1
|
Cui Y, He J, Yu Z, Zhou S, Cao D, Jiang T, Fang B, Li G. Adipose-derived stem cells transplantation improves survival and alleviates contraction of skin grafts via promoting macrophages M2 polarization. Skin Res Technol 2024; 30:e13918. [PMID: 39171846 PMCID: PMC11339854 DOI: 10.1111/srt.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Full-thickness skin grafts are widely used in plastic and reconstructive surgery. The main limitation of skin grafting is the poor textural durability and associated contracture, which often needs further corrective surgery. Excessive inflammation is the main reason for skin graft contractions, which involve overactivation of myofibroblasts. These problems have prompted the development of new therapeutic approaches, including macrophage polarization modulation and stem cell-based therapies. Currently, adipose-derived stem cells (ASCs) have shown promise in promoting skin grafts survival and regulating macrophage phenotypes. However, the roles of ASCs on macrophages in decreasing skin grafts contraction remain unknown. MATERIALS AND METHODS Rat adipose-derived stem cells (rASCs) were isolated from rat inguinal adipose tissues. Full-thickness skin graft model was constructed on male rats divided into control group and rASCs treatment group. Skin graft was assessed for concentration, elasticity modulus and stiffness. Rat bone marrow-derived macrophages (rBMDMs) were isolated from rat femurs, and subsequent RT-qPCR and coculture assays were carried out to explore the cellular mechanisms. Immunohistochemical and immunofluorescence staining were used to verify mechanisms in vivo. RESULTS In vivo results showed that after injection of ASCs, improved texture, increased survival and inhibited contraction of skin grafts were seen. Vascularization was also improved as illustrated by laser perfusion image and vascular endothelial growth factor (VEGF) concentration. Histological analysis revealed that ASCs injection significantly reduced expression of pro-inflammatory cytokines (TNF-a, IL-1β) and increased expression of anti-inflammatory (IL-10) and pro-healing cytokines (IGF-1). At cellular level, after co-culturing with rASCs, rat bone marrow derived macrophages (rBMDMs) favored M2 polarization even under inflammatory stimulus. CONCLUSION ASCs treatment enhanced vascularization via angiogenic cytokines secretion and alleviated inflammatory environment in skin grafts by driving M2 macrophages polarization, which improved survival and decreased skin grafts contraction. Our work showed that ASCs transplantation can be harnessed to enhance therapeutic efficacy of skin grafting in cutaneous defects treatment.
Collapse
Affiliation(s)
- Yuying Cui
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jiahao He
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheyuan Yu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sizheng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejun Cao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Taoran Jiang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Fang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangshuai Li
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| |
Collapse
|
2
|
Li Z, Saravanakumar K, Yao L, Kim Y, Choi SY, Yoo G, Keon K, Lee CM, Youn B, Lee D, Cho N. Acer tegmentosum extract-mediated silver nanoparticles loaded chitosan/alginic acid scaffolds enhance healing of E. coli-infected wounds. Int J Biol Macromol 2024; 267:131389. [PMID: 38582461 DOI: 10.1016/j.ijbiomac.2024.131389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sang Yoon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea.
| | - Byungwook Youn
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Doojin Lee
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
5
|
Chen Y, Ma L, Cheng Z, Hu Z, Xu Y, Wu J, Dai Y, Shi C. Senescent fibroblast facilitates re-epithelization and collagen deposition in radiation-induced skin injury through IL-33-mediated macrophage polarization. J Transl Med 2024; 22:176. [PMID: 38369466 PMCID: PMC10874572 DOI: 10.1186/s12967-024-04972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The need for radiotherapy among the elderly rises with increasing life expectancy and a corresponding increase of elderly cancer patients. Radiation-induced skin injury is one of the most frequent adverse effects in radiotherapy patients, severely limiting their life quality. Re-epithelialization and collagen deposition have essential roles in the recovery of skin injuries induced by high doses of ionizing radiation. At the same time, radiation-induced senescent cells accumulate in irradiated tissues. However, the effects and mechanisms of senescent cells on re-epithelialization and collagen deposition in radiation-induced skin injury have not been fully elucidated. RESULTS Here, we identified a role for a population of senescent cells expressing p16 in promoting re-epithelialization and collagen deposition in radiation-induced skin injury. Targeted ablation of p16+ senescent cells or treatment with Senolytics resulted in the disruption of collagen structure and the retardation of epidermal coverage. By analyzing a publicly available single-cell sequencing dataset, we identified fibroblasts as a major contributor to the promotion of re-epithelialization and collagen deposition in senescent cells. Notably, our analysis of publicly available transcriptome sequencing data highlighted IL-33 as a key senescence-associated secretory phenotype produced by senescent fibroblasts. Neutralizing IL-33 significantly impedes the healing process. Finally, we found that the effect of IL-33 was partly due to the modulation of macrophage polarization. CONCLUSIONS In conclusion, our data suggested that senescent fibroblasts accumulated in radiation-induced skin injury sites participated in wound healing mainly by secreting IL-33. This secretion regulated the local immune microenvironment and macrophage polarization, thus emphasizing the importance of precise regulation of senescent cells in a phased manner.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhihe Hu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Xu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yali Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
7
|
Pattani N, Sanghera J, Langridge BJ, Frommer ML, Abu-Hanna J, Butler P. Exploring the mechanisms behind autologous lipotransfer for radiation-induced fibrosis: A systematic review. PLoS One 2024; 19:e0292013. [PMID: 38271326 PMCID: PMC10810439 DOI: 10.1371/journal.pone.0292013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 01/27/2024] Open
Abstract
AIM Radiation-induced fibrosis is a recognised consequence of radiotherapy, especially after multiple and prolonged dosing regimens. There is no definitive treatment for late-stage radiation-induced fibrosis, although the use of autologous fat transfer has shown promise. However, the exact mechanisms by which this improves radiation-induced fibrosis remain poorly understood. We aim to explore existing literature on the effects of autologous fat transfer on both in-vitro and in-vivo radiation-induced fibrosis models, and to collate potential mechanisms of action. METHOD PubMed, Cochrane reviews and Scopus electronic databases from inception to May 2023 were searched. Our search strategy combined both free-text terms with Boolean operators, derived from synonyms of adipose tissue and radiation-induced fibrosis. RESULTS The search strategy produced 2909 articles. Of these, 90 underwent full-text review for eligibility, yielding 31 for final analysis. Nine conducted in-vitro experiments utilising a co-culture model, whilst 25 conducted in-vivo experiments. Interventions under autologous fat transfer included adipose-derived stem cells, stromal vascular function, whole fat and microfat. Notable findings include downregulation of fibroblast proliferation, collagen deposition, epithelial cell apoptosis, and proinflammatory processes. Autologous fat transfer suppressed hypoxia and pro-inflammatory interferon-γ signalling pathways, and tissue treated with adipose-derived stem cells stained strongly for anti-inflammatory M2 macrophages. Although largely proangiogenic initially, studies show varying effects on vascularisation. There is early evidence that adipose-derived stem cell subgroups may have different functional properties. CONCLUSION Autologous fat transfer functions through pro-angiogenic, anti-fibrotic, immunomodulatory, and extracellular matrix remodelling properties. By characterising these mechanisms, relevant drug targets can be identified and used to further improve clinical outcomes in radiation-induced fibrosis. Further research should focus on adipose-derived stem cell sub-populations and augmentation techniques such as cell-assisted lipotransfer.
