1
|
Bi S, Xu Z, Wang Z, Liu Y, Yu B, Tian J, Liu C, Qiao L, Zhang Y. Polydatin from Polygoni Cuspidati Rhizoma et Radix regulates glucolipid metabolism in the liver of diabetic rats: Multiscale analysis of network pharmacology and multiomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155992. [PMID: 39216300 DOI: 10.1016/j.phymed.2024.155992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Polygoni Cuspidati Rhizoma et Radix (Huzhang in Chinese), refers to the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Huzhang is commonly used in clinical practice for the prevention and treatment of diabetes and its complications, but its active components and regulatory mechanisms have not yet been thoroughly analyzed. PURPOSE The network pharmacology combined with multi-omics analysis will be employed to dissect the substance basis and action mechanism of Huzhang in exerting its anti-diabetic activity. METHODS This study employed phenotypic indicators for baseline assessment, followed by integrated analysis using network pharmacology, metabolomics, transcriptomics, and qPCR technology to elucidate the active components and pharmacological mechanisms of Huzhang. RESULTS The analysis of network pharmacology revealed that polydatin is a potential active component responsible for the anti-T2DM pharmacological effects of Huzhang. In vivo experimental results demonstrated that polydatin significantly regulates blood glucose, lipid levels, liver function, and liver pathological damage in diabetic rats. Analysis results from transcriptomics, metabolomics, and qPCR validation showed that polydatin comprehensively regulates glucose and lipid metabolism in T2DM by modulating bile acid metabolism, fatty acid oxidation, and lipogenesis. CONCLUSION Polydatin is a key component of Huzhang in treating T2DM, and its regulatory mechanisms are diverse, indicating significant development potential.
Collapse
Affiliation(s)
- Shijie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhenzhen Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanxia Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bin Yu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaye Tian
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Ural C, Celik A, Ozbal S, Guneli E, Arslan S, Ergur BU, Cavdar C, Akdoğan G, Cavdar Z. The renoprotective effects of taurine against diabetic nephropathy via the p38 MAPK and TGF-β/Smad2/3 signaling pathways. Amino Acids 2023; 55:1665-1677. [PMID: 37805666 DOI: 10.1007/s00726-023-03342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Diabetic nephropathy (DN), a severe diabetes complication, causes kidney morphological and structural changes due to extracellular matrix accumulation. This accumulation is caused mainly by oxidative stress. Semi-essential amino acid derivative taurine has powerful antioxidant and antifibrotic effects. The aim of this study was to investigate the renoprotective effects of taurine through its possible roles in oxidative stress, extracellular matrix proteins, and the signaling pathways associated with the accumulation of extracellular matrix proteins in DN rats. 29 Wistar albino rats were randomly separated into control, taurine, diabetes, and diabetes + taurine groups. Diabetes animals were injected 45 mg/kg streptozosine. Taurine is given by adding to drinking water as 1% (w/v). Urine, serum, and kidney tissue were collected from rats for biochemical and histological analysis after 12 weeks. According to the studies, taurine significantly reduces the levels of malondialdehyde (MDA), total oxidant status (TOS), and protein expression of NADPH oxidase 4 (NOX4) that increase in diabetic kidney tissue. Also, decreased superoxide dismutase (SOD) activity levels significantly increased with taurine in diabetic rats. Moreover, increased mRNA and protein levels of fibronectin decreased with taurine. The matrix metalloproteinase (MMP)-2 and MMP-9 activities and their mRNA levels increased significantly, and this increase was significantly summed with taurine. There was a decrease in mRNA expression of Extracellular matrix metalloproteinase inducer (EMMPRIN). Taurine significantly increased this decrease. Diabetes increased mRNA expressions of transforming growth factor (TGF)-β and Smad2/3. Taurine significantly reduced this induction. TGF-β protein expression, p38, and Smad2/3 activations were also inhibited, but taurine was suppressed significantly. All these findings indicate that taurine may be an effective practical strategy to prevent renal diabetic injury.
