1
|
Patnaik R, Varghese R, Jannati S, Naidoo N, Banerjee Y. Targeting PAR2-mediated inflammation in osteoarthritis: a comprehensive in vitro evaluation of oleocanthal's potential as a functional food intervention for chondrocyte protection and anti-inflammatory effects. BMC Musculoskelet Disord 2024; 25:769. [PMID: 39354427 PMCID: PMC11446003 DOI: 10.1186/s12891-024-07888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1β, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.
Collapse
|
2
|
Zhang Y, Duan Z, Guan Y, Xu T, Fu Y, Li G. Identification of 3 key genes as novel diagnostic and therapeutic targets for OA and COVID-19. Front Immunol 2023; 14:1167639. [PMID: 37283761 PMCID: PMC10239847 DOI: 10.3389/fimmu.2023.1167639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Corona Virus Disease 2019 (COVID-19) and Osteoarthritis (OA) are diseases that seriously affect the physical and mental health and life quality of patients, particularly elderly patients. However, the association between COVID-19 and osteoarthritis at the genetic level has not been investigated. This study is intended to analyze the pathogenesis shared by OA and COVID-19 and to identify drugs that could be used to treat SARS-CoV-2-infected OA patients. Methods The four datasets of OA and COVID-19 (GSE114007, GSE55235, GSE147507, and GSE17111) used for the analysis in this paper were obtained from the GEO database. Common genes of OA and COVID-19 were identified through Weighted Gene Co-Expression Network Analysis (WGCNA) and differential gene expression analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to screen key genes, which were analyzed for expression patterns by single-cell analysis. Finally, drug prediction and molecular docking were carried out using the Drug Signatures Database (DSigDB) and AutoDockTools. Results Firstly, WGCNA identified a total of 26 genes common between OA and COVID-19, and functional analysis of the common genes revealed the common pathological processes and molecular changes between OA and COVID-19 are mainly related to immune dysfunction. In addition, we screened 3 key genes, DDIT3, MAFF, and PNRC1, and uncovered that key genes are possibly involved in the pathogenesis of OA and COVID-19 through high expression in neutrophils. Finally, we established a regulatory network of common genes between OA and COVID-19, and the free energy of binding estimation was used to identify suitable medicines for the treatment of OA patients infected with SARS-CoV-2. Conclusion In the present study, we succeeded in identifying 3 key genes, DDIT3, MAFF, and PNRC1, which are possibly involved in the development of both OA and COVID-19 and have high diagnostic value for OA and COVID-19. In addition, niclosamide, ciclopirox, and ticlopidine were found to be potentially useful for the treatment of OA patients infected with SARS-CoV-2.
Collapse
|
3
|
Jia Z, Wang P, Xu Y, Feng G, Wang Q, He X, Song Y, Liu P, Chen J. Trypsin inhibitor LH011 inhibited DSS-induced mice colitis via alleviating inflammation and oxidative stress. Front Pharmacol 2022; 13:986510. [PMID: 36238566 PMCID: PMC9551103 DOI: 10.3389/fphar.2022.986510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is one type of inflammatory bowel disease, characterized by inflammation with infiltration and activation of macrophages in colonic tissue. LH011 is a trypsin inhibitor with potential anti-inflammatory effect. Purpose: Here, we aim to assay the effects of LH011 on UC and further investigate the potential mechanisms in vitro and in vivo. Methods: Dextran sulfate sodium (DSS, 3.5%, w/v) was used to induce UC, and lipopolysaccharide (LPS) was used to induce inflammation in RAW 264.7 cells. LH011 was administrated to mice in vivo or to RAW 264.7 cells in vitro at different concentrations. The cytokines (IL-1β, IL-6, and TNF-α) and the changes of NF-κB and Nrf2 pathways were detected. Results: The results showed that LH011 improved DSS-induced mice colitis, including loss of weight, disease activity index (DAI), and colonic pathological damage. In addition, LH011 inhibited the expressions of IL-1β, IL-6, and TNF-α and strengthened the anti-oxidative capacity. Mechanically, LH011 downregulated the nuclear localization of NF-κB p65 and upregulated the protein expression of Nrf2. Conclusion: These results demonstrated that LH011 alleviated inflammation and oxidative stress during UC by inhibiting TLR4/NF-κB and activating Nrf2/Keap1/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Zhenmao Jia
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | | | - Guodong Feng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Song
- Guangzhou Link Health Group, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| | - Jianwen Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| |
Collapse
|
4
|