Collapse
Affiliation(s)
| | | | - Benjamin J. Langridge
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Marvin L. Frommer
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Jeries Abu-Hanna
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter Butler
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
8
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Zawrzykraj M, Deptuła M, Kondej K, Tymińska A, Pikuła M. The effect of chemotherapy and radiotherapy on stem cells and wound healing. Current perspectives and challenges for cell-based therapies. Biomed Pharmacother 2023; 168:115781. [PMID: 39491418 DOI: 10.1016/j.biopha.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Cancers are part of the group of diseases that carry a high mortality rate. According to World Health Organization in 2020 reported 10 million deaths due to cancers. Treatment of oncological patients is focused on chemotherapeutic agents, radiology, or immunology. Surgical interventions are also an important aspect of treatment. The above methods contribute to saving the patients' health and lives. However, cancer treatment possesses side effects. Commonly observed complications are hair loss, mucositis, nausea, diarrhea, or various skin damage. To improve the quality of medical care for cancer patients, new methods of reducing side effects are sought. Strategies include the use of stem cells (SCs). Due to unlimited proliferation potential and differentiating abilities, SCs are used in the treatment of many disease entities, including wounds. One of the most used types of stem cells supposed adipose-derived mesenchymal stromal cells (AD-MSCs). Clinical trials confirm the application of AD-MSCs in wound healing. Furthermore, in vivo studies considered the utilization of AD-MSCs in radiation injury. The use of stem cells in cancer treatment still involves many questions, such as the impact of treatment on SCs' condition and oncological safety. However, development in regenerative medicine research may contribute to the use of stem cells in personalized medicine, customized for the patient. This could represent a breakthrough step in preventing the side effects of cancer therapies, including chronic wounds.
Collapse
Affiliation(s)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland.
| |
Collapse
|
10
|
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals (Basel) 2023; 16:1302. [PMID: 37765109 PMCID: PMC10534650 DOI: 10.3390/ph16091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
- Hannes Prescher
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| | - Jill R Froimson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| | - Summer E Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
12
|
Le KT, Nguyen CT, Lac TD, Nguyen LGT, Tran TL, Tran-Van H. Facilely preparing carboxymethyl chitosan/hydroxyethyl cellulose hydrogel films for protective and sustained release of fibroblast growth factor 2 to accelerate dermal tissue repair. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Chen W, Wang Y, Zheng J, Chen Y, Zhang C, Yang W, Wu L, Yang Z, Wang Y, Shi C. Characterization of cellular senescence in radiation ulcers and therapeutic effects of mesenchymal stem cell-derived conditioned medium. BURNS & TRAUMA 2023; 11:tkad001. [PMID: 37188110 PMCID: PMC10175947 DOI: 10.1093/burnst/tkad001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Indexed: 05/17/2023]
Abstract
Background Radiation ulcers are a common and severe injury after uncontrolled exposure to ionizing radiation. The most important feature of radiation ulcers is progressive ulceration, which results in the expansion of radiation injury to the nonirradiated area and refractory wounds. Current theories cannot explain the progression of radiation ulcers. Cellular senescence refers to as irreversible growth arrest that occurs after exposure to stress, which contributes to tissue dysfunction by inducing paracrine senescence, stem cell dysfunction and chronic inflammation. However, it is not yet clear how cellular senescence facilitates the continuous progression of radiation ulcers. Here, we aim to investigate the role of cellular senescence in promoting progressive radiation ulcers and indicate a potential therapeutic strategy for radiation ulcers. Methods Radiation ulcer animal models were established by local exposure to 40 Gy X-ray radiation and continuously evaluated for >260 days. The roles of cellular senescence in the progression of radiation ulcers were assessed using pathological analysis, molecular detection and RNA sequencing. Then, the therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (uMSC-CM) were investigated in radiation ulcer models. Results Radiation ulcer animal models with features of clinical patients were established to investigate the primary mechanisms responsible for the progression of radiation ulcers. We have characterized cellular senescence as being closely associated with the progression of radiation ulcers and found that exogenous transplantation of senescent cells significantly aggravated them. Mechanistic studies and RNA sequencing suggested that radiation-induced senescent cell secretions were responsible for facilitating paracrine senescence and promoting the progression of radiation ulcers. Finally, we found that uMSC-CM was effective in mitigating the progression of radiation ulcers by inhibiting cellular senescence. Conclusions Our findings not only characterize the roles of cellular senescence in the progression of radiation ulcers but also indicate the therapeutic potential of senescent cells in their treatment.
Collapse
Affiliation(s)
| | | | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wei Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lingling Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, 401147, Chongqing, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | | |
Collapse
|
14
|
PLGA/Gelatin/Hyaluronic Acid Fibrous Membrane Scaffold for Therapeutic Delivery of Adipose-Derived Stem Cells to Promote Wound Healing. Biomedicines 2022; 10:biomedicines10112902. [PMID: 36428471 PMCID: PMC9687264 DOI: 10.3390/biomedicines10112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) has been suggested to be a preferential material for the delivery of adipose-derived stem cells (ASCs) in wound healing. By incorporating HA in electrospun poly (lactide-co-glycolide) (PLGA)/gelatin (PG) fibrous membrane scaffolds (FMS), we aim to fabricate PLGA/gelatin/HA (PGH) FMS to provide a milieu for 3D culture and delivery of ASCs. The prepared FMS shows adequate cytocompatibility and is suitable for attachment and growth of ASCs. Compared with PG, the PGH offers an enhanced proliferation rate of ASCs, shows higher cell viability, and better maintains an ASC-like phenotype during in vitro cell culture. The ASCs in PGH also show upregulated expression of genes associated with angiogenesis and wound healing. From a rat full-thickness wound healing model, a wound treated with PGH/ASCs can accelerate the wound closure rate compared with wounds treated with PGH, alginate wound dressing, and gauze. From H&E and Masson's trichrome staining, the PGH/ASC treatment can promote wound healing by increasing the epithelialization rate and forming well-organized dermis. This is supported by immunohistochemical staining of macrophages and α-smooth muscle actin, where early recruitment of macrophages, macrophage polarization, and angiogenesis was found due to the delivered ASCs. The content of type III collagen is also higher than type I collagen within the newly formed skin tissue, implying scarless wound healing. Taken together, using PGH FMS as a topical wound dressing material for the therapeutic delivery of ASCs, a wound treated with PGH/ASCs was shown to accelerate wound healing significantly in rats, through modulating immunoreaction, promoting angiogenesis, and reducing scar formation at the wound sites.