Collapse
Affiliation(s)
- Cemre Ural
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Asli Celik
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ensari Guneli
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Caner Cavdar
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gül Akdoğan
- Department of Medical Biochemistry, School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
3
|
Li C, Gao L, Lv C, Li Z, Fan S, Liu X, Rong X, Huang Y, Liu J. Active role of amino acid metabolism in early diagnosis and treatment of diabetic kidney disease. Front Nutr 2023; 10:1239838. [PMID: 37781128 PMCID: PMC10539689 DOI: 10.3389/fnut.2023.1239838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is one of the significant microvascular consequences of type 2 diabetes mellitus with a complex etiology and protracted course. In the early stages of DKD, the majority of patients experience an insidious onset and few overt clinical symptoms and indicators, but they are prone to develop end-stage renal disease in the later stage, which is life-threatening. The abnormal amino acid metabolism is tightly associated with the development of DKD, which involves several pathological processes such as oxidative stress, inflammatory response, and immune response and is also closely related to autophagy, mitochondrial dysfunction, and iron death. With a focus on taurine, branched-chain amino acids (BCAAs) and glutamine, we explored the biological effects of various amino acid mechanisms linked to DKD, the impact of amino acid metabolism in the early diagnosis of DKD, and the role of amino acid metabolism in treating DKD, to offer fresh objectives and guidelines for later early detection and DKD therapy.
Collapse
Affiliation(s)
- Chenming Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lidong Gao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Lv
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqiang Li
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Rong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Qu J, Liu K, Liu S, Yue D, Zhang P, Mao X, He W, Huang K, Chen X. Taurine alleviates ochratoxin A-induced pyroptosis in PK-15 cells by inhibiting oxidative stress. J Biochem Mol Toxicol 2023; 37:e23249. [PMID: 36281498 DOI: 10.1002/jbt.23249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Ochratoxin A (OTA) is one of the most harmful mycotoxins, which can cause multiple toxicological effects, especially nephrotoxicity in animals and humans. Taurine is an essential amino acid with various biological functions such as anti-inflammatory and anti-oxidation. However, the protective effect of taurine on OTA-induced nephrotoxicity and pyroptosis had not been reported. Our results showed that OTA exposure induced cytotoxicity and oxidative stress in PK-15 cells, including reactive oxygen species (ROS) accumulation, increased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and decreased mRNA levels of catalase (CAT), glutathione peroxidase 1 (GPx1), and glutathione peroxidase 4 (GPx4). In addition, OTA treatment induced pyroptosis by increasing the expressions of pyroptosis-related proteins NLRP3, GSDMD, Caspase-1 P20, ASC, Pro-caspase-1, and IL-1β. Meanwhile, taurine could alleviate OTA-induced pyroptosis and cytotoxicity, as well as reduce ROS level, COX-2, and iNOS mRNA levels, and increase the mRNA levels of the antioxidant enzyme in PK-15 cells. Taken together, taurine alleviated OTA-induced pyroptosis in PK-15 cells by inhibiting ROS generation and altering the activity of antioxidant enzymes, thereby attenuating its nephrotoxicity.
Collapse
Affiliation(s)
- Jie Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|
6
|
The Effects of TRX Suspension Training Combined with Taurine Supplementation on Body Composition, Glycemic and Lipid Markers in Women with Type 2 Diabetes. Nutrients 2021; 13:nu13113958. [PMID: 34836211 PMCID: PMC8621658 DOI: 10.3390/nu13113958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: We aimed to investigate the effects of an 8-week total-body resistance exercise (TRX) suspension training intervention combined with taurine supplementation on body composition, blood glucose, and lipid markers in T2D females. Methods: Forty T2D middle-aged females (age: 53 ± 5 years, body mass = 84.3 ± 5.1 kg) were randomly assigned to four groups, TRX suspension training + placebo (TP; n = 10), TRX suspension training + taurine supplementation (TT; n = 10), taurine supplementation (T; n = 10), or control (C; n = 10). Body composition (body mass, body mass index (BMI), body fat percentage (BFP)), blood glucose (fasting blood sugar (FBS)), hemoglobin A1c (HbA1c), Insulin, and Insulin resistance (HOMA-IR), and lipid markers (low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC)) were evaluated prior to and after interventions. Results: All three interventions significantly decreased body mass, BMI, and BFP with no changes between them for body mass and BMI; however, BFP changes in the TT group were significantly greater than all other groups. FBS was significantly reduced in TP and TT. Insulin concentrations’ decrement were significantly greater in all experimental groups compared to C; however, no between group differences were observed between TT, TP, and T. In regards to HOMA-IR, decreases in TT were significantly greater than all other groups TG, HbA1c, and LDL were reduced following all interventions. HDL values significantly increased only in the TT group, while TC significantly decreased in TP and TT groups. Changes in HbA1c, TG, HDL, and TC were significantly greater in the TT compared to all other groups. Conclusions: TRX training improved glycemic and lipid profiles, while taurine supplementation alone failed to show hypoglycemic and hypolipidemic properties. Notably, the synergic effects of TRX training and taurine supplementation were shown in HbA1c, HOMA-IR, TG, TC, HDL, and BFP changes. Our outcomes suggest that TRX training + taurine supplementation may be an effective adjuvant therapy in individuals with T2D.
