1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Sun CQ, Peng J, Yang LB, Jiao ZL, Zhou LX, Tao RY, Zhu LJ, Tian ZQ, Huang MJ, Guo G. A Cecropin-4 Derived Peptide C18 Inhibits Candida albicans by Disturbing Mitochondrial Function. Front Microbiol 2022; 13:872322. [PMID: 35531288 PMCID: PMC9075107 DOI: 10.3389/fmicb.2022.872322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
Global burden of fungal infections and related health risk has accelerated at an incredible pace, and multidrug resistance emergency aggravates the need for the development of new effective strategies. Candida albicans is clinically the most ubiquitous pathogenic fungus that leads to high incidence and mortality in immunocompromised patients. Antimicrobial peptides (AMPs), in this context, represent promising alternatives having potential to be exploited for improving human health. In our previous studies, a Cecropin-4-derived peptide named C18 was found to possess a broader antibacterial spectrum after modification and exhibit significant antifungal activity against C. albicans. In this study, C18 shows antifungal activity against C. albicans or non-albicans Candida species with a minimum inhibitory concentration (MIC) at 4∼32 μg/ml, and clinical isolates of fluconazole (FLZ)-resistance C. tropicalis were highly susceptible to C18 with MIC value of 8 or 16 μg/ml. Additionally, C18 is superior to FLZ for killing planktonic C. albicans from inhibitory and killing kinetic curves. Moreover, C18 could attenuate the virulence of C. albicans, which includes damaging the cell structure, retarding hyphae transition, and inhibiting biofilm formation. Intriguingly, in the Galleria mellonella model with C. albicans infection, C18 could improve the survival rate of G. mellonella larvae to 70% and reduce C. albicans load from 5.01 × 107 to 5.62 × 104 CFU. For mechanistic action of C18, the level of reactive oxygen species (ROS) generation and cytosolic Ca2 + increased in the presence of C18, which is closely associated with mitochondrial dysfunction. Meanwhile, mitochondrial membrane potential (△Ψm) loss and ATP depletion of C. albicans occurred with the treatment of C18. We hypothesized that C18 might inhibit C. albicans via triggering mitochondrial dysfunction driven by ROS generation and Ca2 + accumulation. Our observation provides a basis for future research to explore the antifungal strategies and presents C18 as an attractive therapeutic candidate to be developed to treat candidiasis.
Collapse
Affiliation(s)
- Chao-Qin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Long-Bing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zheng-Long Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luo-Xiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Ru-Yu Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Li-Juan Zhu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhu-Qing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ming-Jiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
5
|
Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, Scalia G, Lu B. Molecular mechanisms of oxidative stress in stroke and cancer. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Ma X, Ji C. Remote Ischemic Conditioning: A Potential Treatment for Chronic Cerebral Hypoperfusion. Eur Neurol 2022; 85:253-259. [PMID: 35104816 DOI: 10.1159/000521803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a clinical syndrome, which is characterized by significantly decreased cerebral blood flow (CBF). CCH is a common consequence of cerebrovascular and cardiovascular diseases and the elderly. CCH results in a series of pathological damages, increasing cell death, autophagy dysfunction, amyloid β (Aβ) peptide accumulation, blood-brain barrier (BBB) disruption, and endothelial damage, which are found in CCH models. In addition, CCH is a prominent risk factor of cognitive impairment, such as vascular dementia, and CCH contributes to the occurrence and development of Alzheimer's disease. Therefore, the treatment of patients with CCH is of great value. It has been confirmed that remote ischemic conditioning (RIC) is a safe, promising treatment for acute and chronic cerebrovascular diseases. RIC significantly increases CBF in both CCH models and patients, inhibits neuronal apoptosis, reduces Aβ deposition, protects BBB integrity and endothelial function, alleviates neuroinflammation, improves cognitive impairment, and exerts neuroprotection. SUMMARY With the development of animal models, the pathophysiological mechanisms of CCH and RIC are increasingly revealed. Key Messages: We discuss the mechanisms related to hypoperfusion in the brain and explore the potential treatment of RIC for CCH to promote its transformation and application in humans.
Collapse
Affiliation(s)
- Xiao Ma
- Department of General Practice Medicine, Dalian Municipal Central Hospital, Dalian, China
| | - Chenhua Ji
- Department of General Practice Medicine, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
7
|
Ali M, Tabassum H, Alam MM, Parvez S. N-acetyl-L-cysteine ameliorates mitochondrial dysfunction in ischemia/reperfusion injury via attenuating Drp-1 mediated mitochondrial autophagy. Life Sci 2022; 293:120338. [PMID: 35065167 DOI: 10.1016/j.lfs.2022.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic reperfusion (I/R) injury causes a wide array of functional and structure alternations of mitochondria, associated with oxidative stress and increased the severity of injury. Despite the previous evidence for N-acetyl-L-cysteine (NAC) provide neuroprotection after I/R injury, it is unknown to evaluate the effect of NAC on altered mitochondrial autophagy forms an essential axis to impaired mitochondrial quality control in cerebral I/R injury. METHODS Male wistar rats subjected to I/R injury were used as transient Middle Cerebral Artery Occlusion (tMCAO) model. After I/R injury, the degree of cerebral tissue injury was detected by infarct volume, H&E staining and behavioral assessment. We also performed mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometry and mitochondrial respiratory complexes to evaluate the mitochondrial dysfunction. Finally, we performed the western blotting analysis to measure the apoptotic and autophagic marker. RESULTS We found that NAC administration significantly ameliorates brain injury, improves neurobehavioral outcome, decreases neuroinflammation and mitochondrial mediated oxidative stress. We evaluated the neuroprotective effect of NAC against neuronal apoptosis by assessing its ability to sustained mitochondrial integrity and function. Further studies revealed that beneficial effects of NAC is through targeting the mitochondrial autophagy via regulating the GSK-3β/Drp1mediated mitochondrial fission and inhibiting the expression of beclin-1 and conversion of LC3, as well as activating the p-Akt pro-survival pathway. CONCLUSION Our results suggest that NAC exerts neuroprotective effects to inhibit the altered mitochondrial changes and cell death in I/R injury via regulation of p-GSK-3β mediated Drp-1 translocation to the mitochondria.
Collapse
Affiliation(s)
- Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - M Mumtaz Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Ma M, Fu L, Jia Z, Zhong Q, Huang Z, Wang X, Fan Y, Lin T, Song T. miR-17-5p attenuates kidney ischemia-reperfusion injury by inhibiting the PTEN and BIM pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1545. [PMID: 34790751 PMCID: PMC8576735 DOI: 10.21037/atm-21-4678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Background Kidney ischemia-reperfusion (I/R) injury is an independent risk factor for delayed graft function after kidney transplantation with long-term graft survival deterioration. Previously, we found that the upregulated expression of miR-17-5p exerts a protective effect in kidney I/R injury, but the mechanism has not been clearly studied. Methods A kidney I/R injury model was induced in adult C57BL/6 male mice (20–22 g) by clamping both kidney pedicles for 30 min. The miR-17-5p agomir complex was injected into mice 24 h before surgery via the tail vein at a total injection volume of 10 µL/g body weight. The mice were euthanized on post-I/R injury day 2, and kidney function, apoptosis, autophagy, and related molecules were then detected. Human kidney-2 (HK-2) cells, which underwent hypoxia/reoxygenation, were treated with the miR-17-5p agomir, miR-17-5p antagomir, and small interfering ribonucleic acids (siRNAs). Cell viability, apoptosis, autophagy, and molecules were also examined. Results Autophagy, miR-17-5p expression, and kidney function damage were significantly more increased in the I/R group than in the sham group. In the cultured HK-2 cells underwent hypoxia/reoxygenation, the miR-17-5p agomir directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Bcl-2 like protein 11 (BIM), and attenuated apoptosis and autophagy. Further, miR-17-5p inhibited autophagy by activating the protein kinase B (Akt)/Beclin1 pathway, which was suppressed by siRNAs. Additionally, the administration of miR-17-5p agomir greatly improved kidney function in the I/R mice group by inhibiting autophagy and apoptosis. Conclusions These findings suggest a new possible therapeutic strategy for the prevention and treatment of kidney I/R injury. The upregulation of miR-17-5p expression appears to inhibit apoptosis and autophagy by suppressing PTEN and BIM expression, which in turn upregulates downstream Akt/Beclin1 expression.