Collapse
|
15
|
Almalki SG. Adipose-derived mesenchymal stem cells and wound healing: Potential clinical applications in wound repair. Saudi Med J 2022; 43:1075-1086. [PMID: 36261194 PMCID: PMC9994497 DOI: 10.15537/smj.2022.43.10.20220522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023] Open
Abstract
Delayed and chronic wounds result from the dysregulation of molecular and cellular events associated with wound healing, including migration, inflammation, angiogenesis, extracellular matrix (ECM) remodeling, and re-epithelialization. Adipose tissue is an abundant, easily accessible, and rich source of mesenchymal stem cells (MSCs) with high therapeutic potential. In addition to their capability to differentiate into various lineages with specialized functions, adipose-derived MSCs (AMSCs) can mediate to the wound repair process through the secretion of different growth factors and mediators rather than making structural contribution alone. Adipose-derived MSCs mediate the formation of blood vessels, recruit progenitor cells, stimulate cell differentiation and ECM formation, and promote wound healing by releasing immune mediators and exosomes. Herein, we discuss and review the therapeutic potential of AMSCs for wound repair via acceleration of wound closure, re-epithelialization, enhancement of angiogenesis and immunomodulation of prolonged inflammatory responses, as well as the current challenges in clinical implementation.
Collapse
Affiliation(s)
- Sami G. Almalki
- From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Schmitz D, Robering JW, Weisbach V, Arkudas A, Ludolph I, Horch RE, Boos AM, Kengelbach-Weigand A. Specific features of ex-obese patients significantly influence the functional cell properties of adipose-derived stromal cells. J Cell Mol Med 2022; 26:4463-4478. [PMID: 35818175 PMCID: PMC9357603 DOI: 10.1111/jcmm.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adipose-derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex-obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies.
Collapse
Affiliation(s)
- Deborah Schmitz
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Jan W Robering
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ludolph
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja M Boos
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Guo X, Schaudinn C, Blume-Peytavi U, Vogt A, Rancan F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022; 11:cells11071198. [PMID: 35406762 PMCID: PMC8998073 DOI: 10.3390/cells11071198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells have been extensively investigated for tissue repair therapies. Adipose-derived stem cells (ASCs) were shown to improve wound healing by promoting re-epithelialization and vascularization as well as modulating the inflammatory immune response. In this study, we used ex vivo human skin cultured in a six-well plate with trans-well inserts as a model for superficial wounds. Standardized wounds were created and treated with allogeneic ASCs, ASCs conditioned medium (ASC-CM), or cell culture medium (DMEM) supplemented with fetal calf serum (FCS). Skin viability (XTT test), histology (hematoxylin and eosin, H and E), β-catenin expression as well as inflammatory mediators and growth factors were monitored over 12 days of skin culture. We observed only a moderate time-dependent decrease in skin metabolic activity while skin morphology was preserved, and re-epithelialization occurred at the wound edges. An increase in β-catenin expression was observed in the newly formed epithelia, especially in the samples treated with ASC-CM. In general, increased growth factors and inflammatory mediators, e.g., hepatocytes growth factor (HGF), platelet-derived growth factor subunit AA (PDGF-AA), IL-1α, IL-7, TNF-α, and IL-10, were observed over the incubation time. Interestingly, different expression profiles were observed for the different treatments. Samples treated with ASC-CM significantly increased the levels of inflammatory cytokines and PDGF-AA with respect to control, whereas the treatment with ASCs in DMEM with 10% FCS resulted in significantly increased levels of fibroblast growth factor-basic (FGF-basic) and moderate increases of immunomodulatory cytokines. These results confirm that the wound microenvironment can influence the type of mediators secreted by ASCs and the mode as to how they improve the wound healing process. Comparative investigations with pre-activated ASCs will elucidate further aspects of the wound healing mechanism and improve the protocols of ACS application.
Collapse
Affiliation(s)
- Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Zentrum für Biologische Gefahren und Spezielle Pathogene 4 (ZBS4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
- Correspondence: ; Tel.: +49-30-450518347
| |
Collapse
|
18
|
Kim MJ, Moon W, Heo J, Lim S, Lee SH, Jeong JY, Lee SJ. Optimization of adipose tissue-derived mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation. World J Stem Cells 2022; 14:245-263. [PMID: 35432736 PMCID: PMC8968216 DOI: 10.4252/wjsc.v14.i3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation. Despite concerted efforts, there is no definitive treatment method available. Recent studies have reported using mesenchymal stromal cells (MSCs), but their therapeutic effects are contested.
AIM We administered and examined the effects of various amounts of adipose-derived MSCs (ADSCs) in mice with radiation-induced BM suppression.
METHODS Mice were divided into three groups: Normal control group, irradiated (RT) group, and stem cell-treated group following whole-body irradiation (WBI). Mouse ADSCs (mADSCs) were transplanted into the peritoneal cavity either once or three times at 5 × 105 cells/200 μL. The white blood cell count and the levels of, plasma cytokines, BM mRNA, and BM surface markers were compared between the three groups. Human BM-derived CD34+ hematopoietic progenitor cells were co-cultured with human ADSCs (hADSCs) or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.
RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants. Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells. Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.
CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jeonghoon Heo
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sangwook Lim
- Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Seung-Hyun Lee
- Department of General Surgery, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sang Joon Lee
- Department of Ophthalmology, Gospel Hospital, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| |
Collapse
|
19
|
Huayllani MT, Ruiz-Garcia H, Boczar D, Avila FR, Lu X, Rinker BD, Moran SL, Sarabia-Estrada R, Quiñones-Hinojosa A, Forte AJ. Adipose-Derived Stem Cells Therapy for Radiation-Induced Skin Injury. Ann Plast Surg 2021; 87:639-649. [PMID: 34724441 DOI: 10.1097/sap.0000000000003039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radiation-induced skin injuries have been treated with different medical therapies and have shown diverse outcomes. We aim to evaluate the effect of adipose-derived stem cells (ADSCs) therapy on radiation-induced skin injury. METHODS We performed a review by querying PubMed, Ovid MEDLINE, and EMBASE databases from inception to April 2020 following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The MeSH terms "adipose-derived stem cells," "wound healing," "radiation," and synonyms in combinations determined our search strategy. Experimental peer-reviewed articles describing the protocol and comparing the results with controls were included. Non-English studies were excluded. RESULTS Our search recorded a total of 137 articles. Only 8 studies met our inclusion criteria and were included in this review. Five studies evaluated the use of ADSC alone, whereas the others evaluated the efficacy of ADSC seeded in scaffolds. Adipose-derived stem cell-based therapies, either alone or seeded in scaffolds, were shown to improve wound healing in most studies when compared with controls. CONCLUSIONS There is evidence supporting the positive benefits from ADSC-based therapies in radiation-induced skin injury. However, further studies are needed to standardize the method of ADSC extraction, radiation-induced skin injury experimental model, and increase the time of follow-up to evaluate the results accurately.
