1
|
Milman Krentsis I, Orgad R, Zheng Y, Bachar Lustig E, Rosen C, Shezen E, Yadav S, Nathansohn Levi B, Assayag M, Berkman N, Karmouty Quintana H, Shoshan E, Blagdon C, Reisner Y. Lung Regeneration by Transplantation of Allogeneic Lung Progenitors Using a Safer Conditioning Regimen and Clinical-grade Reagents. Stem Cells Transl Med 2022; 11:178-188. [PMID: 35298657 PMCID: PMC8929438 DOI: 10.1093/stcltm/szab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023] Open
Abstract
Over the last decades, several studies demonstrated the possibility of lung regeneration through transplantation of various lung progenitor populations. Recently, we showed in mice that fetal or adult lung progenitors could potentially provide donor cells for transplantation, provided that the lung stem cell niche in the recipient is vacated of endogenous lung progenitors by adequate conditioning. Accordingly, marked lung regeneration could be attained following i.v. infusion of a single cell suspension of lung cells into recipient mice conditioned with naphthalene (NA) and 6Gy total body irradiation (TBI). As clinical translation of this approach requires the use of allogenic donors, we more recently developed a novel transplantation modality based on co-infusion of hematopoietic and lung progenitors from the same donor. Thus, by virtue of hematopoietic chimerism, which leads to immune tolerance toward donor antigens, the lung progenitors can be successfully engrafted without any need for post-transplant immune suppression. In the present study, we demonstrate that it is possible to replace NA in the conditioning regimen with Cyclophosphamide (CY), approved for the treatment of many diseases and that a lower dose of 2 GY TBI can successfully enable engraftment of donor-derived hematopoietic and lung progenitors when CY is administered in 2 doses after the stem cell infusion. Taken together, our results suggest a feasible and relatively safe protocol that could potentially be translated to clinical transplantation of lung progenitors across major MHC barriers in patients with terminal lung diseases.
Collapse
Affiliation(s)
| | | | - Yangxi Zheng
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Esther Bachar Lustig
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chava Rosen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel,Department of Neonatology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tal-Hashomer, Israel
| | - Elias Shezen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandeep Yadav
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Miri Assayag
- Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neville Berkman
- Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Harry Karmouty Quintana
- University of Texas Health Science Center at Houston, Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Houston, TX, USA
| | - Einav Shoshan
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Christa Blagdon
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Yair Reisner
- Corresponding author: Yair Reisner, Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Hadrup N, Frederiksen M, Wedebye EB, Nikolov NG, Carøe TK, Sørli JB, Frydendall KB, Liguori B, Sejbaek CS, Wolkoff P, Flachs EM, Schlünssen V, Meyer HW, Clausen PA, Hougaard KS. Asthma-inducing potential of 28 substances in spray cleaning products-Assessed by quantitative structure activity relationship (QSAR) testing and literature review. J Appl Toxicol 2021; 42:130-153. [PMID: 34247391 PMCID: PMC9291953 DOI: 10.1002/jat.4215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Exposure to spray cleaning products constitutes a potential risk for asthma induction. We set out to review whether substances in such products are potential inducers of asthma. We identified 101 spray cleaning products for professional use. Twenty‐eight of their chemical substances were selected. We based the selection on (a) positive prediction for respiratory sensitisation in humans based on quantitative structure activity relationship (QSAR) in the Danish (Q)SAR Database, (b) positive QSAR prediction for severe skin irritation in rabbits and (c) knowledge on the substances' physico‐chemical characteristics and toxicity. Combining the findings in the literature and QSAR predictions, we could group substances into four classes: (1) some indication in humans for asthma induction: chloramine, benzalkonium chloride; (2) some indication in animals for asthma induction: ethylenediaminetetraacetic acid (EDTA), citric acid; (3) equivocal data: hypochlorite; (4) few or lacking data: nitriloacetic acid, monoethanolamine, 2‐(2‐aminoethoxy)ethanol, 2‐diethylaminoethanol, alkyldimethylamin oxide, 1‐aminopropan‐2‐ol, methylisothiazolinone, benzisothiazolinone and chlormethylisothiazolinone; three specific sulphonates and sulfamic acid, salicylic acid and its analogue sodium benzoate, propane‐1,2‐diol, glycerol, propylidynetrimethanol, lactic acid, disodium malate, morpholine, bronopol and benzyl alcohol. In conclusion, we identified an asthma induction potential for some of the substances. In addition, we identified major knowledge gaps for most substances. Thus, more data are needed to feed into a strategy of safe‐by‐design, where substances with potential for induction of asthma are avoided in future (spray) cleaning products. Moreover, we suggest that QSAR predictions can serve to prioritise substances that need further testing in various areas of toxicology. We reviewed whether substances in spray cleaning products constitute a potential risk for asthma induction. For this, we identified 101 spray cleaning products for professional use and prioritised their ingredient substances by use of quantitative structure activity relationship (QSAR). We provide a review of 28 selected substances: we give conclusions on their asthma induction potential, as well as a discussion on the use of QSAR for prioritisation of substances, and the major knowledge gaps we encountered.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Eva B Wedebye
- DTU QSAR Team, Division for Diet, Disease Prevention and Toxicology, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolai G Nikolov
- DTU QSAR Team, Division for Diet, Disease Prevention and Toxicology, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tanja K Carøe
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Karen B Frydendall
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Camilla S Sejbaek
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Esben M Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Vivi Schlünssen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Harald W Meyer
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Per A Clausen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
McGovern T, Ano S, Farahnak S, McCuaig S, Martin JG. Cellular Source of Cysteinyl Leukotrienes Following Chlorine Exposure. Am J Respir Cell Mol Biol 2020; 63:681-689. [PMID: 32697598 DOI: 10.1165/rcmb.2019-0385oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Soroor Farahnak
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Sarah McCuaig
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
6
|
Choking agents and chlorine gas – History, pathophysiology, clinical effects and treatment. Toxicol Lett 2020; 320:73-79. [DOI: 10.1016/j.toxlet.2019.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
|
7
|
Ågren L, Elfsmark L, Akfur C, Hägglund L, Ekstrand-Hammarström B, Jonasson S. N-acetyl cysteine protects against chlorine-induced tissue damage in an ex vivo model. Toxicol Lett 2020; 322:58-65. [PMID: 31962155 DOI: 10.1016/j.toxlet.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023]
Abstract
High-level concentrations of chlorine (Cl2) can cause life-threatening lung injuries and the objective in this study was to understand the pathogenesis of short-term sequelae of Cl2-induced lung injury and to evaluate whether pre-treatment with the antioxidant N-acetyl cysteine (NAC) could counteract these injuries using Cl2-exposed precision-cut lung slices (PCLS). The lungs of Sprague-Dawley rats were filled with agarose solution and cut into 250 μm-thick slices that were exposed to Cl2 (20-600 ppm) and incubated for 30 min. The tissue slices were pre-treated with NAC (5-25 mM) before exposure to Cl2. Toxicological responses were analyzed after 5 h by measurement of LDH, WST-1 and inflammatory mediators (IL-1β, IL-6 and CINC-1) in medium or lung tissue homogenate. Exposure to Cl2 induced a concentration-dependent cytotoxicity (LDH/WST-1) and IL-1β release in medium. Similar cytokine response was detected in tissue homogenate. Contraction of larger airways was measured using electric-field-stimulation method, 200 ppm and control slices had similar contraction level (39 ± 5%) but in the 400 ppm Cl2 group, the evoked contraction was smaller (7 ± 3%) possibly due to tissue damage. NAC-treatment improved cell viability and reduced tissue damage and the contraction was similar to control levels (50 ± 11%) in the NAC treated Cl2-exposed slices. In conclusion, Cl2 induced a concentration-dependent lung tissue damage that was effectively prevented with pre-treatment with NAC. There is a great need to improve the medical treatment of acute lung injury and this PCLS method offers a way to identify and to test new concepts of treatment of Cl2-induced lung injuries.