Collapse
Affiliation(s)
- Ming Ma
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Fu
- Urology Department, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zihao Jia
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zhong
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongli Huang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Fan
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Lin
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ischemic Preconditioning of the Kidney. Bull Exp Biol Med 2021; 171:567-571. [PMID: 34617172 DOI: 10.1007/s10517-021-05270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 10/20/2022]
Abstract
The phenomenon of ischemic preconditioning was discovered in 1986 in experiments with the heart, and then it was observed in almost all organs, the kidneys included. This phenomenon is underlain by conditioning of the tissues with short ischemia/reperfusion cycles intended for subsequent exposure to pathological ischemia. Despite the kidneys are not viewed as so vital organs as the brain or the heart, the acute ischemic injury to kidneys is a widespread pathology responsible for the yearly death of almost 2 million patients, while the number of patients with chronic kidney disease is estimated as hundreds of millions or nearly 10% adult population the world over. Currently, it is believed that adaptation of the kidneys to ischemia by preconditioning is the most effective way to prevent the development of acute kidney injury, so deep insight into its molecular mechanisms will be a launch pad for creating the nephroprotective therapy by elevating renal tolerance to oxygen deficiency. This review focuses on the key signaling pathways of kidney ischemic preconditioning, the potential pharmacological mimetics of its key elements, and the limitations of this therapeutic avenue associated with age-related decline of ischemic tolerance of the kidneys.
Collapse
|
10
|
Melatonin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14080822. [PMID: 34451919 PMCID: PMC8399719 DOI: 10.3390/ph14080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.
Collapse
|
11
|
Franzin R, Stasi A, Ranieri E, Netti GS, Cantaluppi V, Gesualdo L, Stallone G, Castellano G. Targeting Premature Renal Aging: from Molecular Mechanisms of Cellular Senescence to Senolytic Trials. Front Pharmacol 2021; 12:630419. [PMID: 33995028 PMCID: PMC8117359 DOI: 10.3389/fphar.2021.630419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
The biological process of renal aging is characterized by progressive structural and functional deterioration of the kidney leading to end-stage renal disease, requiring renal replacement therapy. Since the discovery of pivotal mechanisms of senescence such as cell cycle arrest, apoptosis inhibition, and the development of a senescence-associated secretory phenotype (SASP), efforts in the understanding of how senescent cells participate in renal physiological and pathological aging have grown exponentially. This has been encouraged by both preclinical studies in animal models with senescent cell clearance or genetic depletion as well as due to evidence coming from the clinical oncologic experience. This review considers the molecular mechanism and pathways that trigger premature renal aging from mitochondrial dysfunction, epigenetic modifications to autophagy, DNA damage repair (DDR), and the involvement of extracellular vesicles. We also discuss the different pharmaceutical approaches to selectively target senescent cells (namely, senolytics) or the development of systemic SASP (called senomorphics) in basic models of CKD and clinical trials. Finally, an overview will be provided on the potential opportunities for their use in renal transplantation during ex vivo machine perfusion to improve the quality of the graft.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
12
|
Wu Q, Fang L, Yang Y, Wang A, Chen X, Sun J, Wan J, Hong C, Tong J, Tao S, Tian H. Protection of melatonin against long-term radon exposure-caused lung injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:472-483. [PMID: 33107683 DOI: 10.1002/tox.23052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Radon is one of the major pathogenic factors worldwide. Recently, epidemiological studies have suggested that radon exposure plays an important role in lung injury, which could further cause cancer. However, the toxic effects and underlying mechanism on lung injury are still not clear. Here, we identified the detailed toxic effects of long-term radon exposure. Specifically, the manifestations were inflammatory response and cell apoptosis in dose- and time-dependent manners. In detail, it caused the mitochondrial dysfunction and oxidative stress as determined by the abnormal levels of mitochondrial DNA copy number, adenosine triphosphate, mitochondrial membrane potential, superoxide dismutase, and cycloxygenase-2. Furthermore, we found that melatonin treatment ameliorated mitochondrial dysfunction and attenuated the levels of oxidative stress caused by long-term radon exposure, which could further inhibit the lung tissue apoptosis as determined by the decreased levels of cleaved caspase 3. Our study would provide potential therapeutic application of melatonin on lung tissue injury caused by long-term radon exposure.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lijun Fang
- Shanghai Minhang District Center for Disease Prevention and Control, Shanghai, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Medical College, Soochow University, Suzhou, China
| | - Xiaoyu Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College, Soochow University, Suzhou, China
| | | | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
14
|
Tong QH, Hu HY, Chai H, Wu AB, Guo XH, Wang S, Zhang YF, Fan XY. Dysregulation of the miR-1275/HK2 Axis Contributes to the Progression of Hypoxia/Reoxygenation-Induced Myocardial Injury. Arch Med Res 2021; 52:461-470. [PMID: 33551225 DOI: 10.1016/j.arcmed.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/06/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This research was designed to investigate the function of miR-1275 in hypoxia/reoxygenation (H/R)-induced myocardial injury and its in-depth mechanism. METHODS Firstly, the differential expression of miR-1275 in patients with heart failure and healthy control were analyzed based on Gene Expression Omnibus (GEO) database. Then H/R model was constructed in vitro with AC16 cells. The qRT-PCR assay was performed to analyze the expression of miR-1275 in H/R-treated cells. Afterwards, CCK-8 assay and flow cytometry assay were carried out to detect the cells viability and apoptosis. Bioinformatics prediction, western blotting and dual-luciferase reporter assays were set to check the target gene of miR-1275. Finally, we used an Elisa to test the effect of miR-1275/HK2 axis on inflammatory factors. RESULTS We found that miR-1275 was highly expressed in patients with heart failure and H/R treated AC16 cells than that in control group, and inhibition of miR-1275 can alleviate induced-decrease of cell viability. Subsequently, we revealed that HK2 was a downstream target gene of miR-1275, which was lowly expressed in patients with heart failure. Furthermore, our data also suggested that inhibition of miR-1275 can significantly alleviate H/R-induced myocardial injury, which can also markedly decrease the concentration of pro-inflammatory factors TNF-α, IL-1 β and increase the concentration of anti-inflammatory factors IL-10 in H/R-treated AC16 cells, while knockdown of HK2 canceled the effect caused by miR-1275 deletion. CONCLUSIONS In summing, our results illustrated that miR-1275/HK2 axis act as a potential regulator to against H/R-induced AC16 cells injury through anti-inflammatory effect.