Ariffin SMZ, Bennett D, Ferrell WR, Lockhart JC, Dunning L, Clements DN, Lascelles BDX, Ibrahim TAT, Johnston P. Protease activated receptor 2 and matriptase expression in the joints of cats with and without osteoarthritis. J Feline Med Surg 2021; 23:794-803. [PMID: 33284033 PMCID: PMC10812195 DOI: 10.1177/1098612x20977796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The aim of this study was to determine the presence of protease-activated receptor 2 (PAR2) and matriptase proteins and quantify PAR2 and matriptase mRNA expression in the articular cartilage and synovial membrane of cats with and without osteoarthritis (OA). METHODS A total of 28 articular cartilage samples from adult cats (14 OA and 14 normal), 10 synovial membranes from adult cats (five OA and five normal) and three cartilage samples from 9-week-old fetal cats were used. The presence of PAR2 and matriptase in the cartilage and synovial membrane of the adult samples was detected by immunohistochemical (IHC) staining, while real-time PCR was used for mRNA expression analyses in all samples. RESULTS PAR2 was detected in all OA and normal articular cartilage and synovial membrane samples but confined to only a few superficial chondrocytes in the normal samples. Matriptase was only detected in OA articular cartilage and synovial membrane samples. PAR2 and matriptase mRNA expression were, however, detected in all cartilage and synovial membrane samples. PAR2 and matriptase mRNA expression levels in OA articular cartilage were five (P <0.001) and 3.3 (P <0.001) times higher than that of the healthy group, respectively. There was no significant difference (P = 0.05) in the OA synovial membrane PAR2 and matriptase mRNA expression compared with the normal samples. CONCLUSIONS AND RELEVANCE Detection of PAR2 and matriptase proteins and gene expression in feline articular tissues is a novel and important finding, and supports the hypothesis that serine proteases are involved in the pathogenesis of feline OA. The consistent presence of PAR2 and matriptase protein in the cytoplasm of OA chondrocytes suggests a possible involvement of proteases in cartilage degradation. Further investigations into the PAR2 and matriptase pathobiology could enhance our understanding of the proteolytic cascades in feline OA, which might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Siti M Zainal Ariffin
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - David Bennett
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William R Ferrell
- Institute of Immunity, Infection and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John C Lockhart
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Lynette Dunning
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Dylan N Clements
- Royal (Dick) School for Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - B Duncan X Lascelles
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Centre for Translational Pain Research, Department of Anaesthesiology, Duke University, Durham, NC, USA
| | - Tengku A Tengku Ibrahim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 11:629726. [PMID: 33763056 PMCID: PMC7982406 DOI: 10.3389/fimmu.2020.629726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3’-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Fatima Abji
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Rasti
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Carla Muytjens
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Majid Motahhari
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Rajiv Gandhi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Orthopaedic Surgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Pathophysiological Perspective of Osteoarthritis. ACTA ACUST UNITED AC 2020; 56:medicina56110614. [PMID: 33207632 PMCID: PMC7696673 DOI: 10.3390/medicina56110614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is the most well-known degenerative disease among the geriatric and is a main cause of significant disability in daily living. It has a multifactorial etiology and is characterized by pathological changes in the knee joint structure including cartilage erosion, synovial inflammation, and subchondral sclerosis with osteophyte formation. To date, no efficient treatment is capable of altering the pathological progression of OA, and current therapy is broadly divided into pharmacological and nonpharmacological measures prior to surgical intervention. In this review, the significant risk factors and mediators, such as cytokines, proteolytic enzymes, and nitric oxide, that trigger the loss of the normal homeostasis and structural changes in the articular cartilage during the progression of OA are described. As the understanding of the mechanisms underlying OA improves, treatments are being developed that target specific mediators thought to promote the cartilage destruction that results from imbalanced catabolic and anabolic activity in the joint.