Collapse
Affiliation(s)
- Lina Ågren
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Christine Akfur
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lars Hägglund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
8
|
Achanta S, Jordt SE. Toxic effects of chlorine gas and potential treatments: a literature review. Toxicol Mech Methods 2019; 31:244-256. [PMID: 31532270 DOI: 10.1080/15376516.2019.1669244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.
Collapse
Affiliation(s)
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
9
|
Allard B, Panariti A, Pernet E, Downey J, Ano S, Dembele M, Nakada E, Fujii U, McGovern TK, Powell WS, Divangahi M, Martin JG. Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. J Allergy Clin Immunol 2019; 144:945-961.e9. [PMID: 31356919 DOI: 10.1016/j.jaci.2019.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease. OBJECTIVE We sought to explore the mechanisms of airway adaptation to oxidative injury. METHODS For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation. RESULTS Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-β and prostaglandin E2. CONCLUSION Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-β and prostaglandin E2.
Collapse
Affiliation(s)
- Benoit Allard
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Erwan Pernet
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Downey
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marieme Dembele
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emily Nakada
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Utako Fujii
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Toby K McGovern
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - William S Powell
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Huynh Tuong A, Despréaux T, Loeb T, Salomon J, Mégarbane B, Descatha A. Emergency management of chlorine gas exposure - a systematic review. Clin Toxicol (Phila) 2019; 57:77-98. [PMID: 30672349 DOI: 10.1080/15563650.2018.1519193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Chlorine exposure can lead to pulmonary obstruction, reactive airway dysfunction syndrome, acute respiratory distress syndrome and, rarely, death. OBJECTIVE We performed a systematic review of published animal and human data regarding the management of chlorine exposure. METHODS Three databases were searched from 2007 to 2017 using the following keywords "("chlorine gas" OR "chlorine-induced" OR" chlorine-exposed") AND ("therapy" OR "treatment" OR "post-exposure")". Forty-five relevant papers were found: 22 animal studies, 6 reviews, 19 case reports and 1 human randomized controlled study. General management: Once the casualty has been removed from the source of exposure and adequately decontaminated, chlorine-exposed patients should receive supportive care. Humidified oxygen: If dyspnea and hypoxemia are present, humidified oxygen should be administered. Inhaled bronchodilators: The use of nebulized or inhaled bronchodilators to counteract bronchoconstriction is standard therapy, and the combination of ipratropium bromide with beta2-agonists effectively reversed bronchoconstriction, airway irritation and increased airway resistance in experimental studies. Inhaled sodium bicarbonate: In a randomized controlled trial, humidified oxygen, intravenous prednisolone and inhaled salbutamol were compared with nebulized sodium bicarbonate. The only additional benefit of sodium bicarbonate was to increase the forced expiratory volume in one second, 2 and 4 h after administration. Corticosteroids: Dexamethasone 100 mg/kg intraperitoneally (IP) reduced lung edema when given within 1 h of chlorine inhalation and when administered within 6 h significantly decreased (p < 0.01) the leukocyte count in the bronchoalveolar lavage (BAL). As corticosteroids were never given alone in clinical studies, it is impossible to assess whether they had an additional beneficial effect. Antioxidants: An ascorbic acid/deferoxamine combination (equivalent to 100 mg/kg and 15 mg/kg, respectively) was administered intramuscularly 1 h after chlorine exposure, then every 12 h up to 60 h, then as an aerosol, and produced a significant reduction (p < 0.05) in BAL leukocytes and a significant reduction (p < 0.007) in mortality at 72 h. The single clinical case reported was uninterpretable. Sodium nitrite: Sodium nitrite 10 mg/kg intramuscularly (IM), 30 min post-chlorine exposure in mice and rabbits significantly reduced (p < 0.01) the number of leukocytes and the protein concentration in BAL and completely reversed mortality in rabbits and decreased mortality by about 50% in mice. No clinical studies have reported the use of sodium nitrite. Dimethylthiourea: Dimethylthiourea 100 mg/kg IP significantly decreased (p < 0.05) lymphocytes and neutrophils in BAL fluid 24 h after chlorine exposure in experimental studies. No clinical studies have been undertaken. AEOL 10150: Administration of AEOL10150 5 mg/kg IP at 1 h and 9 h post-chlorine exposure reduced significantly the neutrophil (p < 0.001) and macrophage (p < 0.05) bronchoalveolar cell counts. Transient receptor potential vanilloid 4 (TRPV4): IM or IP TRPV4 reduced significantly (p < 0.001) bronchoalveolar neutrophil and macrophage counts to baseline at 24 h. No clinical studies have been performed. Reparixin and triptolide: In experimental studies, triptolide 100-1000 µg/kg IP 1 h post-exposure caused a significant decrease (p < 0.001) in bronchoalveolar neutrophils, whereas reparixin 15 mg/kg IP 1 h post-exposure produced no benefit. Rolipram: Nanoemulsion formulated rolipram administered intramuscularly returned airway resistance to baseline. Rolipram (40%)/poly(lactic-co-glycolic acid) (60%) 0.36 mg/mouse given intramuscularly 1 h post-exposure significantly reduced (p < 0.05) extravascular lung water by 20% at t + 6 h. Prophylactic antibiotics: Studies in patients have failed to demonstrate benefit. Sevoflurane: Sevoflurane has been used in one intubated patient in addition to beta2-agonists. Although the peak inspiratory pressure was decreased after 60 min, the role of sevofluorine is not known. CONCLUSIONS Various therapies seem promising based on animal studies or case reports. However, these recommendations are based on low-level quality data. A systematic list of outcomes to monitor and improve may help to design optimal therapeutic protocols to manage chlorine-exposed patients.
