1
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME, Sokol CL, Robinson C, Jacquet A. Protease allergens as initiators-regulators of allergic inflammation. Allergy 2023; 78:1148-1168. [PMID: 36794967 PMCID: PMC10159943 DOI: 10.1111/all.15678] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Tremendous progress in the last few years has been made to explain how seemingly harmless environmental proteins from different origins can induce potent Th2-biased inflammatory responses. Convergent findings have shown the key roles of allergens displaying proteolytic activity in the initiation and progression of the allergic response. Through their propensity to activate IgE-independent inflammatory pathways, certain allergenic proteases are now considered as initiators for sensitization to themselves and to non-protease allergens. The protease allergens degrade junctional proteins of keratinocytes or airway epithelium to facilitate allergen delivery across the epithelial barrier and their subsequent uptake by antigen-presenting cells. Epithelial injuries mediated by these proteases together with their sensing by protease-activated receptors (PARs) elicit potent inflammatory responses resulting in the release of pro-Th2 cytokines (IL-6, IL-25, IL-1β, TSLP) and danger-associated molecular patterns (DAMPs; IL-33, ATP, uric acid). Recently, protease allergens were shown to cleave the protease sensor domain of IL-33 to produce a super-active form of the alarmin. At the same time, proteolytic cleavage of fibrinogen can trigger TLR4 signaling, and cleavage of various cell surface receptors further shape the Th2 polarization. Remarkably, the sensing of protease allergens by nociceptive neurons can represent a primary step in the development of the allergic response. The goal of this review is to highlight the multiple innate immune mechanisms triggered by protease allergens that converge to initiate the allergic response.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caroline L. Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clive Robinson
- Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Schiff HV, Rivas CM, Pederson WP, Sandoval E, Gillman S, Prisco J, Kume M, Dussor G, Vagner J, Ledford JG, Price TJ, DeFea KA, Boitano S. β-Arrestin-biased proteinase-activated receptor-2 antagonist C781 limits allergen-induced airway hyperresponsiveness and inflammation. Br J Pharmacol 2023; 180:667-680. [PMID: 35735078 PMCID: PMC10311467 DOI: 10.1111/bph.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream β-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized β-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS Our work demonstrates the first biased PAR2 antagonist for β-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.
Collapse
Affiliation(s)
- Hillary V. Schiff
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Candy M. Rivas
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - William P. Pederson
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Estevan Sandoval
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Samuel Gillman
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Joy Prisco
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
| | - Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Center, University of Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Department of Cellular and Molecular Medicine, University of Arizona
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Department of Physiology, University of Arizona
| |
Collapse
|
4
|
McDaniel MM, Lara HI, von Moltke J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol 2023; 16:86-97. [PMID: 36642383 DOI: 10.1016/j.mucimm.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
Although seemingly unrelated, parasitic worms, venoms, and allergens all induce a type 2 immune response. The effector functions and clinical features of type 2 immunity are well-defined, but fundamental questions about the initiation of type 2 immunity remain unresolved. How are these enormously diverse type 2 stimuli first detected? How are type 2 helper T cells primed and regulated? And how do mechanisms of type 2 initiation vary across tissues? Here, we review the common themes governing type 2 immune sensing and explore aspects of T cell priming and effector reactivation that make type 2 helper T cells a unique T helper lineage. Throughout the review, we emphasize the importance of non-hematopoietic cells and highlight how the unique anatomy and physiology of each barrier tissue shape mechanisms of type 2 immune initiation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, USA.
| | - Heber I Lara
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
5
|
Gandhi VD, Shrestha Palikhe N, Vliagoftis H. Protease-activated receptor-2: Role in asthma pathogenesis and utility as a biomarker of disease severity. Front Med (Lausanne) 2022; 9:954990. [PMID: 35966869 PMCID: PMC9372307 DOI: 10.3389/fmed.2022.954990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
PAR2, a receptor activated by serine proteases, has primarily pro-inflammatory roles in the airways and may play a role in asthma pathogenesis. PAR2 exerts its effects in the lungs through activation of a variety of airway cells, but also activation of circulating immune cells. There is evidence that PAR2 expression increases in asthma and other inflammatory diseases, although the regulation of PAR2 expression is not fully understood. Here we review the available literature on the potential role of PAR2 in asthma pathogenesis and propose a model of PAR2-mediated development of allergic sensitization. We also propose, based on our previous work, that PAR2 expression on peripheral blood monocyte subsets has the potential to serve as a biomarker of asthma severity and/or control.