Collapse
Affiliation(s)
- Qin-Hong Tong
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Hai-Ying Hu
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Hui Chai
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Ai-Bin Wu
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Xiao-Hu Guo
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Shan Wang
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Yu-Feng Zhang
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China
| | - Xiao-Yong Fan
- Department of Cardiology, The First Peoples Hospital of Lanzhou, Lanzhou, P.R. China.
| |
Collapse
|
15
|
Sugawara H, Moniwa N, Kuno A, Ohwada W, Osanami A, Shibata S, Kimura Y, Abe K, Gocho Y, Tanno M, Miura T. Activation of the angiotensin II receptor promotes autophagy in renal proximal tubular cells and affords protection from ischemia/reperfusion injury. J Pharmacol Sci 2021; 145:187-197. [PMID: 33451753 DOI: 10.1016/j.jphs.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Roles of the renin-angiotensin system in autophagy and ischemia/reperfusion (I/R) injury in the kidney have not been fully characterized. Here we examined the hypothesis that modest activation of the angiotensin II (Ang II) receptor upregulates autophagy and increases renal tolerance to I/R injury. Sprague-Dawley rats were assigned to treatment with a vehicle or a non-pressor dose of Ang II (200 ng/kg/min) for 72 h before 30-min renal I/R. LC3-immunohistochemistry showed that Ang II treatment increased autophagosomes in proximal tubular cells by 2.7 fold. In Ang II-pretreated rats, autophagosomes were increased by 2.5 fold compared to those in vehicle-treated rats at 4 h after I/R, when phosphorylation of Akt and S6 was suppressed and ULK1-Ser555 phosphorylation was increased. Serum creatinine and urea nitrogen levels, incidence of oliguria, and histological score of tubular necrosis at 24 h after I/R were attenuated by Ang II-pretreatment. In NRK-52E cells, Ang II induced LC3-II upregulation, which was inhibited by losartan but not by A779. The results indicate that a non-pressor dose of Ang-II promotes autophagy via ULK1-mediated signaling in renal tubular cells and attenuates renal I/R injury. The AT1 receptor, but not the Mas receptor, contributes to Ang-II-induced autophagy and presumably also to the renoprotection.
Collapse
Affiliation(s)
- Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoru Shibata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yufu Gocho
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
16
|
Renal Protective Effect of Beluga Lentil Pretreatment for Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6890679. [PMID: 33604384 PMCID: PMC7868138 DOI: 10.1155/2021/6890679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
Materials and Methods Mice were divided into four groups: normal, untreated, low- (2 mg), and high-dose (8 mg) beluga lentil treatment groups. Beluga lentil was orally administered for 2 weeks, followed by bilateral renal ischemia for 20 min and reperfusion for 30 min. Blood samples and kidney tissues were collected and analyzed to investigate renal function, histopathology, epithelial and endothelial cell damage, apoptosis, oxidative stress, and inflammatory responses. Results The pretreated groups maintained renal function, with significantly lower blood urea nitrogen (BUN) and creatinine levels, compared with the other groups. The histopathological analysis showed reduced proximal tubule injury and decreased injury-related molecule (kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)) secretion in the pretreated groups compared with the other groups. Terminal deoxynucleotidyl transferase dUTP nick-end labeling- (TUNEL-) positive cells and the secretion of apoptosis-related molecules (Fas and caspase 3) were significantly reduced in the pretreated groups compared with the other groups. The pretreated groups showed positive microvessel-associated gene (cluster of differentiation (CD31)) expression and negative adhesion molecule (intracellular adhesion molecule 1 (ICAM-1)) expression. An antioxidant effect was observed in the pretreatment groups, with reduced malonaldehyde (MDA) expression and increased antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx)) secretion. In the pretreated groups, F4/80+ macrophages and CD4+ T cell infiltration were inhibited and proinflammatory cytokine (interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α) levels decreased; however, the levels of anti-inflammatory cytokines (transforming growth factor- (TGF-) β, IL-10, and IL-22) increased. Conclusions Beluga lentil pretreatment demonstrated protective effects against I/R-induced renal damage, via antiapoptotic, anti-inflammatory, and antioxidant activities.
Collapse
|
17
|
Peng CL, Jiang N, Zhao JF, Liu K, Jiang W, Cao PG. Metformin relieves H/R-induced cardiomyocyte injury through miR-19a/ACSL axis - possible therapeutic target for myocardial I/R injury. Toxicol Appl Pharmacol 2021; 414:115408. [PMID: 33476677 DOI: 10.1016/j.taap.2021.115408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
This study proposed to investigate the function of miR-19a/ACSL axis in hypoxia/reoxygenation (H/R)-induced myocardial injury and determine whether metformin exerts its protective effect via miR-19a/ACSL axis. Firstly, bioinformatics analysis of data from Gene Expression Omnibus (GEO) database indicated that miR-19a was downregulated in patients with myocardial infarction (MI) compared to that in control group. H/R model was constructed with AC16 cells in vitro. qRT-PCR assay revealed that miR-19a was downregulated in H/R-treated AC16 cells. Then, CCK-8 assay demonstrated that upregulation of miR-19a significantly alleviated H/R-induced decline of cell viability. Moreover, bioinformatics prediction, western blotting and dual-luciferase reporter assays were performed to check the target genes of miR-19a, and ACSL1 was determined as a downstream target gene of miR-19a. Besides, the analysis based on Comparative Toxicogenomics Database (CTD) suggested that metformin targeting ACSL1 can be used as a potential drug for further research. Biological function experiments in vitro revealed that H/R markedly declined the viability and elevated the apoptosis of AC16 cells, while metformin can significantly mitigate these effects. Furthermore, overexpression of miR-19a significantly strengthened the beneficial effect of metformin on H/R-induced AC16 cells injury, which can be reversed by upregulation of ACSL1. In conclusion, metformin can alleviate H/R-induced cells injury via regulating miR-19a/ACSL axis, which lays a foundation for identifying novel targets for myocardial I/R injury therapy.
Collapse
Affiliation(s)
- Cai-Liang Peng
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Ning Jiang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Jian-Fei Zhao
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Kun Liu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Wei Jiang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Pei-Gang Cao
- Department of Cardiology, General Hospital of Heilongjiang Agricultural Reclamation Bureau, Harbin, PR China.