Collapse
Affiliation(s)
- Alice Huynh Tuong
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Despréaux
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Loeb
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France
| | - Jérôme Salomon
- d Versailles Saint Quentin-en-Yvelines University , Institut Pasteur, INSERM, UMR 1181 , Paris , France.,e Department of Acute Medicine , CHU PIFO, APHP, Poincaré Hospital , Garches , France
| | - Bruno Mégarbane
- f Department of Medical and Toxicological Critical Care Medicine , APHP, Lariboisière Hospital , Paris , France.,g Paris-Diderot University, INSERM UMR-S 1144 , Paris , France
| | - Alexis Descatha
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| |
Collapse
|
11
|
Kim BG, Lee PH, Lee SH, Hong J, Jang AS. Claudins, VEGF, Nrf2, Keap1, and Nonspecific Airway Hyper-Reactivity Are Increased in Mice Co-Exposed to Allergen and Acrolein. Chem Res Toxicol 2019; 32:139-145. [PMID: 30608172 DOI: 10.1021/acs.chemrestox.8b00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acrolein, an α/β-unsaturated aldehyde, is volatile at room temperature. It is a respiratory irritant found in environmental tobacco smoke, which can be generated during cooking or endogenously at sites of injury. An acute high concentration of uncontrolled irritant exposure can lead to an asthma-like syndrome known as reactive airways dysfunction syndrome (RADS). However, whether acrolein can induce RADS remains poorly understood. The aim of study is to develop a RADS model of acrolein inhalation in mice and to clarify the mechanism of RADS. Mice were treated with ovalbumin (OVA) and exposed to acrolein (5 ppm/10 min). Airway hyper-responsiveness (AHR) was measured on days 24 and 56, and samples were collected on days 25 and 57. Tight junction protein, antioxidant-associated protein, and vascular endothelial growth factor (VEGF) levels were estimated by Western blotting and immunohistochemical staining. Reactive oxygen species (ROS) was calculated using enzyme linked immunosorbent assays. Acrolein or OVA groups exhibited an increase in airway inflammatory cells and AHR compared to a sham group. These effects were further increased in mice in the OVA + acrolein exposure group than in the OVA exposure group and persisted in the acrolein exposure group for 8 weeks. CLDNs, carbonyls, VEGF, Nrf2, and Keap1 were observed in the lungs. Our data demonstrate that acrolein induces RADS and that ROS, angiogenesis, and tight junction proteins are involved in RADS in a mouse model.
Collapse
Affiliation(s)
- Byeong-Gon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do Republic of Korea 14584
| | - Pureun-Haneul Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do Republic of Korea 14584
| | - Sun-Hye Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do Republic of Korea 14584
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do Republic of Korea 14584
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do Republic of Korea 14584
| |
Collapse
|
12
|
Zhou T, Song WF, Shang Y, Yao SL, Matalon S. Halogen Inhalation-Induced Lung Injury and Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:1214-1219. [PMID: 29722341 PMCID: PMC5956773 DOI: 10.4103/0366-6999.231515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Exposure to halogens, such as chlorine or bromine, results in environmental and occupational hazard to the lung and other organs. Chlorine is highly toxic by inhalation, leading to dyspnea, hypoxemia, airway obstruction, pneumonitis, pulmonary edema, and acute respiratory distress syndrome (ARDS). Although bromine is less reactive and oxidative than chlorine, inhalation also results in bronchospasm, airway hyperresponsiveness, ARDS, and even death. Both halogens have been shown to damage the systemic circulation and result in cardiac injury as well. There is no specific antidote for these injuries since the mechanisms are largely unknown. DATA SOURCES This review was based on articles published in PubMed databases up to January, 2018, with the following keywords: "chlorine," "bromine," "lung injury," and "ARDS." STUDY SELECTION The original articles and reviews including the topics were the primary references. RESULTS Based on animal studies, it is found that inhaled chlorine will form chlorine-derived oxidative products that mediate postexposure toxicity; thus, potential treatments will target the oxidative stress and inflammation induced by chlorine. Antioxidants, cAMP-elevating agents, anti-inflammatory agents, nitric oxide-modulating agents, and high-molecular-weight hyaluronan have shown promising effects in treating acute chlorine injury. Elevated free heme level is involved in acute lung injury caused by bromine inhalation. Hemopexin, a heme-scavenging protein, when administered postexposure, decreases lung injury and improves survival. CONCLUSIONS At present, there is an urgent need for additional research to develop specific therapies that target the basic mechanisms by which halogens damage the lungs and systemic organs.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei-Feng Song
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Irritant-induced asthma to hypochlorite in mice due to impairment of the airway barrier. Arch Toxicol 2018; 92:1551-1561. [PMID: 29368146 DOI: 10.1007/s00204-018-2161-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Inhalation of commonly present irritants, such as chlorine and chlorine derivatives, can cause adverse respiratory effects, including irritant-induced asthma (IIA). We hypothesize that due to airway barrier impairment, exposure to hypochlorite (ClO-) can result in airway hypersensitivity. C57Bl/6 mice received an intra-peritoneal (i.p.) injection of the airway damaging agent naphthalene (NA, 200 mg/kg body weight) or vehicle (mineral oil, MO). In vivo micro-computed tomography (CT) images of the lungs were acquired before and at regular time points after the i.p. TREATMENT After a recovery period of 14 days an intranasal (i.n.) challenge with 0.003% active chlorine (in ClO-) or vehicle (distilled water, H2O) was given, followed by assessment of the breathing frequency. One day later, pulmonary function, along with pulmonary inflammation was determined. Lung permeability was assessed by means of total broncho-alveolar lavage (BAL) protein content and plasma surfactant protein (SP)-D levels. In vivo micro-CT imaging revealed enlargement of the lungs and airways early after NA treatment, with a return to normal at day 14. When challenged i.n. with ClO-, NA-pretreated mice immediately responded with a sensory irritant response. Twenty-four hours later, NA/ClO- mice showed airway hyperreactivity (AHR), accompanied by a neutrophilic and eosinophilic inflammation. NA administration followed by ClO- induced airway barrier impairment, as shown by increased BAL protein and plasma SP-D concentrations; histology revealed epithelial denudation. These data prove that NA-induced lung impairment renders the lungs of mice more sensitive to an airway challenge with ClO-, confirming the hypothesis that incomplete barrier repair, followed by irritant exposure results in airway hypersensitivity.