Collapse
|
7
|
Ghanim A, Farag M, Anwar M, Ali N, Hawas M, Elsallab H, Elhendawy W, Basyouni L, Refaey O, Zaki K, Ali N, Metwaly H. Taurine alleviates kidney injury in a thioacetamide rat model by mediating Nrf2/HO-1, NQO-1 and MAPK/ NF-κB signaling pathways. Can J Physiol Pharmacol 2021; 100:352-360. [PMID: 34695366 DOI: 10.1139/cjpp-2021-0488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the molecular mechanisms by which taurine exerts its reno-protective effects in thioacetamide (TAA)-induced kidney injury in rats. Rats received taurine (100 mg/kg daily, intraperitoneally) either from day 1 of TAA injection (250 mg/kg twice weekly for 6 weeks) or after 6 weeks of TAA administration. Taurine treatment, either concomitant or later as a therapy, restored kidney functions, reduced BUN, creatinine, MDA, and increased renal levels of SOD and reversed the increase of KIM-1 and NGAL caused by TAA. Taurine treatment also led to a significant rise in Nrf2, HO-1, and NQO-1 levels, with significant suppression of ERK 1/2, NF-κB, and TNFα gene expressions, and IL-18 and TNFα protein levels compared to those in TAA kidney-injured rats. Taurine exhibited reno-protective potential in TAA-induced kidney injury through its anti-oxidant and anti-inflammatory effects. Taurine anti-oxidant activity is accredited to its effect on Nrf-2 induction and subsequent activation of HO-1 and NQO-1. In addition, taurine exerts its anti-inflammatory effect via regulating NF-κB transcription and subsequent production of pro-inflammatory mediators via MAPK signaling regulation.
Collapse
Affiliation(s)
- Amal Ghanim
- Fayoum University, 158401, Biochemistry, Fayoum University, Fayoum, Egypt, 63514.,Fayoum University, 158401, biochemistry, Fayoum University, Fayoum, Egypt, 63514;
| | - Mahmoud Farag
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mahitab Anwar
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Nada Ali
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mohammed Hawas
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Hend Elsallab
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Walaa Elhendawy
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Lina Basyouni
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Ola Refaey
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Khaled Zaki
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Noha Ali
- Delta University for Science and Technology, 501253, Pharmaceutical Chemistry, Belkas, Dakahlia, Egypt;
| | - Heba Metwaly
- Delta University for Science and Technology, 501253, Biochemistry, Belkas, Dakahlia, Egypt.,Alexandria University, 54562, Pharmaceutical Biochemistry, Alexandria, Egypt;
| |
Collapse
|
8
|
Abstract
Objective. Emerging data indicate that oxidative stress is closely associated with the pathogenesis of cardiovascular disease in type 2 diabetes mellitus (T2DM). The present study aimed to assess the effect of the most abundant flavonoid in the human diet quercetin (Q) on the myocardial redox status in rats with T2DM. Methods. T2DM was induced in male Wistar rats by a high caloric diet (for 14 weeks) and two streptozotocin (25 mg/kg b.w.) injections applied in four weeks of the diet, once a week for two weeks. The Q was administered intragastrically by gavage in a dose of 10 or 50 mg/kg of the body weight for 8 weeks starting from the 8th day after the last streptozotocin injection. The control rats received citrate buffer and seven days after the last STZ injection, basal glucose levels were measured in all animals. Results. Administration of Q increased insulin sensitivity in diabetic rats with more pronounced effect at a dose of 50 mg/kg b.w. The Q also decreased free radical oxidation in the heart mitochondria of diabetic animals, thus limiting the formation of advanced oxidation protein products in a dose-dependent manner and normalized the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase) in cardiac mitochondria independently of the dose used. In addition, the Q in both doses prevented the development of oxidative stress in the T2DM rats cardiomyocytes by reducing NADPH oxidase and xanthine oxidase activities. Conclusions. The findings demonstrate that Q in both doses 10 mg/kg and 50 mg/kg can protect from the development of oxidative stress in cardiomyocytes in the diabetic rats. The present data indicate that the use of Q may contribute to the amelioration of cardiovascular risk in patients with T2DM.