Collapse
Affiliation(s)
| | | | | | | | - Xiaona Lu
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT
| | | | | | | | | | | |
Collapse
|
20
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res Ther 2021; 12:447. [PMID: 34372921 PMCID: PMC8351374 DOI: 10.1186/s13287-021-02516-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Radiation-induced dermatitis is a serious side effect of radiotherapy, and very few effective treatments are currently available for this condition. We previously demonstrated that apoptosis is an important feature of radiation-induced dermatitis and adipose-derived stem cells (ADSCs) are one of the most promising types of stem cells that have a protective effect on acute radiation-induced dermatitis. Cathepsin F (CTSF) is a recently discovered protein that plays an important role in apoptosis. In this study, we investigated whether ADSCs affect chronic radiation-induced dermatitis, and the underlying mechanisms involved. Methods ADSCs were isolated from male Sprague-Dawley (SD) rats and characterized. For in vivo studies, rats were randomly divided into control and ADSC-treated groups, and cultured ADSCs were transplanted into radiation-induced dermatitis model rats. The effects of ADSC transplantation were determined by skin damage scoring, histopathological analysis, electron microscopy, immunohistochemical staining, and western blotting analysis of apoptosis-related proteins. To evaluate the effects of ADSCs in vitro, radiation-induced apoptotic cells were treated with ADSC culture supernatant, and apoptosis-related protein expression was investigated by TUNEL staining, flow cytometry, and western blotting. Results In the in vivo studies, skin damage, inflammation, fibrosis, and apoptosis were reduced and hair follicle and sebaceous gland regeneration were enhanced in the ADSC group compared with the control group. Further, CTSF and downstream pro-apoptotic proteins (Bid, BAX, and caspase 9) were downregulated, while anti-apoptotic proteins (Bcl-2 and Bcl-XL) were upregulated. In vitro, ADSCs markedly attenuated radiation-induced apoptosis, downregulated CTSF and downstream pro-apoptotic proteins, and upregulated anti-apoptotic proteins. Conclusion ADSCs protect against radiation-induced dermatitis by exerting an anti-apoptotic effect through inhibition of CTSF expression. ADSCs may be a good therapeutic candidate to prevent the development of radiation-induced dermatitis.
Collapse
|
22
|
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021; 137:111401. [PMID: 33761615 DOI: 10.1016/j.biopha.2021.111401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the three main treatments for tumors. Almost 70% of tumor patients undergo radiotherapy at different periods. Although radiotherapy can enhance the local control rate of tumors and patients' quality of life, normal tissues often show radiation damage following radiotherapy. In recent years, several studies have shown that exosomes could be biomarkers for diseases and be involved in the treatment of radiation damage. Exosomes are nanoscale vesicles containing complex miRNAs and proteins. They can regulate the inflammatory response, enhance the regeneration effect of damaged tissue, and promote the repair of damaged tissues and cells, extending their survival time. In addition, their functions are achieved by paracrine signaling. In this review, we discuss the potential of exosomes as biomarkers and introduce the impact of exosomes on radiation damage in different organs and the hematopoietic system in detail.
Collapse
Affiliation(s)
- Sijia Li
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihong Shao
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tiankai Xu
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Xin Jiang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Guozi Yang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
23
|
Fang Z, Chen P, Tang S, Chen A, Zhang C, Peng G, Li M, Chen X. Will mesenchymal stem cells be future directions for treating radiation-induced skin injury? Stem Cell Res Ther 2021; 12:179. [PMID: 33712078 PMCID: PMC7952822 DOI: 10.1186/s13287-021-02261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced skin injury (RISI) is one of the common serious side effects of radiotherapy (RT) for patients with malignant tumors. Mesenchymal stem cells (MSCs) are applied to RISI repair in some clinical cases series except some traditional options. Though direct replacement of damaged cells may be achieved through differentiation capacity of MSCs, more recent data indicate that various cytokines and chemokines secreted by MSCs are involved in synergetic therapy of RISI by anti-inflammatory, immunomodulation, antioxidant, revascularization, and anti-apoptotic activity. In this paper, we not only discussed different sources of MSCs on the treatment of RISI both in preclinical studies and clinical trials, but also summarized the applications and mechanisms of MSCs in other related regenerative fields.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
24
|
Wu ZY, Zhang HJ, Zhou ZH, Li ZP, Liao SM, Wu ZY, Huang HH, Shi YC. The effect of inhibiting exosomes derived from adipose-derived stem cells via the TGF-β1/Smad pathway on the fibrosis of keloid fibroblasts. Gland Surg 2021; 10:1046-1056. [PMID: 33842249 DOI: 10.21037/gs-21-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background The main mechanism of keloid formation is that keloid fibroblasts (KFs) apoptosis is inhibited, leading to excessive proliferation. Transforming growth factor-β1 (TGF-β1) is a key signal molecule in the process of regulating cell fibrosis. This paper discusses the effect of adipose-derived stem cell exosomes (ADSCs-EXO) on the proliferation and apoptosis of KFS and its possible mechanism, in order to provide reference for the clinical intervention of hypertrophic scar. Methods ADSCs were isolated and cultured from human adipose tissue, the supernatant was collected, and the exosomes secreted by ADSCs-EXO were extracted by ultracentrifugation. At the same time, KFs were cultured from human keloid tissue to P3 generation, and then divided into four groups: control group, experimental group A, experimental group B and experimental group C. KFs were then cultured with four concentrations of ADSCs-EXO (0, 1, 10, and 100 µg/mL, respectively). After 24 hours, cells in each group were taken to detect the following: proliferation of cells in each group using the cell counting Kit 8 (CCK-8) method, cell migration ability via the Transwell test, cell apoptosis by flow cytometry, collagen synthesis using the hydroxyproline method, messenger ribonucleic acid (mRNA) expression of fibrosis-related genes in each group by real-time fluorescent polymerase chain amplification, and the expression of fibrosis-related proteins in the cells of each group by western blotting. Results Compared with the control group, the proliferation rate, migration rate, and collagen synthesis levels in the three experimental groups decreased with the increase of ADSCs-EXO concentration, while the apoptosis rate in the three experimental groups increased with the increase of ADSCs-EXO concentration, and the differences were statistically significant (P<0.05). Also, compared with the control group, the relative mRNA and protein expression of alpha-smooth muscle actin (α-SMA), TGF-β1, and Smad3 in the three groups decreased significantly, while the expression of three kinds of mRNA and protein decreased with the increase of ADSCs-EXO concentration, and the differences were statistically significant (P<0.05). Conclusions ADSCs-EXO may inhibit the proliferation and migration, and promote the apoptosis of KFs by inhibiting the expression of the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Zhi-Yuan Wu
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui-Jun Zhang
- Department of Burn Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Hong Zhou
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhan-Peng Li
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Si-Mu Liao
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ze-Yong Wu
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hai-Hua Huang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu-Cang Shi
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
26
|
Ionizing Radiation Mediates Dose Dependent Effects Affecting the Healing Kinetics of Wounds Created on Acute and Late Irradiated Skin. SURGERIES 2021. [DOI: 10.3390/surgeries2010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy for cancer treatment is often associated with skin damage that can lead to incapacitating hard-to-heal wounds. No permanent curative treatment has been identified for radiodermatitis. This study provides a detailed characterization of the dose-dependent impact of ionizing radiation on skin cells (45, 60, or 80 grays). We evaluated both early and late effects on murine dorsal skin with a focus on the healing process after two types of surgical challenge. The irradiated skin showed moderate to severe damage increasing with the dose. Four weeks after irradiation, the epidermis featured increased proliferation status while the dermis was hypovascular with abundant α-SMA intracellular expression. Excisional wounds created on these tissues exhibited delayed global wound closure. To assess potential long-lasting side effects of irradiation, radiodermatitis features were followed until macroscopic healing was notable (over 8 to 22 weeks depending on the dose), at which time incisional wounds were made. Severity scores and biomechanical analyses of the scar tissues revealed that seemingly healed irradiated skin still displayed altered functionality. Our detailed investigation of both the acute and chronic repercussions of radiotherapy on skin healing provides a relevant new in vivo model that will instruct future studies evaluating the efficacy of new treatments for radiodermatitis.