Collapse
|
14
|
Johansson M, Gustafsson Å, Johanson G, Öberg M. Comparison of airway response in naïve and ovalbumin-sensitized mice during short-term inhalation exposure to chlorine. Inhal Toxicol 2017; 29:82-91. [PMID: 28330427 DOI: 10.1080/08958378.2017.1299260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE It has been suggested that asthmatics are more susceptible than healthy individuals to airborne irritating chemicals in general. However, there is limited human data available to support this hypothesis due to ethical and practical difficulties. We explored a murine model of ovalbumin (OVA)-induced airway inflammation to study susceptibility during acute exposure to chemicals with chlorine as a model substance. METHODS Naïve and OVA sensitized female BALB/c mice were exposed to chlorine at four different concentrations (0, 5, 30 and 80 ppm) for 15 minutes with online recording of the respiratory function by plethysmography. The specific effects on respiratory mechanics, inflammatory cells and inflammatory mediators (cytokines and chemokines) of the airways were measured 24 hours after the chlorine exposure as well as histopathological examination of the lungs. RESULTS Similar concentration-dependent reductions in respiratory frequency were seen in the two groups, with a 50% reduction (RD50) slightly above 5 ppm. Decreased body weight 24 hours after exposure to 80 ppm was also observed in both groups. Naïve, but not OVA-sensitized, mice showed increased bronchial reactivity and higher number of neutrophils in bronchoalveolar lavage fluid at 80 ppm. CONCLUSIONS The results do not support an increased susceptibility to chlorine among OVA-sensitized mice. This animal model, which represents a phenotype of eosinophilic airway inflammation, seems unsuitable to study susceptibility to inhalation of irritants in relation to asthma.
Collapse
Affiliation(s)
- Mia Johansson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Åsa Gustafsson
- b Swedish Defense Research Agency (FOI) , Umeå , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| | - Gunnar Johanson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Mattias Öberg
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| |
Collapse
|
15
|
Hamamoto Y, Ano S, Allard B, O'Sullivan M, McGovern TK, Martin JG. Montelukast reduces inhaled chlorine triggered airway hyperresponsiveness and airway inflammation in the mouse. Br J Pharmacol 2017; 174:3346-3358. [PMID: 28718891 PMCID: PMC5595758 DOI: 10.1111/bph.13953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/20/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cysteinyl leukotrienes (CysLTs) are pro-inflammatory lipid mediators that exacerbate disease state in several asthma phenotypes including asthma induced by allergen, virus and exercise. However, the role of CysLTs in irritant-induced airway disease is not well characterized. The purpose of the current study was to investigate the effect of montelukast, a CysLT1 receptor antagonist, on parameters of irritant-induced asthma induced by inhalation of chlorine in the mouse. EXPERIMENTAL APPROACH BALB/c mice were exposed to chlorine in air (100 ppm, for 5 min). Montelukast (3 mg·kg-1 ) or the vehicle (1% methylcellulose) was administered 24 and 1 h prior to chlorine exposure and 1 h prior to outcome measurements. Twenty-four hours after exposure, responses to inhaled aerosolized methacholine, cell composition and an array of cytokines/chemokines in bronchoalveolar lavage (BAL) fluid were measured. Neutralizing antibodies against IL-6 and VEGF were administered prior to exposures. KEY RESULTS Montelukast reduced chlorine -induced airway hyperresponsiveness (AHR) to methacholine in the peripheral lung compartment as estimated from dynamic elastance, but not in large conducting airways. Montelukast treatment attenuated chlorine-induced macrophage influx, neutrophilia and eosinophilia in BAL fluid. Chlorine exposure increased VEGF, IL-6, the chemokines KC and CCL3 in BAL fluid. Montelukast treatment prevented chlorine-induced increases in VEGF and IL-6. Anti-IL-6 antibody inhibited chlorine-induced neutrophilia and reduced AHR. CONCLUSIONS AND IMPLICATIONS Pre-treatment with montelukast attenuated chlorine-induced neutrophilia and AHR in mice. These effects are mediated, in part, via IL-6.
Collapse
Affiliation(s)
- Yoichiro Hamamoto
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| | - Satoshi Ano
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| | - Benoit Allard
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| | - Michael O'Sullivan
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| | - Toby K McGovern
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| | - James G Martin
- Meakins‐Christie Laboratories, The Research Institute of McGill University Health Centre and the Department of MedicineMcGill UniversityMontrealQCCanada
| |
Collapse
|
16
|
Summerhill EM, Hoyle GW, Jordt SE, Jugg BJ, Martin JG, Matalon S, Patterson SE, Prezant DJ, Sciuto AM, Svendsen ER, White CW, Veress LA. An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Ann Am Thorac Soc 2017; 14:1060-1072. [PMID: 28418689 PMCID: PMC5529138 DOI: 10.1513/annalsats.201704-297ws] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.
Collapse
|
17
|
Honavar J, Doran S, Ricart K, Matalon S, Patel RP. Nitrite therapy prevents chlorine gas toxicity in rabbits. Toxicol Lett 2017; 271:20-25. [PMID: 28237808 DOI: 10.1016/j.toxlet.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Chlorine (Cl2) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl2 exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl2 exposure is effective in preventing acute lung injury and improving survival in rodent models. Our goal in this study was to develop a rabbit model of Cl2 toxicity and test whether nitrite affords protection in a non-rodent model. Exposure of New Zealand White rabbits to Cl2 gas (600ppm, 45min) caused significant increases in protein and neutrophil accumulation in the airways and ∼35% mortality over 18h. Nitrite administered 30min post Cl2 exposure by a single IM injection, at 1mg/kg or 10mg/kg, prevented indices of acute lung injury at 6h by up to 50%. Moreover, all rabbits that received nitrite survived over the study period. These data provide further rationale for developing nitrite as post-exposure therapeutic to mitigate against Cl2 gas exposure injury.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Stephen Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Karina Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States.
| |
Collapse
|
18
|
Ano S, Panariti A, Allard B, O'Sullivan M, McGovern TK, Hamamoto Y, Ishii Y, Yamamoto M, Powell WS, Martin JG. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice. Free Radic Biol Med 2017; 102:1-15. [PMID: 27847240 DOI: 10.1016/j.freeradbiomed.2016.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022]
Abstract
RATIONALE Chlorine gas (Cl2) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl2, using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. METHODS Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. RESULTS Cl2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl2 exposure. BSO reduced GSH levels and promoted Cl2-induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl2-induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl2 exposure. CONCLUSIONS Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR.
