to reduce transmission; consequently, new diagnostic techniques and approaches to detect MAP or markers of early MAP infection are being explored. The objective was to identify biomarkers associated with MAP infection at 6 and 9 months after oral inoculation. Therefore, gene expression analysis was done using whole blood cells obtained from MAP-infected calves. All MAP-inoculated calves had a cell-mediated immune response (IFN-γ) to Johnin PPD specific antigens, and 60% had an antibody response to MAP antigens. Gene expression analysis at 6 months after inoculation revealed downregulation of chemoattractants, namely neutrophil beta-defensin-9 like peptide (BNBD9-Like), S100 calcium binding protein A9 (s100A9) and G protein coupled receptor 77 (GPR77) or C5a anaphylatoxin chemotactic receptor (C5a2). Furthermore, BOLA/MHC-1 intracellular antigen presentation gene was downregulated 9 months after inoculation. In parallel, qPCR experiments to evaluate the robustness of some differentially expressed genes revealed consistent downregulation of BOLA/MHC-I, BNBD9-Like and upregulation of CD46 at 3, 6, 9, 12, and 15 months after inoculation. In conclusion, measuring the expression of these genes has potential for implementation in a diagnostic tool for the early detection of MAP infection.
Collapse
|
49
|
Mortier RAR, Barkema HW, Wilson TA, Sajobi TT, Wolf R, De Buck J. Dose-dependent interferon-gamma release in dairy calves experimentally infected with Mycobacterium avium subspecies paratuberculosis. Vet Immunol Immunopathol 2014; 161:205-10. [PMID: 25190508 DOI: 10.1016/j.vetimm.2014.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
The interferon-gamma (IFN-γ) release assay is considered useful for diagnosis of subclinical paratuberculosis. However, interpretation can be subjective and complex; therefore, additional information regarding the course of the cellular immune response and effects of age and dose at infection would be helpful. Thirty-three calves were randomly allocated to 10 challenge groups and a negative control group. Calves were inoculated orally at 2 weeks or at 3, 6, 9, or 12 months of age. Within each age group, calves received either a high or low dose of Mycobacterium avium subspecies paratuberculosis (MAP). Monthly blood samples were collected, stimulated with Purified Protein Derivative (PPD) Johnin in vitro, and the subsequent release of IFN-γ measured. Calves inoculated with a high dose had earlier and stronger IFN-γ responses than low-dose calves. Furthermore, calves inoculated at 2 weeks of age produced less IFN-γ compared to those inoculated later in life. The IFN-γ response peaked (on average) 4 months after exposure; therefore, this would be an optimal interval to test cattle for MAP-infection (although the timing of field-based infections is unknown and clearance of infection a possibility). To conclude, the IFN-γ release assay could be a valuable diagnostic test on herd-level to indicate exposure to MAP.
Collapse
Affiliation(s)
- Rienske A R Mortier
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Todd A Wilson
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Tolulope T Sajobi
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Robert Wolf
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
50
|
Mortier RAR, Barkema HW, Orsel K, Wolf R, De Buck J. Shedding patterns of dairy calves experimentally infected with Mycobacterium avium subspecies paratuberculosis. Vet Res 2014; 45:71. [PMID: 25224905 PMCID: PMC4347591 DOI: 10.1186/s13567-014-0071-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Although substantial fecal shedding is expected to start years after initial infection with Mycobacterium avium subspecies paratuberculosis (MAP), the potential for shedding by calves and therefore calf-to-calf transmission is underestimated in current Johne’s disease (JD) control programs. Shedding patterns were determined in this study in experimentally infected calves. Fifty calves were challenged at 2 weeks or at 3, 6, 9 or 12 months of age (6 calves served as a control group). In each age group, 5 calves were inoculated with a low and 5 with a high dose of MAP. Fecal culture was performed monthly until necropsy at 17 months of age. Overall, 61% of inoculated calves, representing all age and dose groups, shed MAP in their feces at least once during the follow-up period. Although most calves shed sporadically, 4 calves in the 2-week and 3-month high dose groups shed at every sampling. In general, shedding peaked 2 months after inoculation. Calves inoculated at 2 weeks or 3 months with a high dose of MAP shed more frequently than those inoculated with a low dose. Calves shedding frequently had more culture-positive tissue locations and more severe gross and histological lesions at necropsy. In conclusion, calves inoculated up to 1 year of age shed MAP in their feces shortly after inoculation. Consequently, there is potential for MAP transfer between calves (especially if they are group housed) and therefore, JD control programs should consider young calves as a source of infection.
Collapse
Affiliation(s)
- Rienske A R Mortier
- Department of Production Animal Health, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.
| | - Karin Orsel
- Department of Production Animal Health, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.
| | - Robert Wolf
- Department of Production Animal Health, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.
| |
Collapse
|