Collapse
|
9
|
Difference in the metabolome of colostrum from healthy mothers and mothers with type 2 diabetic mellitus. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Jia Z, Wang K, Zhang Y, Duan Y, Xiao K, Liu S, Ding X. Icariin Ameliorates Diabetic Renal Tubulointerstitial Fibrosis by Restoring Autophagy via Regulation of the miR-192-5p/GLP-1R Pathway. Front Pharmacol 2021; 12:720387. [PMID: 34349660 PMCID: PMC8326523 DOI: 10.3389/fphar.2021.720387] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial fibrosis is one of the most common pathological features of diabetic nephropathy. Autophagy, an intracellular mechanism to remove damaged or dysfunctional cell parts and maintain metabolic homeostasis, is inhibited in diabetic neuropathy. Icariin is a traditional Chinese medicine extract known for nourishing the kidney and reinforcing Yang. In this study, we investigated the effects and mechanism of Icariin on renal function, autophagy, and fibrosis in type 2 diabetic nephropathic rats and in high-glucose-incubated human renal tubular epithelial cells and rat renal fibroblasts (in vitro). Icariin improved diabetes, renal function, restored autophagy, and alleviated fibrosis in type 2 diabetic neuropathic rats and in vitro. After we applied autophagy-related gene 5-small interfering RNA, we found that fibrosis improvement by Icariin was related to autophagy restoration. By detecting serum sex hormone levels, and using dihydrotestosterone, siRNA for androgen receptor, and the androgen receptor antagonist Apalutamide (ARN-509), we found that Icariin had an androgen-like effect and restored autophagy and reduced fibrosis by regulating the androgen receptor. In addition, miR-192-5p levels were increased under high glucose but reduced after dihydrotestosterone and Icariin treatment. Furthermore, dihydrotestosterone and Icariin inhibited miR-192-5p overexpression-induced fibrosis production and autophagy limitation. Glucagon-like peptide-1 receptor (GLP-1R) was downregulated by high glucose and overexpression of miR-192-5p and could be restored by dihydrotestosterone and Icariin. By using ARN-509, we found that Icariin increased GLP-1R expression by regulating the androgen receptor. GLP-1R-siRNA transfection weakened the effects of Icariin on autophagy and fibrosis. These findings indicate that Icariin alleviates tubulointerstitial fibrosis by restoring autophagy through the miR-192-5p/GLP-1R pathway and is a novel therapeutic option for diabetic fibrosis.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Sex dependent differences in oxidative stress in the heart of rats with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. A Comprehensive Insight into Potential Roles of Taurine on Metabolic Variables in Type 2 Diabetes: A Systematic Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Maleki V, Alizadeh M, Esmaeili F, Mahdavi R. The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Amino Acids 2020; 52:905-914. [PMID: 32472292 DOI: 10.1007/s00726-020-02859-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Previous studies have suggested that taurine has hypoglycemic and hypolipidemic effects on experimental diabetic models. Therefore, this clinical trial was designed to explore the impacts of taurine supplementation on glycemic control and lipid profile in the patients with T2DM. This study was conducted on 45 patients with T2DM in Tabriz Sheikhor-raees Polyclinic and Imam-Reza Hospital Endocrine Center. Subjects were randomly divided into taurine and placebo groups. Accordingly, the taurine group (n = 23) received taurine 3000 mg/daily and the placebo group (n = 22) took crystalline microcellulose/daily for the duration of 8 weeks. At baseline and after the trial completion, fasting blood samples were obtained from the patients to assess the glycemic indicators and lipid profile. Independent t test, paired t test, Pearson's correlation, and analysis of covariance was used for analysis. At the end of the study, levels of FBS (p = 0.01), insulin (p = 0.01), HOMA-IR (p = 0.003), TC (p = 0.013), and LDL-C (p = 0.041) significantly decreased in the taurine group compared to the placebo group. In addition, there was no significant changes in HbA1c, triglyceride, HDL-C, anthropometric indicators or dietary intakes by passing 8 weeks from the intervention. In conclusion, the findings of the current study indicated that taurine supplementation (3000 mg/day) for 8 weeks could improve the glycemic indexes and lipid profiles including TC and LDL-C in the patients with T2DM.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Esmaeili