| |
Collapse
|
18
|
Decuypere JP, Hutchinson S, Monbaliu D, Martinet W, Pirenne J, Jochmans I. Autophagy Dynamics and Modulation in a Rat Model of Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21197185. [PMID: 33003356 PMCID: PMC7583807 DOI: 10.3390/ijms21197185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury leading to cell death is a major cause of acute kidney injury, contributing to morbidity and mortality. Autophagy counteracts cell death by removing damaged macromolecules and organelles, making it an interesting anchor point for treatment strategies. However, autophagy is also suggested to enhance cell death when the ischemic burden is too strong. To investigate whether the role of autophagy depends on the severity of ischemic stress, we analyzed the dynamics of autophagy and apoptosis in an IR rat model with mild (45 min) or severe (60 min) renal ischemia. Following mild IR, renal injury was associated with reduced autophagy, enhanced mammalian target of rapamycin (mTOR) activity, and apoptosis. Severe IR, on the other hand, was associated with a higher autophagic activity, independent of mTOR, and without affecting apoptosis. Autophagy stimulation by trehalose injected 24 and 48 h prior to onset of severe ischemia did not reduce renal injury markers nor function, but reduced apoptosis and restored tubular dilation 7 days post reperfusion. This suggests that trehalose-dependent autophagy stimulation enhances tissue repair following an IR injury. Our data show that autophagy dynamics are strongly dependent on the severity of IR and that trehalose shows the potential to trigger autophagy-dependent repair processes following renal IR injury.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Shawn Hutchinson
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Wim Martinet
- Department of Pharmaceutical Sciences, University of Antwerp, B-2610 Antwerp, Belgium;
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-348727
| |
Collapse
|
19
|
Gharbavi M, Johari B, Mousazadeh N, Rahimi B, Leilan MP, Eslami SS, Sharafi A. Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment. Mol Biol Rep 2020; 47:6517-6529. [PMID: 32767222 DOI: 10.1007/s11033-020-05704-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications. Physicochemical properties of all samples were characterized by UV-Vis spectroscopy, FT-IR, DLS, FESEM, and EDX techniques. The cytotoxicity of all samples against A549 cell line was assessed by cell viability analysis and flow cytometry for apoptotic cells as well as RT-PCR for the expression of MDR-1, Bax, and Bcl-2 genes. Besides, in vivo biocompatibility was performed by LD50 assay to evaluate the acute toxicity. The proposed formulation has a regular spherical shape and approximately narrow size distribution with proper zeta-potential values; the proposed DDS revealed a good biocompatibility. The compound showed a significant cytotoxic effect against A549 cell line. Although the Bax/Bcl-2 expression ratio was significantly in NISM-B@SeNPs- treated cancer cells, the expression of MDR-1 was non-significantly lower in NISM-B@SeNPs-treated cancer cells. The obtained results suggest that the proposed DDS presents a promising approach for drug delivery, co-delivery and multifunctional biomedicine applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Parvinzad Leilan
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Sadegh Eslami
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
20
|
Conditioning attenuates kidney and heart injury in rats following transient suprarenal occlusion of the abdominal aorta. Sci Rep 2020; 10:5040. [PMID: 32193441 PMCID: PMC7081351 DOI: 10.1038/s41598-020-61268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/11/2020] [Indexed: 11/08/2022] Open
Abstract
Suprarenal aortic clamping during abdominal aortic aneurysm (AAA) repair results in ischemia-reperfusion injury (IRI) in local (i.e. kidney) and distant (i.e. heart) tissue. To investigate perioperative approaches that mitigate IRI-induced tissue damage, Wistar rats underwent suprarenal aortic clamping either alone or in combination with short cycles of ischemic conditioning before and/or after clamping. Serum analysis revealed significant reduction in key biochemical parameters reflecting decreased tissue damage at systemic level and improved renal function in conditioned groups compared to controls (p < 0.05), which was corroborated by histolopathological evaluation. Importantly, the levels of DNA damage, as reflected by the biomarkers 8-oxo-G, γH2AX and pATM were reduced in conditioned versus non-conditioned cases. In this setting, NADPH oxidase, a source of free radicals, decreased in the myocardium of conditioned cases. Of note, administration of 5-HD and 8-SPT blocking key protective signaling routes abrogated the salutary effect of conditioning. To further understand the non-targeted effect of IRI on the heart, it was noted that serum TGF-β1 levels decreased in conditioned groups, whereas this difference was eliminated after 5-HD and 8-SPT administration. Collectively, conditioning strategies reduced both renal and myocardial injury. Additionally, the present study highlights TGF-β1 as an attractive target for manipulation in this context.
Collapse
|
21
|
Lv X, Lu P, Hu Y, Xu T. miR-346 Inhibited Apoptosis Against Myocardial Ischemia-Reperfusion Injury via Targeting Bax in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:895-905. [PMID: 32161448 PMCID: PMC7051900 DOI: 10.2147/dddt.s245193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Purpose Myocardial ischemia-reperfusion injury (MIRI) is a common pathophysiological process after occlusion of the blood vessels to restore blood supply. Apoptosis is one of the ways of myocardial cell death in this process. MicroRNAs (miRNAs), a class of short and noncoding RNAs, are involved in multiple biological processes by post-transcriptionally targeting their downstream effectors. To date, whether miRNAs exert biological effects in myocardial ischemia-reperfusion (I/R) injury remains to be further studied. Methods In this study, we induced MIRI model by ligating rat left anterior descending artery (LAD) for 30 mins and reperfusion for 2 hrs. The differential expression profile of miRNAs in rat models of MIRI was analyzed by miRNAs sequencing. Results We found that miRNAs sequencing analysis showed the expressions of 15 types of miRNAs, including miR-346, were downregulated and 29 types of miRNAs were elevated in the MIRI rat model. We observed the key regulator of apoptosis Bax was a predicted downstream target of miR-346 using online software TargetScan. And luciferase reporter assay was utilized to certify this prediction. Over-expression of miR-346 can attenuate myocardial injury and narrow infarct area by inhibiting myocardial cell apoptosis in rat models. Conclusion This study revealed a novel pathway, miR-346/Bax axis, in the regulation of apoptosis in MIRI and which might be a new molecular mechanism and therapeutic target.
Collapse
Affiliation(s)
- Xiangwei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pan Lu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yisen Hu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tongtong Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
22
|
Zhou L, Zhang L, Zhang Y, Yu X, Sun X, Zhu T, Li X, Liang W, Han Y, Qin C. PINK1 Deficiency Ameliorates Cisplatin-Induced Acute Kidney Injury in Rats. Front Physiol 2019; 10:1225. [PMID: 31607953 PMCID: PMC6773839 DOI: 10.3389/fphys.2019.01225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mitophagy plays a key role in cleaning damaged and depolarized mitochondria to maintain cellular homeostasis and viability. Although it was originally found in neurodegenerative diseases, mitophagy is reported to play an important role in acute kidney injury. PINK1 and Parkin are key molecules in mitophagy pathway. Here, we used PINK1 knockout rats to examine the role of PINK1/Parkin-mediated mitophagy in cisplatin nephrotoxicity. After cisplatin treatment, PINK1 knockout rats showed lower plasma creatinine and less tubular damage when compared with wild-type rats. Meanwhile, mitophagy indicated by autophagosome formation and LC3B-II accumulation was also attenuated in PINK1 knockout rats. Renal expression of PINK1 and Parkin were down-regulated while BNIP3L was up-regulated by cisplatin treatment, indicating a major role of BNIP3/BNIP3L pathway in cisplatin-induced mitophagy. Transmission electron microscopy showed that PINK1 deficiency inhibited cisplatin-induced mitochondrial fragmentation indicating an involvement of mitochondrial fusion and fission. Renal expression of mitochondrial dynamics related proteins including Fis1, Drp1, Mfn1, Mfn2, and Opa1 were checked by real-time PCR and western blots. The results showed PINK1 deficiency distinctly prevented cisplatin-induced up-regulation of DRP1. Finally, PINK1 deficiency alleviated cisplatin-induced tubular apoptosis indicated by TUNEL assay as well as the expression of caspase3 and cleaved caspase3. Together, these results suggested PINK1 deficiency ameliorated cisplatin-induced acute kidney injury in rats, possibly via inhibiting DRP1-mediated mitochondrial fission and excessive mitophagy.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Ling Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yu Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xuan Yu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Tao Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xianglei Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Wei Liang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yunlin Han
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| |
Collapse
|
23
|
Wu G, Tan J, Li J, Sun X, Du L, Tao S. miRNA-145-5p induces apoptosis after ischemia-reperfusion by targeting dual specificity phosphatase 6. J Cell Physiol 2019; 234:16281-16289. [PMID: 30883744 DOI: 10.1002/jcp.28291] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
Disorders mainly caused by ischemia-reperfusion (I/R), including stroke and myocardial infarction, is linked to debilitating health conditions and death. Recent research indicates that microRNAs (miRNAs) mediate the process of ischemic pathology. This study investigated the effects of miR-145-5p in regulating myocardial ischemic injury. The I/R models were established in rat cardiomyocytes H9C2 and rats. Western blot analysis and quantitative polymerase chain reaction was performed to analyze protein expression. Annexin V-FITC/PI staining was conducted to evaluate cell apoptosis. The application of miR-145-5p mimics and inhibitor revealed that miR-145-5p promoted apoptosis in cardiomyocytes. Furthermore, we found that miR-145-5p directly inhibited dual specificity phosphatase 6 (DUSP6) by luciferase reporter assay. The results indicated that DUSP6 was beneficial against I/R injury through inhibiting c-Jun N-terminal kinase pathways. In conclusion, the essential roles of miR-145-5p and DUSP6 in I/R provide a novel therapeutic target to develop future intervention strategies.