Collapse
|
27
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Deshevoi YB, Nasonova TA, Dobrynina OA, Deev RV, Lebedev VG, Lyrshchikova AV, Astrelina TA, Moroz BB. Experience of Application of Syngeneic Multipotent Mesenchymal Stem Cells (MMSCs) of Adipose Tissue for Treatment of Severe Radiation Skin Lesions at Various Intervals after Exposure in the Experiment. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Therapeutic Reversal of Radiotherapy Injury to Pro-fibrotic Dysfunctional Fibroblasts In Vitro Using Adipose-derived Stem Cells. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2706. [PMID: 32537359 PMCID: PMC7253248 DOI: 10.1097/gox.0000000000002706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023]
Abstract
Cancer patients often require radiotherapy (RTx) to enhance their survival. Unfortunately, RTx also damages nearby healthy non-cancer tissues, leading to progressive fibrotic soft-tissue injury, consisting of pain, contracture, tissue-breakdown, infection, and lymphoedema. Mechanisms underlying the clinically observed ability of fat grafting to ameliorate some of these effects, however, are poorly understood. It was hypothesized that RTx significantly alters fibroblast cell function and the paracrine secretome of adipose-derived stem cells (ADSC) may mitigate these changes. Methods To investigate cellular changes resulting in the fibrotic side-effects of RTx, cultured normal human dermal fibroblasts (NHDF) were irradiated (10Gy), then studied using functional assays that reflect key fibroblast functions, and compared with unirradiated controls. RNA-Seq and targeted microarrays (with specific examination of TGFβ) were performed to elucidate altered gene pathways. Finally, conditioned-media from ADSC was used to treat irradiated fibroblasts and model fat graft surgery. Results RTx altered NHDF morphology, with cellular functional changes reflecting transition into a more invasive phenotype: increased migration, adhesion, contractility, and disordered invasion. Changes in genes regulating collagen and MMP homeostasis and cell-cycle progression were also detected. However, TGFβ was not identified as a key intracellular regulator of the fibroblast response. Finally, treatment with ADSC-conditioned media reversed the RTx-induced hypermigratory state of NHDF. Conclusions Our findings regarding cellular and molecular changes in irradiated fibroblasts help explain clinical manifestations of debilitating RTx-induced fibrosis. ADSC-secretome-mediated reversal indicated that these constituents may be used to combat the devastating side-effects of excessive unwanted fibrosis in RTx and other human fibrotic diseases.
Collapse
|
30
|
An R, Zhang Y, Qiao Y, Song L, Wang H, Dong X. Adipose stem cells isolated from diabetic mice improve cutaneous wound healing in streptozotocin-induced diabetic mice. Stem Cell Res Ther 2020; 11:120. [PMID: 32183899 PMCID: PMC7079496 DOI: 10.1186/s13287-020-01621-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ASCs) therapy is emerging as a novel therapeutic option for the treatment of a variety of diseases including diabetes and diabetic wound healing. Multiple studies indicate that ASCs could promote wound healing and reverse diabetes. However, whether ASCs from diabetic donors retain their therapeutic functions and the mechanisms of how ASCs contribute to wound healing remain largely unknown. In this study, we explored the cutaneous wound healing ability of ASCs collected from C57BL/6 mice that had been rendered diabetic with streptozotocin (STZ). Methods ASCs were harvested from adipose tissues of type 1 diabetic (T1D) or normal C57BL/6 mice. Cell phenotypes were evaluated by flow cytometry analysis, and cell differentiation into adipocytes, chondrocytes, and osteocytes was compared. Secretions of transforming growth factor β (TGF-β1), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) by ASCs were assessed by ELISA. Migration and proliferation of fibroblasts co-cultured with T1D ASCs or control ASCs were also compared. The therapeutic effects of T1D and control ASCs in promoting wound closure were measured in vivo in a T1D wound mouse model. Granulation tissues were collected and stained with H&E at 14th day. CD34 and collagen I were detected by immunohistochemistry. Expressions of IL-6, α-SMA, CD31, collagen I, and collagen III were quantified by real-time PCR. GFP-expressing ASCs were used to trace in vivo cell differentiation. Results T1D ASCs and control ASCs showed similar expression of cell surface markers (CD29, CD34, CD105) and proliferation pattern. They can both differentiate into different cell types. T1D ASCs secreted similar amounts of VEGF and bFGF, but less TGF-β compared with control ASCs. Like control ASCs, T1D ASCs promoted the proliferation and migration of skin fibroblast cells. When injected in cutaneous wound of T1D mice, T1D ASCs increased wound closure and hair follicle regeneration at a comparable extent as ASCs. Mice receiving T1D ASCs or ASCs exhibited significantly higher expressions of collagen I, collagen III, and CD31 and reduced expression of IL-6 in wound tissues. Immunohistochemistry staining showed increased angiogenesis in mice receiving ASCs as was evident by increased CD34+ cells and collagen I staining. GFP+ ASCs injection showed that ASCs differentiated into fibroblasts and endothelial cells in vivo. Conclusions Our results suggest that T1D ASCs could accelerate cutaneous wound healing. Mechanisms may include increasing fibroblast growth and migration, skin angiogenesis, and differentiation into fibroblasts and endothelial cells. This study provides evidence that diabetic ASCs may be used as a therapeutic option in cutaneous wound healing in diabetic recipients.
Collapse
Affiliation(s)
- Ran An
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yong Zhang
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yu Qiao
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Lili Song
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiao Dong
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T. Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Front Pharmacol 2020; 11:158. [PMID: 32194404 PMCID: PMC7062679 DOI: 10.3389/fphar.2020.00158] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Fat grafting is a well-established surgical technique used in plastic surgery to restore deficient tissue, and more recently, for its putative regenerative properties. Despite more frequent use of fat grafting, however, a scientific understanding of the mechanisms underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring, contracture and pain) clinically; a phenomenon since validated in several animal studies. In the quest to explain and enhance these therapeutic effects, adipose-derived stem cells (ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in turn, followed. Stem cells - the body's rapid response 'road repair crew' - are on standby to combat tissue insults. ADSCs may exert influences either by releasing paracrine-signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively, ADSCs may augment vital immune/inflammatory processes; or themselves differentiate into mature adipose cells to provide the 'building-blocks' for engineered tissue. Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for therapeutic application, due to ease of harvest and processing; and a relative abundance of adipose tissue in most patients. Here, we review the clinical applications of fat grafting, ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.
Collapse
Affiliation(s)
- Lipi Shukla
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Yinan Yuan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| | - Ramin Shayan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia.,Plastic, Hand and Faciomaxillary Surgery Unit, Alfred Hospital, Prahran, VIC, Australia.,Department of Plastic and Reconstructive Surgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Tara Karnezis
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
32
|
The Role of Adipose-Derived Stem Cells, Dermal Regenerative Templates, and Platelet-Rich Plasma in Tissue Engineering-Based Treatments of Chronic Skin Wounds. Stem Cells Int 2020; 2020:7056261. [PMID: 32399048 PMCID: PMC7199611 DOI: 10.1155/2020/7056261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.