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Shao M, Lu H, Yang M, Liu Y, Yin P, Li G, Wang Y, Chen L, Chen Q, Zhao C, Lu Q, Wu T, Ji G. Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:199. [PMID: 32309346 PMCID: PMC7154445 DOI: 10.21037/atm.2020.01.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Diabetes is a metabolic disease and is often accompanied by severe microvascular and macrovascular complications. A comprehensive understanding of its complex mechanisms can help prevent type 2 diabetes mellitus (T2DM) complications, such as diabetic nephropathy (DN). Methods To reveal the systemic metabolic changes related to renal injury, clinical information of T2DM patients with or without nephropathy was collected, and it was found that serum urea levels of DN patients were significantly higher in T2DM patients without nephropathy. Further along the disease progression, the serum urea levels also gradually increased. We used gas chromatograph coupled with time-of-flight mass spectrometry (GC-TOFMS) metabolomics to analyze the serum and urine metabolites of T2DM patients with or without nephropathy to study the metabolic changes associated with the disease. Results Finally, we identified 61 serum metabolites and 46 urine metabolites as potential biomarkers related to DN (P<0.05, VIP >1). In order to determine which metabolic pathways were major altered in DN, we summarized pathway analysis based on P values from their impact values and enrichment. There were 9 serum metabolic pathways and 12 urine metabolic pathways with significant differences in serum and urine metabolism, respectively. Conclusions This study emphasizes that GC-TOFMS-based metabolomics provides insight into the potential pathways in the pathogenesis and progression of DN.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Yang
- Department of Good Clinical Practice Office, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Liu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yunman Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qingguang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Zhao
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qun Lu
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
Wu P, Shi X, Luo M, Inam-U-Llah, Li K, Zhang M, Ma J, Li Y, Liu Y, Zhang C, Liu X, Li S, Li Q, Chen X, Che X, Piao F. Taurine inhibits neuron apoptosis in hippocampus of diabetic rats and high glucose exposed HT-22 cells via the NGF-Akt/Bad pathway. Amino Acids 2019; 52:87-102. [PMID: 31875259 DOI: 10.1007/s00726-019-02810-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/28/2019] [Indexed: 01/23/2023]
Abstract
Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.
Collapse
Affiliation(s)
- Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengxin Luo
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Jingran Ma
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yanqing Liu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Xiaochi Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Fengyuan Piao
- Integrative Laboratory, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
16
|
Gorbenko NI, Borikov OY, Ivanova OV. The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Tao S, Zheng W, Liu Y, Li L, Li L, Ren Q, Shi M, Liu J, Jiang J, Ma H, Huang Z, Xia Z, Pan J, Wei T, Wang Y, Li P, Lan T, Ma L, Fu P. Analysis of serum metabolomics among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls. RSC Adv 2019; 9:18713-18719. [PMID: 35516902 PMCID: PMC9064812 DOI: 10.1039/c9ra01561b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has a rising prevalence and diabetic nephropathy (DN) is a major complication of T2DM. Metabolomics could provide novel insights into the pathogenesis, so we aimed to explore serum metabolomic profiles from DN to T2DM. Serum samples were collected from 14 biopsy-proven DNs, 14 age/gender-matched T2DMs without renal diseases (DM), 14 age/gender-matched healthy controls (CTRL) and household contacts of DM group (HH). Serum metabolomics was analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC/MS) assays. There were a total of 1470 metabolites identified from all serum samples. 45 metabolites with significantly different intensity were found between DN and DM, e.g., biliverdin and taurine were reduced while l-arginine was increased in DN comparing to DM. DN could be distinguished from age/gender matched DM patients by l-arginine (AUC = 0.824) or taurine levels (AUC = 0.789). The metabolic pathways affected by metabolite distinctions between DN and DM also existed, among which taurine and hypotaurine metabolism exhibited the highest pathway impact. l-Methionine, deethylatrazine, l-tryptophan and fumaric acid were reduced in DM comparing with those of CTRL, but had no different intensity in DM and HH groups. The changes were demonstrated in the metabolomic profiles of biopsy-proven DN compared to DM. Biopsy-proven DN patients could be distinguished from age/gender matched DM by l-arginine or taurine levels in serum metabolomic profiles. Taurine and hypotaurine metabolism pathway had the highest impact in pathway set enrichment analysis, which potentially affected the pathogenesis of DN from T2DM. Metabolites between healthy controls (CTRL)/type 2 diabetes mellitus without renal diseases (DM), and DM/diabetic nephropathy (DN).![]()
Collapse
Affiliation(s)
- Sibei Tao
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Wen Zheng
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University Chengdu 610041 China
| | - Yuan Liu
- Chinese Health Service Management Department, West China Hospital of Sichuan University Chengdu 610041 China