Collapse
Affiliation(s)
- Gang Wu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Junping Li
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, People's Republic of China
| | - Xiaoli Sun
- Department of Cardiology, Karamay Central Hospital, Karamay, People's Republic of China
| | - Lei Du
- Department of Cardiology, Karamay Central Hospital, Karamay, People's Republic of China
| | - Sun Tao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
25
|
Zheng Y, Shi B, Ma M, Wu X, Lin X. The novel relationship between Sirt3 and autophagy in myocardial ischemia–reperfusion. J Cell Physiol 2018; 234:5488-5495. [PMID: 30485429 DOI: 10.1002/jcp.27329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yitian Zheng
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University Hefei City, Anhui Province China
| | - Binhao Shi
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University Hefei City, Anhui Province China
| | - Mengqing Ma
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University Hefei City, Anhui Province China
| | - Xiaoqin Wu
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University Hefei City, Anhui Province China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University Hefei City, Anhui Province China
| |
Collapse
|
26
|
Hou X, Xiao H, Zhang Y, Zeng X, Huang M, Chen X, Birnbaumer L, Liao Y. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis 2018; 9:1015. [PMID: 30282964 PMCID: PMC6170481 DOI: 10.1038/s41419-018-1052-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/04/2018] [Accepted: 09/10/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) are generated under various pathological conditions such as renal ischemia/reperfusion (I/R) injury and provoke damage to multiple cellular organelles and processes. Overproduction of ROS causes oxidative stress and contributes to damages of renal proximal tubular cells (PTC), which are the main cause of the pathogenesis of renal I/R injury. Autophagy is a dynamic process that removes long-lived proteins and damaged organelles via lysosome-mediated degradation, which has an antioxidant effect that relieves oxidative stress. The canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel that allows passage of Ca2+, plays an important role in renal disease. Yet, the relationship between TRPC6 and autophagy, as well as their functions in renal oxidative stress injury, remains unclear. In this study, we found that oxidative stress triggered TRPC6-dependent Ca2+ influx in PTC to inhibit autophagy, thereby rendering cells more susceptible to death. We also demonstrated that TRPC6 knockout (TRPC6-/-) or inhibition by SAR7334, a TRPC6-selective inhibitor, increased autophagic flux and mitigated oxidative stress-induced apoptosis of PTC. The protective effects of TRPC6 ablation were prevented by autophagy inhibitors Chloroquine and Bafilomycin A1. Moreover, this study also shows that TRPC6 blockage promotes autophagic flux via inhibiting the PI3K/Akt/mTOR and ERK1/2 signaling pathways. This is the first evidence showing that TRPC6-mediated Ca2+ influx plays a novel role in suppressing cytoprotective autophagy triggered by oxidative stress in PTC, and it may become a novel therapeutic target for the treatment of renal oxidative stress injury in the future.
Collapse
Affiliation(s)
- Xin Hou
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Department of Anatomy, Medical College, Affiliated Hospital, Hebei University of Engineering, 056002, Handan, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yanhong Zhang
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xixi Zeng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Mengjun Huang
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaoyun Chen
- Department of Pathology, First Hospital of Wuhan, 430030, Wuhan, China
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos Aires, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China. .,Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
27
|
Hamzawy M, Gouda SAA, Rashed L, Morcos MA, Shoukry H, Sharawy N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin Exp Nephrol 2018; 23:43-55. [PMID: 29968126 DOI: 10.1007/s10157-018-1614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between tubular cell damage and regeneration. Several lines of evidences suggest a potential renoprotective effect of vitamin D. In this study, we investigated the effect of 22-oxacalcitriol (OCT), a synthetic vitamin D analogue, on renal fate in a rat model of ischemia reperfusion injury (IRI) induced acute kidney injury (AKI). METHODS 22-oxacalcitriol (OCT) was administered via intraperitoneal (IP) injection before ischemia, and continued after IRI that was performed through bilateral clamping of the renal pedicles. 96 h after reperfusion, rats were sacrificed for the evaluation of autophagy, apoptosis, and cell cycle arrest. Additionally, assessments of toll-like receptors (TLR), interferon gamma (IFN-g) and sodium-hydrogen exchanger-1 (NHE-1) were also performed to examine their relations to OCT-mediated cell response. RESULTS Treatment with OCT-attenuated functional deterioration and histological damage in IRI induced AKI, and significantly decreased cell apoptosis and fibrosis. In comparison with IRI rats, OCT + IRI rats manifested a significant exacerbation of autophagy as well as reduced cell cycle arrest. Moreover, the administration of OCT decreased IRI-induced upregulation of TLR4, IFN-g and NHE-1. CONCLUSION These results demonstrate that treatment with OCT has a renoprotective effect in ischemic AKI, possibly by suppressing cell loss. Changes in the expression of IFN-g and NHE-1 could partially link OCT to the cell survival-promoted effects.
Collapse
Affiliation(s)
- Magda Hamzawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Shoukry
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt. .,Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
28
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
29
|
Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, Messaoudi I, Fernandez-Checa JC, García Ruiz C, Ben Abdennebi H. Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol 2018; 233:8677-8690. [PMID: 29761825 DOI: 10.1002/jcp.26747] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl2 orally 24 hr and 30 min before ischemia (ZnCl2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R.
Collapse
Affiliation(s)
- Najet Hadj Abdallah
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Anna Baulies
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Ahlem Bouhlel
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Mohamed Bejaoui
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Mohamed A Zaouali
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Safa Ben Mimouna
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Imed Messaoudi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - José C Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Carmen García Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| |
Collapse
|
30
|
Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E. Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6193694. [PMID: 29104728 PMCID: PMC5637835 DOI: 10.1155/2017/6193694] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/20/2017] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) is a multifactorial entity that occurs in a variety of clinical settings. Although AKI is not a usual reason for intensive care unit (ICU) admission, it often complicates critically ill patients' clinical course requiring renal replacement therapy progressing sometimes to end-stage renal disease and increasing mortality. The causes of AKI in the group of ICU patients are further complicated from damaged metabolic state, systemic inflammation, sepsis, and hemodynamic dysregulations, leading to an imbalance that generates oxidative stress response. Abundant experimental and to a less extent clinical data support the important role of oxidative stress-related mechanisms in the injury phase of AKI. The purpose of this article is to present the main pathophysiologic mechanisms of AKI in ICU patients focusing on the different aspects of oxidative stress generation, the available evidence of interventional measures for AKI prevention, biomarkers used in a clinical setting, and future perspectives in oxidative stress regulation.