Collapse
|
33
|
Haalboom M. Chronic Wounds: Innovations in Diagnostics and Therapeutics. Curr Med Chem 2019; 25:5772-5781. [PMID: 28699502 DOI: 10.2174/0929867324666170710120556] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 06/10/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND A major global health issue is the existence of chronic wounds. Appropriate diagnosis and treatment is essential to promote wound healing and prevent further complications. Traditional methods for treatment and diagnosis of chronic wounds have shown to be of limited effectiveness. Therefore, there is a need for the development of diagnostic and therapeutic innovations in chronic wound care. OBJECTIVE This mini-review aims to provide insight in the current knowledge of the wound healing process and the deficiencies encountered in chronic wounds, which provides a basis for the development of innovations in chronic wound care. Furthermore, promising diagnostic and therapeutic innovations will be highlighted. METHODS Literature was searched for recent articles (=<10 years) describing the current knowledge about the wound healing process and chronic wounds. The most promising diagnostic and therapeutic innovations were gathered from articles published in the past 5 years. RESULTS/CONCLUSION Wound healing is a well-organized process consisting of four phases: coagulation, inflammation, proliferation and wound remodelling. Chronic wounds often stagnate in the inflammatory phase and/or experience an impaired proliferative phase. This mini-review has demonstrated that increased knowledge about the processes involved in wound healing has paved the way for the development of new diagnostic tools and treatments for chronic wounds. Increased knowledge about bacterial invasion and infection in has encouraged researchers to develop diagnostic tools to help clinicians detect these phenomena appropriately and in time. Other researchers have shown that they are able to design/extract biochemical compounds that intervene in the disrupted healing processes in chronic wounds.
Collapse
Affiliation(s)
- Marieke Haalboom
- Department of Vascular Surgery/Medical School Twente, Medisch Spectrum Twente, Enschede, Netherlands
| |
Collapse
|
34
|
Dai TQ, Zhang LL, An Y, Xu FF, An R, Xu HY, Liu YP, Liu B. In vitro transdifferentiation of adipose tissue-derived stem cells into salivary gland acinar-like cells. Am J Transl Res 2019; 11:2908-2924. [PMID: 31217863 PMCID: PMC6556663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Current clinical approaches to treat irradiation-induced salivary gland hypofunction are ineffective. We previously reported that adipose-derived stem cell (ADSC)-based therapy ameliorates damaged salivary gland function in mice and that the effects were enhanced when the therapy was co-administrated with platelet-rich fibrin (PRF). We examined the feasibility of ADSC transdifferentiation into salivary gland acinar-like cells (SGALCs) and analyzed the potential of PRF to promote the transdifferentiation process in vitro. Salivary gland cells (SGCs) and ADSCs were indirectly co-cultured using Transwell inserts, and increasing concentrations of PRF-conditioned medium were applied to the co-culture system. The expression of α-amylase and AQP-5 were used to evaluate ADSC transdifferentiation. Notably, on day 7, 14, and 21, expression of both α-amylase and AQP-5 were detected in the co-cultured ADSCs. Additionally, PRF increased α-amylase and AQP-5 levels in ADSCs that were co-cultured for 7 days. These data demonstrate that ADSCs have the potential to transdifferentiate into SGALCs and that PRF can promote the transdifferentiation process. Therefore, these data reveal a possible mechanism to treat irradiation-induced salivary gland hypofunction and have translational medicine implications.
Collapse
Affiliation(s)
- Tai-Qiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Fang-Fang Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Ran An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Hai-Yan Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Yan-Pu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| | - Bin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, PR China
| |
Collapse
|
35
|
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2019; 108:555-567. [PMID: 31081996 DOI: 10.1002/jbm.b.34411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/17/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorphometrical, molecular, biochemical, and scanning electron microscopy assessments on days 7, 14, and 28 post-wounding. ADM-HA/ASCs stimulated healing significantly more than the ADM-HA and ADM treated wounds, as it led to reduced inflammation, and improved angiogenesis and enhanced granulation tissue formation. Expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) was lower in the ADM-HA/ASCs treated wounds than the ADM-HA and ADM groups, at the seventh post-wounding day. ADM-HA/ASCs also enhanced the expression level of TGF-β1 mRNA at 14 day post-wounding that was parallel to the experimental data from histological and biochemical assessments and confirmed the positive role of ASCs in repair of burn wounds. Additionally, increase in basic fibroblast growth factor (bFGF) expression and decreased TGF-β1 level on the 28th post-wounding day indicated the anti-scarring activity of ASCs. HA loaded by adipose stem cells can represent a promising strategy in accelerating burn wound healing.
Collapse
Affiliation(s)
- Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali A Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Hamada T, Matsubara H, Yoshida Y, Ugaji S, Nomura I, Tsuchiya H. Autologous adipose-derived stem cell transplantation enhances healing of wound with exposed bone in a rat model. PLoS One 2019; 14:e0214106. [PMID: 31083652 PMCID: PMC6513073 DOI: 10.1371/journal.pone.0214106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Soft tissue wounds with exposed bone often require extended healing times and can be associated with severe complications. We describe the ability of artificial dermis with autogenic adipose-derived stem cells (ADSCs) to promote the healing of wounds with exposed bone in a rat model. METHODS Adipose tissues harvested from the bilateral inguinal regions of Wistar rats were used as ADSCs. Rats were randomly divided into control and ADSC groups to investigate the efficacy of ADSC transplantation for wound healing (n = 20 per group). Soft tissue defects were created on the heads of the rats and were covered with artificial dermis with or without the seeded ADSCs. Specimens from these rats were evaluated using digital image analysis, histology, immunohistochemistry, cell labeling, and real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). RESULTS The average global wound area was significantly smaller in the ADSC group than in the control group on days 3, 7, and 14 after surgery (p<0.05). After 14 days, the blood vessel density in the wound increased by 1.6-fold in the ADSC group compared with that in the control group (p<0.01). Real-time RT-PCR results showed higher Fgfb and Vegf expression levels at all time points, and higher Tgfb1 and Tgfb3 expression levels until 14 days after surgery in the ADSC group than in the control group (p<0.05). CONCLUSIONS In wounds with exposed bone, autogenic ADSCs can promote vascularization and wound healing. Use of this cell source has multiple benefits, including convenient clinical application and lack of ethical concerns.
Collapse
Affiliation(s)
- Tomo Hamada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidenori Matsubara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Yasuhisa Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shuhei Ugaji
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Issei Nomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
37
|
Ejaz A, Epperly MW, Hou W, Greenberger JS, Rubin JP. Adipose-Derived Stem Cell Therapy Ameliorates Ionizing Irradiation Fibrosis via Hepatocyte Growth Factor-Mediated Transforming Growth Factor-β Downregulation and Recruitment of Bone Marrow Cells. Stem Cells 2019; 37:791-802. [PMID: 30861238 DOI: 10.1002/stem.3000] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/06/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023]
Abstract
Radiation therapy to anatomic regions, including the head and neck, chest wall, and extremities, can produce radiation-induced fibrosis (RIF). To elucidate the cellular and molecular mechanism(s) involved in RIF, female C57BL/6J mice were irradiated to the right flank to 35 Gy in single fraction using 6 Mv electrons. Radiation fibrosis was detected by day 14, was increased by day 28, and confirmed by Masson's trichrome histological staining for collagen. Biopsied tissue at day 14 showed an increase in expression of fibrosis-related genes including transforming growth factor-β (TGF-β) and collagens 1-6. A single adipose-derived stem cell (ASC) injection on day 28 at the irradiated site decreased by day 40: epithelial thickness, collagen deposition, and significantly improved limb excursion compared with irradiated controls. Noncontact transwell coculture of ASCs above a monolayer of irradiated human foreskin fibroblasts downregulated fibrosis-related genes TGF-β, connective tissue growth factor, interleukin-1, NF-kB, tumor necrosis factor, and collagens 1-6. Hepatocyte growth factor (HGF) secreted by ASCs was identified as a novel mechanism by which ASCs exert antifibrotic effects by downregulating fibrotic gene expression in irradiated cells and recruiting bone marrow cells to the irradiated site. In conclusion, these data indicate a mechanistic role of HGF secreted by ASCs in reducing RIF. Stem Cells 2019;37:791-802.