| | - Ling Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Lingzhi Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Qian Ren
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Min Shi
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Liu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Jiang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Huichao Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Zhuo Huang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Zijing Xia
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Pan
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Tiantian Wei
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Yan Wang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Peiyun Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Tian Lan
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Beijing 10000 China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| |
Collapse
|
18
|
Zhao D, Lv Q, Yang J, Wu G, Liu M, Yang Q, Han J, Feng Y, Lin S, Hu J. Taurine Improves Lipid Metabolism and Skeletal Muscle Sensitivity to Insulin in Rats Fed with High Sugar and High Fat Diet. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:133-146. [PMID: 31468392 DOI: 10.1007/978-981-13-8023-5_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolic syndrome is a lifestyle-related disease caused by high nutrient condition and lack of exercise. The insulin resistance due to obesity has attracted attention as an underlying mechanism of metabolic syndrome. Insulin resistance refers to reduced insulin sensitivity in insulin target tissues. In this case, in order to maintain normal blood glucose levels, a compensatory large amount of insulin is released, leading to the occurrence of hyperinsulinemia. Taurine is widely distributed in animal tissues. Although it is not involved in protein synthesis, taurine plays an important role in maintaining the body's physiological function. In this experiment, insulin resistance model was induced by high fat and high sugar diet. Two percent taurine was added in drinking water to explore the mechanism of taurine in insulin resistance and to provide theoretical basis for using taurine to improve insulin resistance. The result showed that high-fat and high-sugar diet could decrease insulin sensitivity, and taurine could improve it by oral glucose tolerance test. Moreover, serum TG, TC were higher, while HDL-C in rats fed with high sugar and high fat diet was lower than normal rats, the changes of which can be significantly relieved by 2% taurine administration. mRNA and protein expressions of IRS1, and GLUT4 which were significantly changed by high sugar and high fat diet can also be regulated by 2% taurine. The results indicated that taurine can improve insulin sensitivity through remediating lipid metabolism disorder and regulating the expressions of IRS and GLUT4.
Collapse
Affiliation(s)
- Dongdong Zhao
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mei Liu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jie Han
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Tang R, Yang Q, Lin S, Feng Y, Yang J, Lv Q, Wu G, Hu J. Preventive or Curative Administration of Taurine Regulates Lipid Metabolism in the Liver of Rats with Alcoholic Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:119-131. [PMID: 31468391 DOI: 10.1007/978-981-13-8023-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Excessive consumption causes alcoholic liver disease (ALD), which injures hepatocytes and induces imbalance of lipid metabolism. Taurine is known to protect the liver from various liver injuries, and relieve lipid profile. Our previous studies also found that taurine can prevent or cure ALD, reduce fat deposition, but the mechanism remains unclear. In the present study, ALD rat model was established by administration of alcohol, pyrazole and high fat diet. Two percent taurine was administered at the same time or after ALD model establishment. Serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), serum and hepatic TC, TG, HDL-C and LDL-C were analyzed. Real-Time RT-PCR was conducted to detect the mRNA expressions of fatty acid synthetase (FAS), acetyl-CoA catboxylase (ACC), carnitine palmitoyl transferase 1 (CPT-1), 3-Hydroxy-3-methyl glutaric acid acyl Coenzyme A reductase (HMGCR), peroxisome proliferators activated receptor α (PPARα) and sterol regulatory element-binding protein 1c (SREBP-1c). The results showed that serum ALT, AST, serum and hepatic TC, TG and LDL-C were higher, while HDL-C in ALD model rats was lower than normal rats, the changes of which can be significantly relieved by taurine administration. mRNA expressions of ACC, FAS, CPT-1, HMGCR, PPARα and SREBP-1c which were significantly changed by ethanol can also be regulated by taurine. The results indicated that taurine can prevent and repair hepatic injury of ALD rats and balance lipid metabolism indexes in the liver, the mechanisms may involves in the regulation of related enzymes and transcriptional regulators participated in lipid metabolism.