Collapse
Affiliation(s)
- Paraskevi Pavlakou
- Department of Nephrology, Medical School University of Ioannina, Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Michael Mitsis
- Department of Surgery, Medical School University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School University of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
Fu BC, Lang JL, Zhang DY, Sun L, Chen W, Liu W, Liu KY, Ma CY, Jiang SL, Li RK, Tian H. Suppression of miR-34a Expression in the Myocardium Protects Against Ischemia-Reperfusion Injury Through SIRT1 Protective Pathway. Stem Cells Dev 2017; 26:1270-1282. [PMID: 28599575 DOI: 10.1089/scd.2017.0062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-34a (miR-34a) is expressed in the myocardium and expression is altered after myocardial injury. We investigated the effects of miR-34a on heart function after ischemia-reperfusion (IR) injury. Cardiomyocytes were isolated from neonatal rat hearts and simulated IR injury was induced in vitro. Following IR injury in rats, infarct size was measured and left ventricular (LV) function was evaluated using echocardiography. Protein expression of silent information regulator 1 (SIRT1), acetylated p53 (ac-p53), Bcl-2 and Bax, and miR-34a and SIRT1 gene levels were analyzed. miR-34a overexpression exacerbated myocardial injury by increasing apoptosis and infarct size and decreasing LV function. Suppression of miR-34a attenuated myocardial IR injury. SIRT1 was negatively regulated by miR-34a and the expression of downstream genes, such as ac-p53, Bcl-2, and Bax were altered correspondingly. Increased expression of miR-34a aggravates injury after IR; miR-34a suppression therapy may represent a new line of treatment for myocardial IR injury.
Collapse
Affiliation(s)
- Bi-Cheng Fu
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Ji-Lu Lang
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Dong-Yang Zhang
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Lu Sun
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Wei Chen
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Wei Liu
- 2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Kai-Yu Liu
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Chong-Yi Ma
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Shu-Lin Jiang
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| | - Ren-Ke Li
- 3 Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network , Toronto, Canada .,4 Division of Cardiac Surgery, Department of Surgery, University of Toronto , Toronto, Canada
| | - Hai Tian
- 1 Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University , Harbin, China .,2 Key Laboratories of Myocardial Ischemia, Chinese Ministry of Education , Harbin, China
| |
Collapse
|
32
|
Dou K, Fu Q, Chen G, Yu F, Liu Y, Cao Z, Li G, Zhao X, Xia L, Chen L, Wang H, You J. A novel dual-ratiometric-response fluorescent probe for SO2/ClO− detection in cells and in vivo and its application in exploring the dichotomous role of SO2 under the ClO− induced oxidative stress. Biomaterials 2017; 133:82-93. [DOI: 10.1016/j.biomaterials.2017.04.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
|
33
|
Zhang LX, Zhao HJ, Sun DL, Gao SL, Zhang HM, Ding XG. Niclosamide attenuates inflammatory cytokines via the autophagy pathway leading to improved outcomes in renal ischemia/reperfusion injury. Mol Med Rep 2017. [PMID: 28627643 PMCID: PMC5561795 DOI: 10.3892/mmr.2017.6768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury is a debilitating condition that leads to loss renal function and damage to kidney tissue in the majority of patients with acute kidney disease. Previous studies have indicated that autophagy serves a protective function in renal I/R injury. In the present study, the effect of the anthelmintic niclosamide in the regulation of inflammatory responses in kidney I/R was investigated. A total of 40 Sprague-Dawley rats were randomly divided into the following 5 groups (n=8 in each group): Sham group; renal I/R injury; renal I/R injury plus 3-methyladenine (3-MA) treatment (15 mg/kg); renal I/R injury plus niclosamide (25 mg/kg); and renal I/R injury plus rapamycin (10 mg/kg). The expression levels of autophagy-associated proteins in kidney samples obtained from rats with I/R injury were examined using reverse transcription-quantitative polymerase chain reaction and western blotting techniques. In addition, histopathological alterations, the expression of cytokines and renal function were evaluated. Treatment with niclosamide was associated with induction of autophagy and an overall improvement in renal function. There was an increased expression of autophagosome-associated proteins, suggesting a strong correlation between autophagy and improvement of renal function. The increased levels of anti-inflammatory cytokines and decreased levels of pro-inflammatory cytokines provided additional evidence that niclosamide may be effective for the treatment of renal I/R injury. Clinical studies are required to further validate the results of the present study.
Collapse
Affiliation(s)
- Lin-Xia Zhang
- Department of Geriatrics, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hui-Juan Zhao
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Dong-Li Sun
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shan-Lin Gao
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hong-Mei Zhang
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xin-Guo Ding
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
34
|
Pu T, Liao XH, Sun H, Guo H, Jiang X, Peng JB, Zhang L, Liu Q. Augmenter of liver regeneration regulates autophagy in renal ischemia–reperfusion injury via the AMPK/mTOR pathway. Apoptosis 2017; 22:955-969. [DOI: 10.1007/s10495-017-1370-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro. Sci Rep 2017; 7:42764. [PMID: 28225005 PMCID: PMC5320537 DOI: 10.1038/srep42764] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.
Collapse
|
36
|
Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion. Int J Mol Sci 2016; 17:ijms17081196. [PMID: 27455253 PMCID: PMC5000594 DOI: 10.3390/ijms17081196] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Elevated homocysteine (Hcy) levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG). Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO). Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive) and hardly in astrocytes (GFAP-positive). 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA). Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.
Collapse
|
37
|
Abstract
Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development.
Collapse
Affiliation(s)
- Andrea Havasi
- Department of Nephrology, Boston University Medical Center, Boston, MA.
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, GA
| |
Collapse
|
38
|
De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H, Levtchenko E, Mekahli D. Autophagy in renal diseases. Pediatr Nephrol 2016; 31:737-52. [PMID: 26141928 DOI: 10.1007/s00467-015-3134-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Autophagy is the cell biology process in which cytoplasmic components are degraded in lysosomes to maintain cellular homeostasis and energy production. In the healthy kidney, autophagy plays an important role in the homeostasis and viability of renal cells such as podocytes and tubular epithelial cells and of immune cells. Recently, evidence is mounting that (dys)regulation of autophagy is implicated in the pathogenesis of various renal diseases, and might be an attractive target for new renoprotective therapies. In this review, we provide an overview of the role of autophagy in kidney physiology and kidney diseases.