Collapse
Affiliation(s)
- Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
39
|
Xiao S, Liu Z, Yao Y, Wei ZR, Wang D, Deng C. Diabetic Human Adipose-Derived Stem Cells Accelerate Pressure Ulcer Healing by Inducing Angiogenesis and Neurogenesis. Stem Cells Dev 2019; 28:319-328. [PMID: 30608025 DOI: 10.1089/scd.2018.0245] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adipose-derived stem cells (ASCs) possess a well-characterized capacity to enhance cutaneous wound healing. However, many controversies exist regarding ASCs from diabetic patients (dASCs). No report exists on the administration of dASCs for the treatment of pressure ulcers. The aim of this study was to compare properties of dASCs and nondiabetic ASCs (nASCs). In addition, we studied if dASCs enhanced pressure ulcer healing in a rodent pressure ulcer model and investigated underlying mechanisms. We found similar expression of cell surface markers and characteristics in dASCs and nASCs, although dASCs exhibited decreased proliferation and osteogenic differentiation capacity and enhanced adipogenic differentiation capacity. dASCs had beneficial effects on chronic wound healing, though some aspects of their capacity were impaired. The ability of dASCs to promote nerve regeneration was not compromised. dASCs promoted pressure ulcer healing and improved healing by modulating inflammation, promoting angiogenesis and neuroregeneration, enhancing collagen deposition, and increasing re-epithelization. These data may provide a theoretical foundation for further clinical administration of ASCs for chronic wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Shune Xiao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Liu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanzhen Yao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zai Rong Wei
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|
41
|
Li P, Guo X. A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res Ther 2018; 9:302. [PMID: 30409218 PMCID: PMC6225584 DOI: 10.1186/s13287-018-1044-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As the most important barrier for the human body, the skin often suffers from acute and chronic injuries, especially refractory wounds, which seriously affect the quality of life of patients. For these refractory wounds that cannot be cured by various surgical methods, stem cell transplantation becomes an effective research direction. As one of the adult stem cells, adipose-derived stem cells play an indispensable role in the repair of skin wounds more than other stem cells because of their advantages such as immune compatibility and freedom from ethical constraints. Here, we actively explore the role of adipose-derived stem cells in the repair of cutaneous wound and conclude that it can significantly promote cutaneous wound healing and regeneration. Based on a large number of animal and clinical trials, we believe that adipose-derived stem cells will have a greater breakthrough in the field of skin wound repair in the future, especially in chronic refractory wounds.
Collapse
Affiliation(s)
- Peng Li
- Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiutian Guo
- Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
42
|
Wu LW, Chen WL, Huang SM, Chan JYH. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing. FASEB J 2018; 33:2388-2395. [PMID: 30265575 DOI: 10.1096/fj.201800658r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonhealing wounds with various forms of complications have been a major challenge for patients with different diseases, and few data are available regarding the clinical significance of platelet-derived growth factor-AA (PDGF-AA) in the enhanced wound healing with stem cells, and the precise molecular mechanism remains unclear. The study aims to investigate the role of PDGF-AA in adipose-derived stem cells (ASCs) and endothelial progenitor cells (EPCs) enhancing wound healing. In this study, ASCs and EPCs were applied to treat wounds in an animal wound model with a wound-healing assay. We knocked down PDGF-AA expression in ASCs using the PDGF-AA short hairpin RNA technique and investigated the related molecular mechanism. The wound model and wound-healing assay of the study showed that transplantation of ASCs could enhance wound healing. The results showed that the PDGF-AA knockdown ASC group had much less improvement of wound healing than other groups treated with wild-type ASCs in wound tissues. The regulation of PDGF-AA in ASCs may contribute to improve wound healing through the PI3K/Akt/eNOS signaling pathway. The data indicated that PDGF-AA might play a vital role in ASCs and EPCs enhancing wound healing, possibly by its effects on angiogenesis. It would be a potential approach using PDGF-AA for clinical treatment of chronic wounds.-Wu, L.-W., Chen, W.-L., Huang, S.-M., Chan, J. Y.-H. Platelet-derived growth factor AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing.
Collapse
Affiliation(s)
- Li-Wei Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,School of Medicine, National Defense Medical Center, Taipei, Taiwan, China
| | - Wei-Liang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,School of Medicine, National Defense Medical Center, Taipei, Taiwan, China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, China.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, China
| | - James Yi-Hsin Chan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, China
| |
Collapse
|
43
|
Combined plasma rich in growth factors and adipose-derived mesenchymal stem cells promotes the cutaneous wound healing in rabbits. BMC Vet Res 2018; 14:288. [PMID: 30241533 PMCID: PMC6151009 DOI: 10.1186/s12917-018-1577-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The use of Plasma Rich in Growth Factors (PRGF) and Adipose Derived Mesenchymal Stem Cells (ASCs) are today extensively studied in the field of regenerative medicine. In recent years, human and veterinary medicine prefer to avoid using traumatic techniques and choose low or non-invasive procedures. The objective of this study was to evaluate the efficacy of PRGF, ASCs and the combination of both in wound healing of full-thickness skin defects in rabbits. With this purpose, a total of 144 rabbits were used for this study. The animals were divided in three study groups of 48 rabbits each depending on the administered treatment: PRGF, ASCs, and PGRF+ASCs. Two wounds of 8 mm of diameter and separated from each other by 20 mm were created on the back of each rabbit: the first was treated with saline solution, and the second with the treatment assigned for each group. Macroscopic and microscopic evolution of wounds was assessed at 1, 2, 3, 5, 7 and 10 days post-surgery. With this aim, 8 animals from each treatment group and at each study time were euthanized to collect wounds for histopathological study. RESULTS Wounds treated with PRGF, ASCs and PRGF+ASCs showed significant higher wound healing and epithelialization rates, more natural aesthetic appearance, significant lower inflammatory response, significant higher collagen deposition and angiogenesis compared with control wounds. The combined treatment PRGF+ASCs showed a significant faster cutaneous wound healing process. CONCLUSIONS The combined treatment PRGF+ASCs showed the best results, suggesting this is the best choice to enhance wound healing and improve aesthetic results in acute wounds.