Collapse
Affiliation(s)
- Satoshi Ano
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Benoit Allard
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michael O'Sullivan
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Toby K McGovern
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yoichiro Hamamoto
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yukio Ishii
- Department of Respiratory Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The present review summarizes the recent literature on the relation between chronic workplace irritant exposures and asthma, focusing on exposures of low to moderate levels. We discuss results from epidemiological surveys, potential biological mechanisms, and needs for further research. These aspects are largely illustrated by studies on exposure to cleaning products. RECENT FINDINGS Recent results from nine population-based and workplace-based epidemiological studies, mostly cross-sectional, found an increased risk of both new-onset and work-exacerbated asthma among participants exposed to moderate level of irritants and/or cleaning products. SUMMARY Evidence of a causal effect of chronic workplace irritant exposure in new-onset asthma remains limited, mainly because of a lack of longitudinal studies and the difficulty to evaluate irritant exposures. However, recent epidemiological studies strengthen the evidence of an effect of chronic exposure to irritants in work-related asthma. The underlying mechanism remains unknown but may be related to oxidative stress, neurogenic inflammation and dual irritant and adjuvant effects. However, disentangling chronic irritant effects from either acute irritant-induced asthma or immunological low molecular weight agent-induced asthma is difficult for some agents. Further research is needed to improve assessment of irritant exposures and identify biomarkers.
Collapse
|
20
|
Hoyle GW, Svendsen ER. Persistent effects of chlorine inhalation on respiratory health. Ann N Y Acad Sci 2016; 1378:33-40. [PMID: 27385061 PMCID: PMC5063681 DOI: 10.1111/nyas.13139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Chlorine gas is a toxic respiratory irritant that is considered a chemical threat agent because of the potential for release in industrial accidents or terrorist attacks. Chlorine inhalation damages the respiratory tract, including the airways and distal lung, and can result in acute lung injury. Some individuals exposed to chlorine experience a full recovery from acute injury, whereas others develop persistent adverse effects, such as respiratory symptoms, inflammation, and lung-function decrements. In animal models, chlorine can produce persistent inflammation, remodeling, and obstruction in large or small airways, depending on species. Airways with pseudostratified epithelia are repaired efficiently, with surviving basal epithelial cells serving as progenitor cells that repopulate the complement of differentiated cell types. Distal airways lacking basal cells are repaired less efficiently, leading to chronic inflammation and fibrosis at these sites. Persistent chlorine-induced airway disease in humans is treated with asthma medication to relieve symptoms. However, such treatment does not ameliorate the underlying disease pathogenesis, so treatments that are more effective at preventing initial development of airway disease after irritant gas exposure and at reversing established disease are needed.
Collapse
Affiliation(s)
- Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky.
| | - Erik R Svendsen
- Division of Environmental Health, Department of Public Health Services, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
McGovern T, Goldberger M, Chen M, Allard B, Hamamoto Y, Kanaoka Y, Austen KF, Powell WS, Martin JG. CysLT1 Receptor Is Protective against Oxidative Stress in a Model of Irritant-Induced Asthma. THE JOURNAL OF IMMUNOLOGY 2016; 197:266-77. [PMID: 27226094 DOI: 10.4049/jimmunol.1501084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
The bronchoconstrictive and proinflammatory properties of cysteinyl leukotrienes (cysLTs) in allergic asthma mediate their effects predominantly through the cysLT1 receptor (cysLT1R). However, the role of cysLTs and cysLT1R in innate immune-triggered asthma is largely unexplored. We explored the synthesis of cysLTs and cysLT1R as determinants of airway responses in an oxidative stress-induced model of irritant asthma. Wild-type (WT) mice exposed to 100 ppm Cl2 for 5 min had airway neutrophilia, increased cysLT production, and pulmonary expression of cysLT-related biosynthetic genes. CysLT1R-deficient (CysLTr1(-/-)) mice that were exposed to Cl2 demonstrated airway hyperresponsiveness to inhaled methacholine significantly greater than in WT BALB/c mice. Compared to WT mice, airway neutrophilia and keratinocyte chemoattractant production levels were higher in CysLTr1(-/-) mice and airway hyperresponsiveness was ameliorated using a granulocyte depletion Ab. CysLTr1(-/-) mice also demonstrated prolonged bronchial epithelial cell apoptosis following Cl2 WT mice showed increased antioxidant and NF erythroid 2-related factor 2 (Nrf2) gene expression, Nrf2 nuclear translocation in bronchial epithelial cells, and increased reduced glutathione/oxidized glutathione following Cl2 exposure whereas CysLTr1(-/-) mice did not. Furthermore, CysLTr1(-/-) mice demonstrated increased pulmonary E-cadherin expression and soluble E-cadherin shedding compared with WT mice. Loss of a functional cysLT1R results in aberrant antioxidant response and increased susceptibility to oxidative injury, apparently via a cysLT1R-dependent impairment of Nrf2 function.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Madison Goldberger
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael Chen
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Benoit Allard
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Yoichiro Hamamoto
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Yoshihide Kanaoka
- Department of Allergy and Immunology, Brigham and Women's Hospital, Boston, MA 02130; and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - K Frank Austen
- Department of Allergy and Immunology, Brigham and Women's Hospital, Boston, MA 02130; and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - William S Powell
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
22
|
McGovern TK, Goldberger M, Allard B, Farahnak S, Hamamoto Y, O'Sullivan M, Hirota N, Martel G, Rousseau S, Martin JG. Neutrophils mediate airway hyperresponsiveness after chlorine-induced airway injury in the mouse. Am J Respir Cell Mol Biol 2016; 52:513-22. [PMID: 25192041 DOI: 10.1165/rcmb.2013-0430oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chlorine gas (Cl2) inhalation causes oxidative stress, airway epithelial damage, airway hyperresponsiveness (AHR), and neutrophilia. We evaluated the effect of neutrophil depletion on Cl2-induced AHR and its effect on the endogenous antioxidant response, and if eosinophils or macrophages influence Cl2-induced AHR. We exposed male Balb/C mice to 100 ppm Cl2 for 5 minutes. We quantified inflammatory cell populations in bronchoalveolar lavage (BAL), the antioxidant response in lung tissue by quantitative PCR, and nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear translocation by immunofluorescence. In vitro, NRF2 nuclear translocation in response to exogenous hypochlorite was assessed using a luciferase assay. Anti-granulocyte receptor-1 antibody or anti-Ly6G was used to deplete neutrophils. The effects of neutrophil depletion on IL-13 and IL-17 were measured by ELISA. Eosinophils and macrophages were depleted using TRFK5 or clodronate-loaded liposomes, respectively. AHR was evaluated with the constant-phase model in response to inhaled aerosolized methacholine. Our results show that Cl2 exposure induced neutrophilia and increased expression of NRF2 mRNA, superoxide dismutase-1, and heme-oxygenase 1. Neutrophil depletion abolished Cl2-induced AHR in large conducting airways and prevented increases in antioxidant gene expression and NRF2 nuclear translocation. Exogenous hypochlorite administration resulted in increased NRF2 nuclear translocation in vitro. After Cl2 exposure, neutrophils occupied 22 ± 7% of the luminal space in large airways. IL-17 in BAL was increased after Cl2, although this effect was not prevented by neutrophil depletion. Neither depletion of eosinophils nor macrophages prevented Cl2-induced AHR. Our data suggest the ability of neutrophils to promote Cl2-induced AHR is dependent on increases in oxidative stress and occupation of luminal space in large airways.