Collapse
Affiliation(s)
- Vivek Dipak Gandhi
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Harissios Vliagoftis,
| |
Collapse
|
6
|
Rivas CM, Yee MC, Addison KJ, Lovett M, Pal K, Ledford JG, Dussor G, Price TJ, Vagner J, DeFea KA, Boitano S. Proteinase-activated receptor-2 antagonist C391 inhibits Alternaria-induced airway epithelial signalling and asthma indicators in acute exposure mouse models. Br J Pharmacol 2022; 179:2208-2222. [PMID: 34841515 DOI: 10.1111/bph.15745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite the availability of a variety of treatment options, many asthma patients have poorly controlled disease with frequent exacerbations. Proteinase-activated receptor-2 (PAR2) has been identified in preclinical animal models as important to asthma initiation and progression following allergen exposure. Proteinase activation of PAR2 raises intracellular Ca2+ , inducing MAPK and β-arrestin signalling in the airway, leading to inflammatory and protective effects. We have developed C391, a potent PAR2 antagonist effective in blocking peptidomimetic- and trypsin-induced PAR2 signalling in vitro as well as reducing inflammatory PAR2-associated pain in vivo. We hypothesized that PAR2 antagonism by C391 would attenuate allergen-induced acutely expressed asthma indicators in murine models. EXPERIMENTAL APPROACH We evaluated the ability of C391 to alter Alternaria alternata-induced PAR2 signalling pathways in vitro using a human airway epithelial cell line that naturally expresses PAR2 (16HBE14o-) and a transfected embryonic cell line (HEK 293). We next evaluated the ability for C391 to reduce A. alternata-induced acutely expressed asthma indicators in vivo in two murine strains. KEY RESULTS C391 blocked A. alternata-induced, PAR2-dependent Ca2+ and MAPK signalling in 16HBE14o- cells, as well as β-arrestin recruitment in HEK 293 cells. C391 effectively attenuated A. alternata-induced inflammation, mucus production, mucus cell hyperplasia and airway hyperresponsiveness in acute allergen-challenged murine models. CONCLUSIONS AND IMPLICATIONS To our best knowledge, this is the first demonstration of pharmacological intervention of PAR2 to reduce allergen-induced asthma indicators in vivo. These data support further development of PAR2 antagonists as potential first-in-class allergic asthma drugs.
Collapse
Affiliation(s)
- Candy M Rivas
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.,Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Michael C Yee
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Kenneth J Addison
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marissa Lovett
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Kasturi Pal
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Julie G Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| | - Josef Vagner
- Bio5 Collaborative Research Institute, University of Arizona, Tucson, Arizona, USA
| | - Kathryn A DeFea
- Biomedical Sciences, University of California Riverside, Riverside, California, USA.,Corporate Headquarters, PARMedics, Inc., Temecula, California, USA
| | - Scott Boitano
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.,Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA.,Bio5 Collaborative Research Institute, University of Arizona, Tucson, Arizona, USA.,Department of Physiology, University of Arizona Health Sciences, Tucson, Arizona, USA
| |
Collapse
|
7
|
Rivas CM, Schiff H, Moutal A, Khanna R, Kiela PR, Dussor G, Price TJ, Vagner J, DeFea KA, Boitano S. Alternaria alternata-induced airway epithelial signaling and inflammatory responses via protease-activated receptor-2 expression. Biochem Biophys Res Commun 2022; 591:13-19. [PMID: 34990903 PMCID: PMC8792334 DOI: 10.1016/j.bbrc.2021.12.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Candy M. Rivas
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Hillary Schiff
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Department of Biochemistry, University of Arizona, Tucson AZ
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ
| | - Gregory Dussor
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Corresponding Author: Scott Boitano, Ph.D., Professor, Physiology, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, Arizona. 85724-5030, , +1 (520) 626-2105
| |
Collapse
|
8
|