Collapse
|
44
|
Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Xiong J, Song J. [Research progress of adipose-derived stem cells on refractory wounds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:457-461. [PMID: 29806304 DOI: 10.7507/1002-1892.201712078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the recent advances in the research of adipose-derived stem cells (ADSCs) for the treatment of refractory wounds. Methods The related literature about using ADSCs for treating refractory wounds in recent years was reviewed, and their repair mechanism and treatment progress were summarized in detail. Results Tremendous progress has been achieved in using ADSCs in combination with single stent technology, sheet technology, and other methods to promote the healing of refractory wounds. ADSCs can accelerate wound angiogenesis and promote the healing of refractory wounds through its own mechanisms of paracrine, proangiogenic, anti-oxidative and apoptosis. Conclusion With the advantages of adequate sources, easy to extract and culture, non-immune rejection, multidirectional differentiation potential, and significant angiogenic potential, ADSCs has become the ideal seed cells of tissue regeneration. However, it is necessary to improve stem cell transmission technology and develop biomaterials for clinical application in order to improve the refractory wounds healing.
Collapse
Affiliation(s)
- Jiachao Xiong
- Graduate School, the Second Military Medical University, Shanghai, 200433, P.R.China
| | - Jianxing Song
- Department of Plastic Surgery, Changhai Hospital, the Second Military Medical University, Shanghai, 200433,
| |
Collapse
|
46
|
Chen YW, Scutaru TT, Ghetu N, Carasevici E, Lupascu CD, Ferariu D, Pieptu D, Coman CG, Danciu M. The Effects of Adipose-Derived Stem Cell-Differentiated Adipocytes on Skin Burn Wound Healing in Rats. J Burn Care Res 2018; 38:1-10. [PMID: 27893580 DOI: 10.1097/bcr.0000000000000466] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both adipose-derived stem cells (ADSCs) and fat grafting promote burn wound healing, but whether adipogen-derived cells using various inducers such as 3-isobutyl-1-methylxanthine (IBMX) and insulin affect wound healing is unknown. Herein, ADSC-differentiated adipogenic lineages were used in rat burn wounds to evaluate wound healing potential. ADSCs were cultivated using six different adipogenic differentiation conditions (IBMX ± insulin, IBMX for 5 days, high and low Dulbecco's modified Eagle's medium) and in vitro morphological changes and cell proliferations during adipogenic differentiation were recorded. Intermediate burn wounds were inflicted in 15 Wistar male rats. Afterwards, the rats were divided into five groups for subcutaneous injections under the wounds: control; ADSCs; differentiated adipocytes (-IBMX+INSULIN and +IBMX[D1-5]+INSULIN) and fat prepared by Coleman technique. Macroscopic changes and histology were documented for 3 weeks. Repeated measures analysis of variance was performed to analyze cell growth and wound healing with a statistical level set of P < .05. Induction cocktails significantly reduced proliferation and induced lipid droplet accumulation. Conditioning without insulin induced the least lipid accumulation, while discontinuing IBMX generated larger adipocytes (P < .001). Adipogenic differentiated ADSCs had similar wound healing abilities with ADSC and fat injections, but differentiated adipocytes (+IBMX[D1-5]+INSULIN) and fat grafting accelerated the early healing process relative to ADSC (P < .001). Reduced fibrosis and mild inflammatory infiltration limited to superficial dermis were observed in +IBMX(D1-5)+INSULIN and fat injection groups, while those reactions were mild to moderate in ADSC group. Differentiated adipocytes achieve similar wound healing results compared with ADSC and fat injections, but differentiated adipocytes (+IBMX[D1-5]+INSULIN) and fat grafting accelerate early healing relative to ADSC.
Collapse
Affiliation(s)
- Yu-Wen Chen
- From the *Center for Simulation and Training in Surgery, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania; †Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania; ‡Department of Plastic and Reconstructive Surgery, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania; §Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania; and ‖Department of Immunology, Faculty of Medicine, ¶Department of Surgery, and #Department of Pathology, Regional Oncology Institute Iasi, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Danan D, Lehman CE, Mendez RE, Langford B, Koors PD, Dougherty MI, Peirce SM, Gioeli DG, Jameson MJ. Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2018; 158:882-888. [PMID: 29313435 DOI: 10.1177/0194599817750361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.
Collapse
Affiliation(s)
- Deepa Danan
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christine E Lehman
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rolando E Mendez
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Brian Langford
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Paul D Koors
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael I Dougherty
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- 2 Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel G Gioeli
- 3 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Mark J Jameson
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
48
|
Goodarzi P, Alavi-Moghadam S, Sarvari M, Tayanloo Beik A, Falahzadeh K, Aghayan H, Payab M, Larijani B, Gilany K, Rahim F, Adibi H, Arjmand B. Adipose Tissue-Derived Stromal Cells for Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:133-149. [PMID: 29858972 DOI: 10.1007/5584_2018_220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin as the outer layer covers the body. Wounds can affect this vital organ negatively and disrupt its functions. Wound healing as a biological process is initiated immediately after an injury. This process consists of three stages: inflammation, proliferation, remodeling. Generally, these three stages occur continuously and timely. However, some factors such as infection, obesity and diabetes mellitus can interfere with these stages and impede the normal healing process which results in chronic wounds. Financial burden on both patients and health care systems, negative biologic effect on the patient's general health status and reduction in quality of life are a number of issues which make chronic wounds as a considerable challenge. During recent years, along with advances in the biomedical sciences, various surgical and non-surgical therapeutic methods have been suggested. All of these suggested treatments have their own advantages and disadvantages. Recently, cell-based therapies and regenerative medicine represent promising approaches to wound healing. Accordingly, several types of mesenchymal stem cells have been used in both preclinical and clinical settings for the treatment of wounds. Adipose-derived stromal cells are a cost-effective source of mesenchymal stem cells in wound management which can be easily harvest from adipose tissues through the less invasive processes with high yield rates. In addition, their ability to secrete multiple cytokines and growth factors, and differentiation into skin cells make them an ideal cell type to use in wound treatment. This is a concise overview on the application of adipose-derived stromal cells in wound healing and their role in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Abstract
Purpose of review To encapsulate past and current research efforts focused on stem cell transplantation strategies to resolve radiation-induced cognitive dysfunction. Recent Findings Transplantation of human stem cells in the irradiated brain was first shown to resolve radiation-induced cognitive dysfunction in a landmark paper by Acharya et al., appearing in PNAS in 2009. Since that time, work from the same laboratory as well as other groups have reported on the beneficial (as well as detrimental) effects of stem cell grafting after cranial radiation exposure. Improved learning and memory found many months after engraftment has since been associated with a preservation of host neuronal morphology, a suppression of neuroinflammation, improved myelination and increased cerebral blood flow. Interestingly, many (if not all) of these beneficial effects can be demonstrated by substituting stem cells with microvesicles derived from human stem cells during transplantation, thereby eliminating many of the more long-standing concerns related to immunorejection and teratoma formation. Summary Stem cell and microvesicle transplantation into the irradiated brain of rodents has uncovered some unexpected benefits that hold promise for ameliorating many of adverse neurocognitive complications associated with major cancer treatments. Properly developed, such approaches may provide much needed clinical recourse to millions of cancer survivors suffering from the unintended side effects of their cancer therapies.
Collapse
|
50
|
Jacobson LK, Johnson MB, Dedhia RD, Niknam-Bienia S, Wong AK. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment. JPRAS Open 2017. [DOI: 10.1016/j.jpra.2017.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|