Collapse
Affiliation(s)
- Riyi Tang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
20
|
Modification by Ethanol and Taurine, Singly and in Combination, of Changes in Indices of Renal Dysfunction Caused by Diabetes in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:369-380. [DOI: 10.1007/978-981-13-8023-5_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Inam-U-Llah, Shi X, Zhang M, Li K, Wu P, Suleman R, Shahbaz M, Taj A, Piao F. Protective Effect of Taurine on Apoptosis of Spinal Cord Cells in Diabetic Neuropathy Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:875-887. [PMID: 31468454 DOI: 10.1007/978-981-13-8023-5_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a condition characterized by chronic hyperglycemia, which leads to diabetic neuropathy and apoptosis in the spinal cord. Taurine has been found to ameliorate the diabetic neuropathy and control apoptosis in various tissues. However, there are few reports that discuss the direct relationship between spinal cord and anti-apoptotic effect of taurine. In this study, DM was induced in male SD rats with STZ @ 25 mg/Kg of body weight in combination with high fat diet. After 2 weeks, they were divided into four groups as DM: diabetic rats, T1 (0.5%), T2 (1%) and T3 (2%) taurine solution, while control group was non-diabetic rats (no treatment). The results showed that DM increased apoptosis, decreased phosphorylated Akt and Bad. DM decreased expression of Bcl-2 and increased the Bax. Moreover, the release of cytochrome c into cytosol was increased in DM and activation of caspase-3 was also increased. However, taurine reversed all these abnormal changes in a dose dependent manner. Our results suggested the involvement of Akt/Bad signaling pathway and mitochondrial apoptosis pathway in protective effect of taurine against apoptosis in the spinal cord of diabetic rats. Therefore, taurine may be a potential medicine against diabetic neuropathy by controlling apoptosis.
Collapse
Affiliation(s)
- Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Raheel Suleman
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Zhao M, Han J. Dendrobium Officinale Kimura et Migo Ameliorates Insulin Resistance in Rats with Diabetic Nephropathy. Med Sci Monit Basic Res 2018; 24:84-92. [PMID: 29849017 PMCID: PMC6007491 DOI: 10.12659/msmbr.909242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Emerging evidence suggests the potential of Dendrobium officinale Kimura et Migo (DO) in treating the complications of diabetes mellitus (DM). We evaluated the therapeutic potential of DO in treating diabetic nephropathy (DN) by preventing insulin resistance. MATERIAL AND METHODS A DN model was established. Mean glomerular volume of rats was estimated by the method of Weibel-Gomez. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression of mRNAs and we used Western blot assay to determine the expression of proteins. The levels of fasting insulin (FINS) and glucagon (GLU) were measured and we assessed the levels of high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-a (TNF-a), and interleukin-6 (IL-6) using the enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with the Normal rats, the levels of urinary glucose, albuminuria, Scr, albuminuria/Scr and BUN, and the expression levels of CaN, TLR-2, TLR-4, MyD88, hs-CRP, TNF-a, and IL-6, the level of FINS, GLU, and HOMAIR were increased in DN, DO 1.0, DO 2.0, and DMBG groups. Compared with the DN rats, in DO 1.0, DO 2.0, and DMBG groups the glomerular volume was smaller, the levels of urinary glucose, albuminuria, Scr, albuminuria/Scr, and BUN, the expression levels of CaN, TLR-2, TLR-4, MyD88, hs-CRP, TNF-a, and IL-6, the level of FINS, GLU, and HOMA-IR were decreased. CONCLUSIONS We found that DO prevents insulin resistance in rats with DN. This may be associated with reduction of TLRs and inflammatory response, which should be further verified by loss of DO effects on DN after treatment of inhibitors of TLRs.
Collapse
Affiliation(s)
- Ming Zhao
- Research and Development Department, Shanghai Sanxiang Investment Holdings Co., Ltd., Shanghai, P.R. China
- Research and Development Department, Hunan Yandi Biological Engineering Co., Ltd., Zhuzhou, Hunan, P.R. China
| | - Jungang Han
- Research and Development Department, Shanghai Sanxiang Investment Holdings Co., Ltd., Shanghai, P.R. China
- Research and Development Department, Hunan Yandi Biological Engineering Co., Ltd., Zhuzhou, Hunan, P.R. China
| |
Collapse
|
23
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
24
|
Ma ZL, Gao Y, Ma HT, Zheng LH, Dai B, Miao JF, Zhang YS. Effects of taurine and housing density on renal function in laying hens. J Zhejiang Univ Sci B 2017; 17:952-964. [PMID: 27921400 DOI: 10.1631/jzus.b1600014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens.