Collapse
Affiliation(s)
- Stéphanie De Rechter
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.
| | - Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Department of Microbiology and Immunology Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Lambertus P van den Heuvel
- Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.,Translational Metabolic Laboratory and Department of Paediatric Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Long C, Yang J, Yang H, Li X, Wang G. Attenuation of renal ischemia/reperfusion injury by oleanolic acid preconditioning via its antioxidant, anti‑inflammatory, and anti‑apoptotic activities. Mol Med Rep 2016; 13:4697-704. [PMID: 27082705 DOI: 10.3892/mmr.2016.5128] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 01/20/2016] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R)‑associated acute kidney injury is a major clinical problem in both native and transplanted kidneys. Renal I/R, and subsequent renal injury, may be attributed to oxidative stress, inflammation, and apoptosis. Oleanolic acid (OA) is a natural product, which possesses antioxidant, anti‑inflammatory, and anti‑apoptotic activities. The present study aimed to examine the effects of OA preconditioning on renal I/R and the possible underlying mechanisms. In a renal I/R model, rats were administered OA (12.5, 25 and 50 mg/kg) for 15 consecutive days prior to bilateral renal I/R induction. Serum samples and kidneys were then collected and stored for subsequent determination. The results of the present study demonstrated that OA significantly and dose‑dependently attenuated I/R‑induced renal damage. OA prevented renal I/R injury, as evidenced by decreased levels of blood urea nitrogen, creatinine, kidney injury molecule‑1 and lactate dehydrogenase. In addition, OA defended against oxidative stress, as reflected by decreased levels of methane dicarboxylic aldehyde, increased activities of superoxide dismutase, catalase and glutathione peroxidase, and increased glutathione (GSH) levels. Levels of proinflammatory cytokines, interferon‑γ, interleukin (IL)‑6) and myeloperoxidase, were also reduced by OA, whereas the anti‑inflammatory cytokine IL‑10 was increased. Furthermore, OA prevented I/R‑induced apoptotic cell death, and prevented decreases in the mRNA expression levels of nuclear factor erythroid 2‑related factor 2 (Nrf2) and γ‑glutamylcysteine ligase (GCLc). Conversely, buthionine sulphoximine attenuated the protective effects of OA on renal I/R injury. These results indicated that OA preconditioning may prevent I/R‑induced renal damage via antioxidant, anti‑inflammatory, and anti‑apoptotic activities. Stabilization of Nrf2/GCLc signaling and subsequent maintenance of the GSH pool is critical for the protective effects of OA against renal I/R injury. The present study reported a novel therapeutic strategy for the treatment of renal I/R injury.
Collapse
Affiliation(s)
- Chengmei Long
- Graduate Faculty, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinran Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
Xu YB, Zhang PJ, Liu Q, Mao XN, Wang CC. Role of autophagy related protein Beclin 1 in model of hepatic ischemia-reperfusion injury. Shijie Huaren Xiaohua Zazhi 2016; 24:209-214. [DOI: 10.11569/wcjd.v24.i2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surgical resection is the optimal treatment for primary liver cancer, but surgery is often faced with recession of the liver function reserve, ischemia-reperfusion injury of the residual liver and other disadvantages. Autophagy is a form of programmed cell death after hepatic ischemia-reperfusion, and its role in ischemia-reperfusion injury is a hotspot of research in recent years. In the experimental research of simulated liver ischemia-reperfusion injury, the variation of autophagy related protein Beclin 1 is often detected, which suggests the change of autophagy activity. Many pretreatment methods have been found to be able to reduce the level of Beclin 1 and relieve the hepatic damage in the model of hepatic ischemia-reperfusion injury. Here we discuss the research progress in understanding the role of Beclin 1 in hepatic ischemia-reperfusion injury.
Collapse
|
41
|
Alnasser HA, Guan Q, Zhang F, Gleave ME, Nguan CYC, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol 2016; 310:F160-73. [DOI: 10.1152/ajprenal.00304.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular autophagy is a prosurvival mechanism in the kidney against ischemia-reperfusion injury (IRI), but the molecular pathways that activate the autophagy in ischemic kidneys are not fully understood. Clusterin (CLU) is a chaperone-like protein, and its expression is associated with kidney resistance to IRI. The present study investigated the role of CLU in prosurvival autophagy in the kidney. Renal IRI was induced in mice by clamping renal pedicles at 32°C for 45 min. Hypoxia in renal tubular epithelial cell (TEC) cultures was induced by exposure to a 1% O2 atmosphere. Autophagy was determined by either light chain 3-BII expression with Western blot analysis or light chain 3-green fluorescent protein aggregation with confocal microscopy. Cell apoptosis was determined by flow cytometric analysis. The unfolded protein response was determined by PCR array. Here, we showed that autophagy was significantly activated by IRI in wild-type (WT) but not CLU-deficient kidneys. Similarly, autophagy was activated by hypoxia in human proximal TECs (HKC-8) and WT mouse primary TECs but was impaired in CLU-null TECs. Hypoxia-activated autophagy was CLU dependent and positively correlated with cell survival, and inhibition of autophagy significantly promoted cell death in both HKC-8 and mouse WT/CLU-expressing TECs but not in CLU-null TECs. Further experiments showed that CLU-dependent prosurvival autophagy was associated with activation of the unfolded protein response in hypoxic kidney cells. In conclusion, these data suggest that activation of prosurvival autophagy by hypoxia in kidney cells requires CLU expression and may be a key cytoprotective mechanism of CLU in the protection of the kidney from hypoxia/ischemia-mediated injury.
Collapse
Affiliation(s)
- Hatem A. Alnasser
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Christopher Y. C. Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| |
Collapse
|
42
|
Freitas FPS, Porto ML, Tranhago CP, Piontkowski R, Miguel EC, Miguel TBAR, Martins JL, Nascimento KS, Balarini CM, Cavada BS, Meyrelles SS, Vasquez EC, Gava AL. Dioclea violacea lectin ameliorates oxidative stress and renal dysfunction in an experimental model of acute kidney injury. Am J Transl Res 2015; 7:2573-2588. [PMID: 26885258 PMCID: PMC4731658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury.
Collapse
Affiliation(s)
- Flavia PS Freitas
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
| | - Marcella L Porto
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
| | - Camilla P Tranhago
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
| | - Rogerio Piontkowski
- Pharmaceutical Sciences Graduate Program, University of Vila VelhaVila Velha, ES, Brazil
| | - Emilio C Miguel
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, CE, Brazil
| | - Thaiz BAR Miguel
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, CE, Brazil
| | - Jorge L Martins
- Institute of Chemistry and Geosciences, Federal University of PelotasPelotas, RS, Brazil
| | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, CE, Brazil
| | - Camille M Balarini
- Dept. of Physiology and Pathology, Health Sciences Center, Federal University of ParaibaJoao Pessoa, PB, Brazil
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, CE, Brazil
| | - Silvana S Meyrelles
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
| | - Elisardo C Vasquez
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
- Pharmaceutical Sciences Graduate Program, University of Vila VelhaVila Velha, ES, Brazil
| | - Agata L Gava
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito SantoVitoria, ES, Brazil
- Division of Nephrology, McMaster UniversityHamilton, ON, Canada
| |
Collapse
|
43
|
Yin P, Xu J, He S, Liu F, Yin J, Wan C, mei C, Yin Y, Xu X, Xia Z. Endoplasmic Reticulum Stress in Heat- and Shake-Induced Injury in the Rat Small Intestine. PLoS One 2015; 10:e0143922. [PMID: 26636675 PMCID: PMC4670120 DOI: 10.1371/journal.pone.0143922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
We investigated the mechanisms underlying damage to rat small intestine in heat- and shake-induced stress. Eighteen Sprague-Dawley rats were randomly divided into a control group and a 3-day stressed group treated 2 h daily for 3 days on a rotary platform at 35°C and 60 r/min. Hematoxylin and eosin-stained paraffin sections of the jejunum following stress revealed shedding of the villus tip epithelial cells and lamina propria exposure. Apoptosis increased at the villus tip and extended to the basement membrane. Photomicrographs revealed that the microvilli were shorter and sparser; the nuclear envelope invaginated and gaps in the karyolemma increased; and the endoplasmic reticulum (ER) swelled significantly. Gene microarray analysis assessed 93 differentially expressed genes associated with apoptosis, ER stress, and autophagy. Relevant genes were compiled from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Forty-one genes were involved in the regulation of apoptosis, fifteen were related to autophagy, and eleven responded to ER stress. According to KEGG, the apoptosis pathways, mitogen-activated protein kinase(MAPK) signaling pathway, the mammalian target of rapamycin (mTOR) signaling pathway, and regulation of autophagy were involved. Caspase3 (Casp3), caspase12 (Casp12), and microtubule-associate proteins 1 light chain 3(LC3) increased significantly at the villus tip while mTOR decreased; phosphorylated-AKT (P-AKT) decreased. ER stress was involved and induced autophagy and apoptosis in rat intestinal damage following heat and shake stress. Bioinformatic analysis will help determine the underlying mechanisms in stress-induced damage in the small intestine.