Collapse
Affiliation(s)
- Toby K McGovern
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McElroy CS, Day BJ. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals. Biochem Pharmacol 2016; 100:1-11. [PMID: 26476351 PMCID: PMC4744107 DOI: 10.1016/j.bcp.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising.
Collapse
Affiliation(s)
- Cameron S McElroy
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States; Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, United States; Department of Immunology, University of Colorado Denver, Aurora, CO 80045, United States; Department of Environmental & Occupational Health Sciences, University of Colorado Denver, Aurora, CO 80045, United States; Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, United States.
| |
Collapse
|
24
|
McGovern TK, Chen M, Allard B, Larsson K, Martin JG, Adner M. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2015; 310:L155-65. [PMID: 26545900 DOI: 10.1152/ajplung.00172.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/03/2015] [Indexed: 11/22/2022] Open
Abstract
Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways.
Collapse
Affiliation(s)
- Toby K McGovern
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michael Chen
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Benoit Allard
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kjell Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
25
|
Zaky A, Ahmad A, Dell'Italia LJ, Jahromi L, Reisenberg LA, Matalon S, Ahmad S. Inhaled matters of the heart. ACTA ACUST UNITED AC 2015; 2. [PMID: 26665179 DOI: 10.14800/crm.997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhalations of atmospheric pollutants, especially particulate matters, are known to cause severe cardiac effects and to exacerbate preexisting heart disease. Heart failure is an important sequellae of gaseous inhalation such as that of carbon monoxide. Similarly, other gases such as sulphur dioxide are known to cause detrimental cardiovascular events. However, mechanisms of these cardiac toxicities are so far unknown. Increased susceptibility of the heart to oxidative stress may play a role. Low levels of antioxidants in the heart as compared to other organs and high levels of reactive oxygen species produced due to the high energetic demand and metabolic rate in cardiac muscle are important in rendering this susceptibility. Acute inhalation of high concentrations of halogen gases is often fatal. Severe respiratory injury and distress occurs upon inhalation of halogens gases, such as chlorine and bromine; however, studies on their cardiac effects are scant. We have demonstrated that inhalation of high concentrations of halogen gases cause significant cardiac injury, dysfunction, and failure that can be critical in causing mortalities following exposures. Our studies also demonstrated that cardiac dysfunction occurs as a result of a direct insult independent of coexisting hypoxia, since it is not fully reversed by oxygen supplementation. Therefore, studies on offsite organ effects of inhaled toxic gases can impact development of treatment strategies upon accidental or deliberate exposures to these agents. Here we summarize the knowledge of cardiovascular effects of common inhaled toxic gases with the intent to highlight the importance of consideration of cardiac symptoms while treating the victims.
Collapse
Affiliation(s)
- Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama ; Department of Medicine, Birmingham Veteran Affairs Medical Center, Birmingham, Alabama and Division of Cardiovascular Disease, University of Alabama Medical Center, Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Birmingham Veteran Affairs Medical Center, Birmingham, Alabama and Division of Cardiovascular Disease, University of Alabama Medical Center, Birmingham, Alabama
| | - Leila Jahromi
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Lee Ann Reisenberg
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama
| |
Collapse
|
26
|
Wigenstam E, Koch B, Bucht A, Jonasson S. N-acetyl cysteine improves the effects of corticosteroids in a mouse model of chlorine-induced acute lung injury. Toxicology 2014; 328:40-7. [PMID: 25497111 DOI: 10.1016/j.tox.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated.
Collapse
Affiliation(s)
- Elisabeth Wigenstam
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - Bo Koch
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - Anders Bucht
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden; Department of Public Health and Clinical Medicine, Division of Respiratory Medicine, Umeå University, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
27
|
Honavar J, Doran S, Oh JY, Steele C, Matalon S, Patel RP. Nitrite therapy improves survival postexposure to chlorine gas. Am J Physiol Lung Cell Mol Physiol 2014; 307:L888-94. [PMID: 25326579 DOI: 10.1152/ajplung.00079.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Doran
- Department of Anesthesiology University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chad Steele
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Honavar J, Bradley E, Bradley K, Oh JY, Vallejo MO, Kelley EE, Cantu-Medellin N, Doran S, Dell'italia LJ, Matalon S, Patel RP. Chlorine gas exposure disrupts nitric oxide homeostasis in the pulmonary vasculature. Toxicology 2014; 321:96-102. [PMID: 24769334 DOI: 10.1016/j.tox.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Exposure to chlorine (Cl2) gas during industrial accidents or chemical warfare leads to significant airway and distal lung epithelial injury that continues post exposure. While lung epithelial injury is prevalent, relatively little is known about whether Cl2 gas also promotes injury to the pulmonary vasculature. To determine this, rats were subjected to a sub-lethal Cl2 gas exposure (400 ppm, 30 min) and then brought back to room air. Pulmonary arteries (PA) were isolated from rats at various times post-exposure and contractile (phenylephrine) and nitric oxide (NO)-dependent vasodilation (acetylcholine and mahmanonoate) responses measured ex vivo. PA contractility did not change, however significant inhibition of NO-dependent vasodilation was observed that was maximal at 24-48 h post exposure. Superoxide dismutase restored NO-dependent vasodilation suggesting a role for increased superoxide formation. This was supported by ∼2-fold increase in superoxide formation (measured using 2-hydroethidine oxidation to 2-OH-E+) from PA isolated from Cl2 exposed rats. We next measured PA pressures in anesthetized rats. Surprisingly, PA pressures were significantly (∼4 mmHg) lower in rats that had been exposed to Cl2 gas 24 h earlier suggesting that deficit in NO-signaling observed in isolated PA experiments did not manifest as increased PA pressures in vivo. Administration of the iNOS selective inhibitor 1400W, restored PA pressures to normal in Cl2 exposed, but not control rats suggesting that any deficit in NO-signaling due to increased superoxide formation in the PA, is offset by increased NO-formation from iNOS. These data indicate that disruption of endogenous NO-signaling mechanisms that maintain PA tone is an important aspect of post-Cl2 gas exposure toxicity.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Eddie Bradley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kelley Bradley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joo Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew O Vallejo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Eric E Kelley
- Department of Anesthesiology, University of Pittsburgh, PA, United States
| | | | - Stephen Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Louis J Dell'italia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham VA Medical Center, United States
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Centers for Free Radical Biology and Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Centers for Free Radical Biology and Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
29
|
Abstract
Irritant-induced asthma in the workplace has been the focus of several articles in the past few years, and reviewed here. A clinical case definition is most readily associated with a single acute/accidental exposure to a presumed high concentration of an agent or agents expected to be irritant to the airways, as was initially reported with the subgroup Reactive Airways Dysfunction Syndrome (RADS). When most but not all criteria for RADS are met, then a diagnosis of irritant-induced asthma may also be considered to be "more probable than not". However, in addition, there is evolving understanding from epidemiological studies that chronic exposures may be associated with an increased risk of developing asthma. Despite this recognition, the mechanisms and clinical case definitions of work-related asthma that might be caused by chronic exposures to irritants (vs. new-onset asthma that begins coincidentally to work exposures), remain unclear at present.