Kaur K, Bachus H, Lewis C, Papillion AM, Rosenberg AF, Ballesteros-Tato A, León B. GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell Rep 2021; 37:110178. [PMID: 34965421 PMCID: PMC8759241 DOI: 10.1016/j.celrep.2021.110178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) can either promote or prevent T helper 2 (Th2) cell allergic responses. However, the underlying mechanism remains unknown. We show here that LPS activity switches from pro-pathogenic to protective depending on the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by non-classical monocytes. In the absence of GM-CSF, LPS can favor pathogenic Th2 cell responses by supporting the trafficking of lung-migratory dendritic cells (mDC2s) into the lung-draining lymph node. However, when non-classical monocytes produce GM-CSF, LPS and GM-CSF synergize to differentiate monocyte-derived DCs from classical Ly6Chi monocytes that instruct mDC2s for Th2 cell suppression. Importantly, only allergens with cysteine protease activity trigger GM-CSF production by non-classical monocytes. Hence, the therapeutic effect of LPS is restricted to allergens with this enzymatic activity. Treatment with GM-CSF, however, restores the protective effects of LPS. Thus, GM-CSF produced by non-classical monocytes acts as a rheostat that fine-tunes the pathogenic and therapeutic functions of LPS.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Crystal Lewis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber M Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Schiffers C, Hristova M, Habibovic A, Dustin CM, Danyal K, Reynaert NL, Wouters EFM, van der Vliet A. The Transient Receptor Potential Channel Vanilloid 1 Is Critical in Innate Airway Epithelial Responses to Protease Allergens. Am J Respir Cell Mol Biol 2020; 63:198-208. [PMID: 32182090 DOI: 10.1165/rcmb.2019-0170oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The airway epithelium plays a critical role in innate responses to airborne allergens by secreting IL-1 family cytokines such as IL-1α and IL-33 as alarmins that subsequently orchestrate appropriate immune responses. Previous studies revealed that epithelial IL-33 secretion by allergens such as Alternaria alternata or house dust mite involves Ca2+-dependent signaling, via initial activation of ATP-stimulated P2YR2 (type 2 purinoceptor) and subsequent activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase DUOX1. We sought to identify proximal mechanisms by which epithelial cells sense these allergens and here highlight the importance of PAR2 (protease-activated receptor 2) and TRP (transient receptor potential) Ca2+ channels such as TRPV1 (TRP vanilloid 1) in these responses. Combined studies of primary human nasal and mouse tracheal epithelial cells, as well as immortalized human bronchial epithelial cells, indicated the importance of both PAR2 and TRPV1 in IL-33 secretion by both Alternaria alternata and house dust mite, based on both pharmacological and genetic approaches. TRPV1 was also critically involved in allergen-induced ATP release, activation of DUOX1, and redox-dependent activation of EGFR (epidermal growth factor receptor). Moreover, genetic deletion of TRPV1 dramatically attenuated allergen-induced IL-33 secretion and subsequent type 2 responses in mice in vivo. TRPV1 not only contributed to ATP release and P2YR2 signaling but also was critical in downstream innate responses to ATP, indicating potentiating effects of P2YR2 on TRPV1 activation. In aggregate, our studies illustrate a complex relationship between various receptor types, including PAR2 and P2YR2, in epithelial responses to asthma-relevant airborne allergens and highlight the central importance of TRPV1 in such responses.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and.,Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
10
|
Chen S, Wu S. Deep learning for identifying environmental risk factors of acute respiratory diseases in Beijing, China: implications for population with different age and gender. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:435-446. [PMID: 30929473 DOI: 10.1080/09603123.2019.1597836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
This study focuses on identifying environmental health risk factors related to acute respiratory diseases using deep learning method. Based on respiratory disease data, air pollution data and meteorological environmental data, cross-domain risk factors of acute respiratory diseases were identified in Beijing, China. We conducted age and gender stratified deep neural network models in air pollution epidemiology. We ranked risk factors of respiratory diseases in stratified populations and conducted quantitative comparison. People ≥50 years were more sensitive to PM2.5 pollution than <50 years people, especially women ≥50 years. Compared with women, both men ≥50 years and <50 years were more susceptible to PM10. Young women <50 years were more sensitive to general air pollutants such as SO2 and NO2 than <50 years young men. Meteorological factors such as wind speed and precipitation could promote the diffusion of fine particulate matter and general air pollutants (SO2, NO2, etc.), which could help to reduce the incidence of acute respiratory diseases. This study represents a quantitative analysis of environmental health risk factors identification related to acute respiratory diseases based on deep neural network method. The results of this study could help people to improve their awareness of acute respiratory diseases prevention.