Collapse
Affiliation(s)
- Peng Yin
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
| | - Jianqin Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
| | - Shasha He
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, PR China
- * E-mail: (ZX); (YY); (FL)
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Changrong Wan
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
| | - Chen mei
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, PR China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- * E-mail: (ZX); (YY); (FL)
| | - Xiaolong Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
| | - Zhaofei Xia
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, PR China
- * E-mail: (ZX); (YY); (FL)
| |
Collapse
|
44
|
The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 2015; 39:347-356. [DOI: 10.1007/s10753-015-0255-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zhang L, Yao J, Wang X, Li H, Liu T, Zhao W. Poly (ADP-ribose) synthetase inhibitor has a heart protective effect in a rat model of experimental sepsis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9824-9835. [PMID: 26617692 PMCID: PMC4637777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED The aim of this study is to investigate whether PARP inhibitor could reduce cell apoptosis and injury in the heart during sepsis. MATERIALS AND METHODS 60 healthy male Sprague-Dawley (SD) rats were randomly divided into 4 groups---sham group, modal group, 3-AB pretreatment group and 3-AB treatment group, 15 rats per group. The cecal ligation and puncture (CLP) model of sepsis was used. The following were determined--levels of malondialdehyde (MDA), ATP and nicotinamide adenine dinucleotide (NAD+), expression of PARP, Bcl-2, Bax, cytochrome C and caspase 3 activity in the myocardium tissue, levels of serum creatine kinase muscle brain (CK-MB) fraction and troponin I. RESULTS Histological and molecular analyses showed that myocardial cells apoptosis were associated with mitochondria injury, with an increase in the amount of PARP and a decrease in ATP and NAD+ levels in model group. In addition, the levels of Bax, cytochrome C and caspase 3 activity, serum levels of CK-MB and troponin I increased, but levels of Bcl-2 significantly decreased. Inhibition of PARP upregulated the levels of ATP, NAD + and Bcl-2, and significantly reduced the activation of PARP and caspase 3, decreased the levels of MDA, cytochrome C, CK-MB and troponin I. As a result, apoptosis in the heart was attenuated. CONCLUSION These results indicate that PARP activation may be involved in apoptosis in the heart induced by sepsis and 3-AB could improve it.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical CollegeYantai, P. R. China
| | - Jinpeng Yao
- Department of Cardiovascular Center, Hospital of Yantai Economic Technology Development AreaYantai, P. R. China
| | - Xifeng Wang
- Department of Critical Care Medicine, Yu Huang Ding Hospital, Qingdao UniversityYantai, P. R. China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical CollegeYantai, P. R. China
| | - Tongshen Liu
- Department of Histology and Embryology, Binzhou Medical CollegeYantai, P. R. China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical CollegeYantai, P. R. China
| |
Collapse
|
46
|
Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J, Jochmans I. Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. Am J Kidney Dis 2015; 66:699-709. [PMID: 26169721 DOI: 10.1053/j.ajkd.2015.05.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/21/2015] [Indexed: 11/11/2022]
Abstract
Autophagy, an evolutionary conserved intracellular lysosome-dependent catabolic process, is an important mechanism for cellular homeostasis and survival during pathologic stress conditions in the kidney, such as ischemia-reperfusion injury (IRI). However, stimulation of autophagy has been described to both improve and exacerbate IRI in the kidney. We summarize the current understanding of autophagy in renal IRI and discuss possible reasons for these contradictory findings. Furthermore, we hypothesize that autophagy plays a dual role in renal IRI, having both protective and detrimental properties, depending on the duration of the ischemic period and the phase of the IRI process. Finally, we discuss the influence of currently used diuretics and immunosuppressive drugs on autophagy, underscoring the need to clarify the puzzling role of autophagy in renal IRI.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation, KU Leuven, University of Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - Laurens J Ceulemans
- Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation, KU Leuven, University of Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy, Leuven, Belgium
| | - Diethard Monbaliu
- Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation, KU Leuven, University of Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven, University of Leuven, Leuven, Belgium; Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation, KU Leuven, University of Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation, KU Leuven, University of Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Trivedi P, Jena G, Tikoo K, Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog 2015; 55:255-67. [DOI: 10.1002/mc.22274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 01/07/2023]
Affiliation(s)
- P.P. Trivedi
- Facility for Risk Assessment and Intervention Studies; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - G.B. Jena
- Facility for Risk Assessment and Intervention Studies; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - K.B. Tikoo
- Laboratory of Chromatin Biology; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - V. Kumar
- Icon Analytical Equipment Pvt Ltd; Delhi India
| |
Collapse
|
48
|
Wang L, Guo LL, Wang LH, Zhang GX, Shang J, Murao K, Chen DF, Fan XH, Fu WQ. Oxidative stress and substance P mediate psychological stress-induced autophagy and delay of hair growth in mice. Arch Dermatol Res 2014; 307:171-81. [DOI: 10.1007/s00403-014-1521-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
|
49
|
Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2014; 22:367-76. [PMID: 25257169 PMCID: PMC4326571 DOI: 10.1038/cdd.2014.143] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/31/2022] Open
Abstract
It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions.
Collapse
|
50
|
Mitochondrial KATP channel involvement in angiotensin II-induced autophagy in vascular smooth muscle cells. Basic Res Cardiol 2014; 109:416. [PMID: 24847907 PMCID: PMC4090747 DOI: 10.1007/s00395-014-0416-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023]
Abstract
Autophagy has emerged as a powerful process in the response to cellular injury. The present study was designed to investigate signal transduction pathways in angiotensin II (Ang II)-induced autophagy. Rat vascular smooth muscle cells (VSMCs) were stimulated with different doses of Ang II (10(-9)-10(-5) mol/L) for different time periods (6-72 h). Incubation with Ang II increased the production of reactive oxygen species (ROS), increased the LC3-II to LC3-I ratio, increased beclin-1 expression, and decreased SQSTM1/p62 expression in a dose- and time-dependent manner. In addition, Ang II increased autophagosome formation. Increased ROS production induced by Ang II was inhibited by Ang II type 1 receptor (AT1) blockers (Olmesartan and Candesartan, ARB), a NADPH Oxidase inhibitor (apocynin), and mitochondrial KATP channels inhibitor (5-hydroxydecanoate, 5HD). Ang II (10(-7) mol/L, 48 h)-induced increase in the LC3-II to LC3-I ratio, the formation of autophagosomes, expression of beclin-1 and decrease in the expression of SQSTM1/p62 were also inhibited by pretreatment with 3-methyladenine or bafilomycin A1 (inhibitors of autophagy), olmesartan and candesartan (in dose-dependent manners), apocynin, 5HD, and siRNA Atg5. Our results indicate that Ang II increases autophagy levels via activation of AT1 receptor and NADPH oxidase. Mitochondrial KATP channels also play an important role in Ang II-induced autophagy. Our results may provide a new strategy for treatment of cardiovascular diseases with Ang II.
Collapse
|