Collapse
|
7
|
Sung TS, Lu H, Sung J, Yeom JH, Perrino BA, Koh SD. The functional role of protease-activated receptors on contractile responses by activation of Ca 2+ sensitization pathways in simian colonic muscles. Am J Physiol Gastrointest Liver Physiol 2018; 315:G921-G931. [PMID: 30260688 PMCID: PMC6336947 DOI: 10.1152/ajpgi.00255.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been known that activation of protease-activated receptors (PARs) affects gastrointestinal motility. In this study, we tested the effects of PAR agonists on electrical and contractile responses and Ca2+ sensitization pathways in simian colonic muscles. The Simian colonic muscle was initially hyperpolarized by PAR agonists. After the transient hyperpolarization, simian colonic muscle repolarized to the control resting membrane potential (RMP) without a delayed depolarization. Apamin significantly reduced the initial hyperpolarization, suggesting that activation of small conductance Ca2+-activated K+ (SK) channels is involved in the initial hyperpolarization. In contractile experiments, PAR agonists caused an initial relaxation followed by an increase in contractions. These delayed contractile responses were not matched with the electrical responses that showed no after depolarization of the RMP. To investigate the possible involvement of Rho-associated protein kinase 2 (ROCK) pathways in the PAR effects, muscle strips were treated with ROCK inhibitors, which significantly reduced the PAR agonist-induced contractions. Furthermore, PAR agonists increased MYPT1 phosphorylation, and ROCK inhibitors completely blocked MYPT1 phosphorylation. PAR agonists alone had no effect on CPI-17 phosphorylation. In the presence of apamin, PAR agonists significantly increased CPI-17 phosphorylation, which was blocked by protein kinase C (PKC) inhibitors suggesting that Ca2+ influx is increased by apamin and is activating PKC. In conclusion, these studies show that PAR activators induce biphasic responses in simian colonic muscles. The initial inhibitory responses by PAR agonists are mainly mediated by activation of SK channels and delayed contractile responses are mainly mediated by the CPI-17 and ROCK Ca2+ sensitization pathways in simian colonic muscles. NEW & NOTEWORTHY In the present study, we found that the contractile responses of simian colonic muscles to protease-activated receptor (PAR) agonists are different from the previously reported contractile responses of murine colonic muscles. Ca2+ sensitization pathways mediate the contractile responses of simian colonic muscles to PAR agonists without affecting the membrane potential. These findings emphasize novel mechanisms of PAR agonist-induced contractions possibly related to colonic dysmotility in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tae Sik Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Hongli Lu
- 2Department of Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juno Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jong Hoon Yeom
- 3Department of Anesthesiology and Pain Medicine, Hanyang University, Seoul, Republic of Korea
| | - Brian A. Perrino
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
8
|
Ma G, Lin W, Yuan Z, Wu J, Qian H, Xu L, Chen S. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed l-glutamic acid and l-lysine polypeptide for site-specific drug delivery. J Mater Chem B 2017; 5:935-943. [DOI: 10.1039/c6tb02407f] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Environmentally responsive hydrogels for drug delivery.
Collapse
Affiliation(s)
- Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Weifeng Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhefan Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jiang Wu
- School of Pharmaceutical Sciences Key Laboratory of Biotechnology and Pharmaceutical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Haofeng Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
9
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that allow the transfer of signals across the cell membrane. In addition to their physiological role, GPCRs are involved in many pathophysiological processes including pathways relevant in rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis. Two-thirds of all currently available drugs target GPCRs directly or indirectly. However, the detailed mechanism of GPCR signalling is still unclear. Selective modification of GPCR-dependent signalling cascades to inhibit disease progression in rheumatic diseases is now being investigated. One approach is to use antibodies against ligands activating GPCRs. However, several GPCRs are known to be activated by only one ligand. In this case, targeting the receptor itself is a promising approach. So far, more information is available on GPCR action in RA as compared with OA, and even less information is available for other rheumatic diseases. Additional research on the role of GPCRs involved in the pathophysiology of rheumatic diseases is required to develop specific therapeutic approaches.
Collapse
|
10
|
Chao PZ, Hsieh MS, Cheng CW, Lin YF, Chen CH. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes. J Biomed Sci 2011; 18:86. [PMID: 22114952 PMCID: PMC3262051 DOI: 10.1186/1423-0127-18-86] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. METHODS We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. RESULTS Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. CONCLUSIONS Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.
Collapse
Affiliation(s)
- Pin-Zhir Chao
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|