Collapse
Affiliation(s)
- Songjing Chen
- Medical Information Innovation Research Center, Institute of Medical Information and Library, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
| | - Sizhu Wu
- Medical Information Innovation Research Center, Institute of Medical Information and Library, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
| |
Collapse
|
11
|
Zhang R, Li H, Bai L, Duan J. Association between T-Cell Immunoglobulin and Mucin Domain 3 (TIM-3) Genetic Polymorphisms and Susceptibility to Autoimmune Diseases. Immunol Invest 2019; 48:563-576. [PMID: 31044630 DOI: 10.1080/08820139.2019.1599009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - He Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linfu Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Duan
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Bronchial epithelial cells of young and old mice directly regulate the differentiation of Th2 and Th17. Biosci Rep 2019; 39:BSR20181948. [PMID: 30541898 PMCID: PMC6356035 DOI: 10.1042/bsr20181948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
To determine whether or not house dust mite (HDM) and HDM+lipopolysaccharide (LPS) exposure causes a difference in T-cell subsets from young and old mice. The bronchial epithelial cells (BECs) from young and old mice were divided into three groups (PBS (control), HDM, and HDM+LPS). CD4+ naive T cells from the spleen and lymph nodes were collected after 24 h of co-culture with BECs. The number of Th2 and Th17 cells was elevated in the HDM and HDM+LPS groups compared with the control group; these responses were exacerbated when exposed to HDM+LPS. The number of HDM- and HDM+LPS-specific Th2/Th17 cells in young mice was higher than old mice; however, the Th2:Th17 cell ratio was greater in young mice, whereas the Th17:Th2 cell ratio was greater in old mice. The expression of GATA-3 and RORc was increased in the HDM+LPS and HDM groups compared with the PBS group and exhibited most in HDM+LPS group. The expression of HDM+LPS-specific GATA-3 in young mice was higher, while the expression of HDM+LPS-specific RORc in old mice was higher. Murine BECs directly regulated CD4+ naive T-cell differentiation under allergen exposure.
Collapse
|
13
|
Yee MC, Nichols HL, Polley D, Saifeddine M, Pal K, Lee K, Wilson EH, Daines MO, Hollenberg MD, Boitano S, DeFea KA. Protease-activated receptor-2 signaling through β-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1042-L1057. [PMID: 30335499 PMCID: PMC6337008 DOI: 10.1152/ajplung.00196.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023] Open
Abstract
Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/β-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/β-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2-/- and β-arrestin-2-/- mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2-/- or β-arrestin-2-/- mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce β-arrestin-2-/--dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/β-arrestin signaling axis. Thus, β-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.
Collapse
Affiliation(s)
- Michael C Yee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Heddie L Nichols
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Danny Polley
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Mahmoud Saifeddine
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Kasturi Pal
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
| | - Kyu Lee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| | - Emma H Wilson
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Michael O Daines
- Department of Pediatrics, University of Arizona Health Sciences , Tucson, Arizona
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
| | - Morley D Hollenberg
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
- Department of Physiology, University of Arizona Health Sciences , Tucson, Arizona
| | - Kathryn A DeFea
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| |
Collapse
|
14
|
Asosingh K, Weiss K, Queisser K, Wanner N, Yin M, Aronica M, Erzurum S. Endothelial cells in the innate response to allergens and initiation of atopic asthma. J Clin Invest 2018; 128:3116-3128. [PMID: 29911993 DOI: 10.1172/jci97720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Protease-activated receptor 2 (PAR-2), an airway epithelial pattern recognition receptor (PRR), participates in the genesis of house dust mite-induced (HDM-induced) asthma. Here, we hypothesized that lung endothelial cells and proangiogenic hematopoietic progenitor cells (PACs) that express high levels of PAR-2 contribute to the initiation of atopic asthma. HDM extract (HDME) protease allergens were found deep in the airway mucosa and breaching the endothelial barrier. Lung endothelial cells and PACs released the Th2-promoting cytokines IL-1α and GM-CSF in response to HDME, and the endothelium had PAC-derived VEGF-C-dependent blood vessel sprouting. Blockade of the angiogenic response by inhibition of VEGF-C signaling lessened the development of inflammation and airway remodeling in the HDM model. Reconstitution of the bone marrow in WT mice with PAR-2-deficient bone marrow also reduced airway inflammation and remodeling. Adoptive transfer of PACs that had been exposed to HDME induced angiogenesis and Th2 inflammation with remodeling similar to that induced by allergen challenge. Our findings identify that lung endothelium and PACs in the airway sense allergen and elicit an angiogenic response that is central to the innate nonimmune origins of Th2 inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Mei Yin
- Imaging Core, Lerner Research Institute, and
| | - Mark Aronica