Collapse
Affiliation(s)
- Susan M Tarlo
- Toronto Western Hospital, University Health Network, Toronto Western Hospital EW7-449, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada,
| |
Collapse
|
30
|
Jonasson S, Wigenstam E, Koch B, Bucht A. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids. Toxicol Appl Pharmacol 2013; 271:168-74. [DOI: 10.1016/j.taap.2013.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/16/2013] [Accepted: 04/27/2013] [Indexed: 12/16/2022]
|
31
|
Shalaby KH, Allard-Coutu A, O'Sullivan MJ, Nakada E, Qureshi ST, Day BJ, Martin JG. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. THE JOURNAL OF IMMUNOLOGY 2013; 191:922-33. [PMID: 23776177 DOI: 10.4049/jimmunol.1103644] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.
Collapse
Affiliation(s)
- Karim H Shalaby
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
McGovern TK, Robichaud A, Fereydoonzad L, Schuessler TF, Martin JG. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. J Vis Exp 2013:e50172. [PMID: 23711876 DOI: 10.3791/50172] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
Collapse
Affiliation(s)
- Toby K McGovern
- Meakins-Christie Laboratories, Department of Medicine, McGill University
| | | | | | | | | |
Collapse
|
33
|
Mo Y, Chen J, Schlueter CF, Hoyle GW. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 304:L92-102. [PMID: 23171502 DOI: 10.1152/ajplung.00272.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.
Collapse
Affiliation(s)
- Yiqun Mo
- Dept. of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 701 HSC-A, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
34
|
Samal AA, Honavar J, Brandon A, Bradley KM, Doran S, Liu Y, Dunaway C, Steele C, Postlethwait EM, Squadrito GL, Fanucchi MV, Matalon S, Patel RP. Administration of nitrite after chlorine gas exposure prevents lung injury: effect of administration modality. Free Radic Biol Med 2012; 53:1431-9. [PMID: 22917977 PMCID: PMC3448851 DOI: 10.1016/j.freeradbiomed.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 07/14/2012] [Accepted: 08/06/2012] [Indexed: 12/20/2022]
Abstract
Cl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1 mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30 min after Cl(2) exposure. Exposure of rats to Cl(2) gas (400 ppm, 30 min) significantly increased ALI and caused RAS 6-24h postexposure as indexed by BAL sampling of lung surface protein and polymorphonucleocytes (PMNs) and increased airway resistance and elastance before and after methacholine challenge. Intraperitoneal nitrite decreased Cl(2)-dependent increases in BAL protein but not PMNs. In contrast im nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase-dependent manner. Histological evaluation of airways 6h postexposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl(2)-exposed rats. Both ip and im nitrite improved airway histology compared to Cl(2) gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with im compared to ip nitrite. Airways were rendered more sensitive to methacholine-induced resistance and elastance after Cl(2) gas exposure. Interestingly, im nitrite, but not ip nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of im and ip therapy showed a twofold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl(2) exposure-dependent increases in circulating leukocytes. Halving the im nitrite dose resulted in no effect in PMN accumulation but significant reduction of BAL protein levels, indicating a distinct nitrite dose dependence for inhibition of Cl(2)-dependent lung permeability and inflammation. These data highlight the potential for nitrite as a postexposure therapeutic for Cl(2) gas-induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics.
Collapse
Affiliation(s)
- Andrey A. Samal
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Angela Brandon
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Kelley M. Bradley
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Stephen Doran
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Yanping Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Chad Dunaway
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Edward M. Postlethwait
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Radical Biology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Giuseppe L. Squadrito
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Radical Biology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Michelle V. Fanucchi
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Radical Biology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Radical Biology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Pulmonary Injury and Repair, University of Alabama at Birmingham, Birmingham AL 35294
- Center for Radical Biology, University of Alabama at Birmingham, Birmingham AL 35294
- Corresponding author: Dr. Rakesh Patel, Department of Pathology, University of, Alabama at Birmingham, 901 19 St. South, BMRII 532, Birmingham, AL 35294, , Telephone: (205)9975-9225 Fax: (205)934-7447
| |
Collapse
|
35
|
Chang W, Chen J, Schlueter CF, Rando RJ, Pathak YV, Hoyle GW. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram. Toxicol Appl Pharmacol 2012; 263:251-8. [PMID: 22763362 DOI: 10.1016/j.taap.2012.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/27/2022]
Abstract
Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery.
Collapse
Affiliation(s)
- Weiyuan Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
36
|
Anderson SE, Franko J, Jackson LG, Wells JR, Ham JE, Meade BJ. Irritancy and allergic responses induced by exposure to the indoor air chemical 4-oxopentanal. Toxicol Sci 2012; 127:371-81. [PMID: 22403157 DOI: 10.1093/toxsci/kfs102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness regarding the potential impact of indoor air pollution on human health. People working in an indoor environment often experience symptoms such as eye, nose, and throat irritation. Investigations into these complaints have ascribed the effects, in part, to compounds emitted from building materials, cleaning/consumer products, and indoor chemistry. One suspect indoor air contaminant that has been identified is the dicarbonyl 4-oxopentanal (4-OPA). 4-OPA is generated through the ozonolysis of squalene and several high-volume production compounds that are commonly found indoors. Following preliminary workplace sampling that identified the presence of 4-OPA, these studies examined the inflammatory and allergic responses to 4-OPA following both dermal and pulmonary exposure using a murine model. 4-OPA was tested in a combined local lymph node assay and identified to be an irritant and sensitizer. A Th1-mediated hypersensitivity response was supported by a positive response in the mouse ear swelling test. Pulmonary exposure to 4-OPA caused a significant elevation in nonspecific airway hyperreactivity, increased numbers of lung-associated lymphocytes and neutrophils, and increased interferon-γ production by lung-associated lymph nodes. These results suggest that both dermal and pulmonary exposure to 4-OPA may elicit irritant and allergic responses and may help to explain some of the adverse health effects associated with poor indoor air quality.