Collapse
Affiliation(s)
- Zi-Li Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Animal Husbandry and Veterinary Bureau of Dongyang City in Zhejiang Province, Dongyang 322100, China
| | - Yang Gao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hai-Tian Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu-Hai Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Feng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Shu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Koh JH, Lee ES, Hyun M, Kim HM, Choi YJ, Lee EY, Yadav D, Chung CH. Taurine alleviates the progression of diabetic nephropathy in type 2 diabetic rat model. Int J Endocrinol 2014; 2014:397307. [PMID: 24707287 PMCID: PMC3953422 DOI: 10.1155/2014/397307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
The overexpression of vascular endothelial growth factor (VEGF) is known to be involved in the pathogenesis of diabetic nephropathy. In this study, the protective effects of taurine on diabetic nephropathy along with its underlying mechanism were investigated. Experimental animals were divided into three groups: LETO rats as normal group (n = 10), OLETF rats as diabetic control group (n = 10), and OLETF rats treated with taurine group (n = 10). We treated taurine (200 mg/kg/day) for 20 weeks and treated high glucose (HG, 30 mM) with or without taurine (30 mM) in mouse cultured podocyte. After taurine treatment, blood glucose level was decreased and insulin secretion was increased. Taurine significantly reduced albuminuria and ACR. Also it decreased glomerular volume, GBM thickness and increased open slit pore density through decreased VEGF and increased nephrin mRNA expressions in renal cortex. The antioxidant effects of taurine were confirmed by the reduction of urine MDA in taurine treated diabetic group. Also reactive oxygen species (ROS) levels were decreased in HG condition with taurine treated podocytes compared to without taurine. These results indicate that taurine lowers glucose level via increased insulin secretion and ameliorates the progression of diabetic nephropathy through antifibrotic and antioxidant effects in type 2 diabetes rat model.
Collapse
Affiliation(s)
- Jang Hyun Koh
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-740, Republic of Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Miri Hyun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Yoon Jung Choi
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Dhananjay Yadav
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
- *Choon Hee Chung:
| |
Collapse
|
26
|
Ghosh J, Sil PC. Arjunolic acid: a new multifunctional therapeutic promise of alternative medicine. Biochimie 2013; 95:1098-109. [PMID: 23402784 DOI: 10.1016/j.biochi.2013.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/22/2013] [Indexed: 02/05/2023]
Abstract
IMPORTANCE OF THE FIELD In recent years, a number of studies describing the effective therapeutic strategies of medicinal plants and their active constituents in traditional medicine have been reported. Indeed, tremendous demand for the development and implementation of these plant derived biomolecules in complementary and alternative medicine is increasing and appear to be promising candidates for pharmaceutical industrial research. These new molecules, especially those from natural resources, are considered as potential therapeutic targets, because they are derived from commonly consumed foodstuff and are considered to be safe for humans. AREAS COVERED IN THIS REVIEW This review highlights the beneficial role of arjunolic acid, a naturally occurring chiral triterpenoid saponin, in various organ pathophysiology and the underlying mechanism of its protective action. Studies on the biochemistry and pharmacology suggest the potential use of arjunolic acid as a novel promising therapeutic strategy. WHAT THE READERS WILL GAIN The multifunctional therapeutic application of arjunolic acid has already been documented by its various biological functions including antioxidant, anti-fungal, anti-bacterial, anticholinesterase, antitumor, antiasthmatic, wound healing and insect growth inhibitor activities. The scientific basis behind its therapeutic application as a cardioprotective agent in traditional medicine is justified by its ability to prevent myocardial necrosis and apoptosis, platelet aggregation, coagulation and lowering of blood pressure, heart rate, as well as cholesterol levels. Its antioxidant property coupled with metal chelating property (by its two hydroxyl groups) protects different organs from metal and drug-induced organ pathophysiology. Arjunolic acid also plays a beneficial role in the pathogenesis of diabetes and its associated complications. The mechanism of cytoprotection of arjunolic acid, at least in part, results from the detoxification of reactive oxygen species (ROS) produced in the respective pathophysiology. In addition to its other biological functions, it also possesses vibrant insecticidal properties and it has the potential to be used as a structural molecular framework for the design of molecular receptors in the general area of supramolecular chemistry and nanochemistry. Esters of arjunolic acid function as organogelators which has wide application in designing thermochromic switches and sensor devices. Arjunolic acid derived crown ether is an attractive candidate for the design of molecular receptors, biomimetics and supramolecular systems capable of performing some biological functions. HOME MESSAGE This review would provide useful information about the recent progress of natural product research in the domain of clinical science. This review also aims to untie the multifunctional therapeutic application of arjunolic acid, a nanometer-long naturally occurring chiral triterpenoid biomolecule.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
27
|
Han X, Chesney RW. The role of taurine in renal disorders. Amino Acids 2012; 43:2249-63. [DOI: 10.1007/s00726-012-1314-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/24/2012] [Indexed: 01/10/2023]
|