Collapse
Affiliation(s)
- Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Bazett M, Stefanov AN, Paun A, Paradis J, Haston CK. Strain-dependent airway hyperresponsiveness and a chromosome 7 locus of elevated lymphocyte numbers in cystic fibrosis transmembrane conductance regulator-deficient mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:2297-304. [PMID: 22287709 DOI: 10.4049/jimmunol.1102425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures. Finally, we mapped the phenotype of pulmonary lymphocyte counts in BALB × C57BL/6J F2 Cftr(tm1UNC) mice and reviewed positional candidate genes. By FACS analysis, both the lungs and spleens of BALB Cftr(tm1UNC) mice had more CD3(+) (both CD4(+) and CD8(+)) cells than did littermates or C57BL/6J Cftr(tm1UNC) mice. Cftr(tm1UNC) and littermate mice of either strain did not differ in anti-CD3-stimulated apoptosis or proliferation levels. Lymphocytes from BALB Cftr(tm1UNC) mice produced more IL-4 and IL-5 and reduced levels of IFN-γ than did littermates, whereas lymphocytes from C57BL/6J Cftr(tm1UNC) mice demonstrated increased Il-17 secretion. BALB Cftr(tm1UNC) mice presented an enhanced airway hyperresponsiveness to methacholine challenge compared with littermates and C57BL/6J Cftr(tm1UNC) mice. A chromosome 7 locus was identified to be linked to lymphocyte numbers, and genetic evaluation of the interval suggests Itgal and Il4ra as candidate genes for this trait. We conclude that the pulmonary phenotype of BALB Cftr(tm1UNC) mice includes airway hyperresponsiveness and increased lymphocyte numbers, with the latter trait being influenced by a chromosome 7 locus.
Collapse
Affiliation(s)
- Mark Bazett
- Meakins-Christie Laboratories, Department of Human Genetics, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | |
Collapse
|
38
|
Al Heialy S, McGovern TK, Martin JG. Insights into asthmatic airway remodelling through murine models. Respirology 2011; 16:589-97. [PMID: 21435099 DOI: 10.1111/j.1440-1843.2011.01974.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asthma is a chronic disorder of the airways associated in many instances with structural changes of the airways, termed airway remodelling. Irritant and allergen-induced murine models have been used to further understand the mechanisms of airway remodelling. The infiltration of the airways by inflammatory cells, such as T lymphocytes, mast cells, eosinophils, neutrophils and macrophages after repeated allergen challenges may be important effectors in the initiation and perpetuation of airway remodelling through the release of inflammatory mediators and growth factors. Interleukins-4 and -13 have been widely studied in experimental models, and have been shown to play a significant role in airway remodelling. Recently, a role for Th17 cells has been established. Other mediators involved in this process are ligands of the epidermal growth factor receptor, matrix metalloproteases and cysteinyl leukotrienes. A better understanding of the mechanisms leading to airway remodelling in allergic diseases may lead to the identification of novel therapeutic strategies but validation in human subjects is required for potential targets.
Collapse
Affiliation(s)
- Saba Al Heialy
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
39
|
Small animals models for drug discovery. Pulm Pharmacol Ther 2011; 24:513-24. [PMID: 21601000 DOI: 10.1016/j.pupt.2011.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 12/17/2022]
Abstract
There has been an explosion of studies of animal models of asthma in the past 20 years. The elucidation of fundamental immunological mechanisms underlying the development of allergy and the complex cytokine and chemokines networks underlying the responses have been substantially unraveled. Translation of findings to human asthma have been slow and hindered by the varied phenotypes that human asthma represents. New areas for expansion of modeling include virally mediated airway inflammation, oxidant stress, and the interactions of stimuli triggering innate immune and adaptive immune responses.
Collapse
|
40
|
McGovern T, Day BJ, White CW, Powell WS, Martin JG. AEOL10150: a novel therapeutic for rescue treatment after toxic gas lung injury. Free Radic Biol Med 2011; 50:602-8. [PMID: 21156205 PMCID: PMC4026011 DOI: 10.1016/j.freeradbiomed.2010.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 12/01/2010] [Indexed: 12/15/2022]
Abstract
New therapeutics designed as rescue treatments after toxic gas injury such as from chlorine (Cl(2)) are an emerging area of interest. We tested the effects of the metalloporphyrin catalytic antioxidant AEOL10150, a compound that scavenges peroxynitrite, inhibits lipid peroxidation, and has SOD and catalase-like activities, on Cl(2)-induced airway injury. Balb/C mice received 100ppm Cl(2) gas for 5 min. Four groups were studied: Cl(2) only, Cl(2) followed by AEOL10150 1 and 9 h after exposure, AEOL10150 only, and control. Twenty-four hours after Cl(2) gas exposure airway responsiveness to aerosolized methacholine (6.25-50mg/ml) was measured using a small-animal ventilator. Bronchoalveolar lavage (BAL) was performed to assess airway inflammation and protein. Whole lung tissue was assayed for 4-hydroxynonenal. In separate groups, lungs were collected at 72 h after Cl(2) injury to evaluate epithelial cell proliferation. Mice exposed to Cl(2) showed a significantly higher airway resistance compared to control, Cl(2)/AEOL10150, or AEOL10150-only treated animals in response to methacholine challenge. Eosinophils, neutrophils, and macrophages were elevated in BAL of Cl(2)-exposed mice. AEOL10150 attenuated the increases in neutrophils and macrophages. AEOL10150 prevented Cl(2)-induced increase in BAL fluid protein. Chlorine induced an increase in the number of proliferating airway epithelial cells, an effect AEOL10150 attenuated. 4-Hydroxynonenal levels in the lung were increased after Cl(2) and this effect was prevented with AEOL10150. AEOL10150 is an effective rescue treatment for Cl(2)-induced airway hyperresponsiveness, airway inflammation, injury-induced airway epithelial cell regeneration, and oxidative stress.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Brian J. Day
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Carl W. White
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - William S. Powell
- Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - James G. Martin
- Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|