- Department of Inflammation and Immunity.,Respiratory Institute, the Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity.,Respiratory Institute, the Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
The prevalence of protozoa in the gut of German cockroaches (Blattella germanica) with special reference to Lophomonas blattarum. Parasitol Res 2017; 116:3205-3210. [DOI: 10.1007/s00436-017-5640-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
17
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
18
|
Identification of Proteases and Protease Inhibitors in Allergenic and Non-Allergenic Pollen. Int J Mol Sci 2017; 18:ijms18061199. [PMID: 28587253 PMCID: PMC5486022 DOI: 10.3390/ijms18061199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Pollen is one of the most common causes of allergy worldwide, making the study of their molecular composition crucial for the advancement of allergy research. Despite substantial efforts in this field, it is not yet clear why some plant pollens strongly provoke allergies while others do not. However, proteases and protease inhibitors from allergen sources are known to play an important role in the development of pollen allergies. In this study, we aim to uncover differences in the transcriptional pattern of proteases and protease inhibitors in Betula verrucosa and Pinus sylvestris pollen as models for high and low allergenic potential, respectively. We applied RNA sequencing to Betula verrucosa and Pinus sylvestris pollen. After de-novo assembly we derived general functional profiles of the protein coding transcripts. By utilization of domain based functional annotation we identified potential proteases and protease inhibitors and compared their expression in the two types of pollen. Functional profiles are highly similar between Betula verrucosa and Pinus sylvestris pollen. Both pollen contain proteases and inhibitors from 53 and 7 Pfam families, respectively. Some of the members comprised within those families are implicated in facilitating allergen entry, while others are known allergens themselves. Our work revealed several candidate proteins which, with further investigation, represent exciting new leads in elucidating the process behind allergic sensitization.
Collapse
|
19
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
20
|
Patel S, Meher B. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol Immunopathol (Madr) 2016; 44:580-593. [PMID: 26994963 DOI: 10.1016/j.aller.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Currently, mankind is afflicted with diversified health issues, allergies being a common, yet little understood malady. Allergies, the outcome of a baffled immune system encompasses myriad allergens and causes an array of health consequences, ranging from transient to recurrent and mild to fatal. Indoor allergy is a serious hypersensitivity in genetically-predisposed people, triggered by ingestion, inhalation or mere contact of allergens, of which mite and cockroaches are one of the most-represented constituents. Arduous to eliminate, these aeroallergens pose constant health challenges, mostly manifested as respiratory and dermatological inflammations, leading to further aggravations if unrestrained. Recent times have seen an unprecedented endeavour to understand the conformation of these allergens, their immune manipulative ploys and other underlying causes of pathogenesis, most importantly therapies. Yet a large section of vulnerable people is ignorant of these innocuous-looking immune irritants, prevailing around them, and continues to suffer. This review aims to expedite this field by a concise, informative account of seminal findings in the past few years, with particular emphasis on leading frontiers like genome-wide association studies (GWAS), epitope mapping, metabolomics etc. Drawbacks linked to current approaches and solutions to overcome them have been proposed.
Collapse
|
21
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
22
|
Jairaman A, Maguire CH, Schleimer RP, Prakriya M. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells. Sci Rep 2016; 6:32311. [PMID: 27604412 PMCID: PMC5015156 DOI: 10.1038/srep32311] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023] Open
Abstract
Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca2+ is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca2+ elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca2+ elevations in AECs through the activation of Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca2+ entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Chelsea H Maguire
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| |
Collapse
|
23
|
Papazian D, Hansen S, Würtzen PA. Airway responses towards allergens - from the airway epithelium to T cells. Clin Exp Allergy 2016; 45:1268-87. [PMID: 25394747 DOI: 10.1111/cea.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis is increasing, affecting up to 30% of the human population worldwide. Allergic sensitization arises from complex interactions between environmental exposures and genetic susceptibility, resulting in inflammatory T helper 2 (Th2) cell-derived immune responses towards environmental allergens. Emerging evidence now suggests that an epithelial dysfunction, coupled with inherent properties of environmental allergens, can be responsible for the inflammatory responses towards allergens. Several epithelial-derived cytokines, such as thymic stromal lymphopoietin (TSLP), IL-25 and IL-33, influence tissue-resident dendritic cells (DCs) as well as Th2 effector cells. Exposure to environmental allergens does not elicit Th2 inflammatory responses or any clinical symptoms in nonatopic individuals, and recent findings suggest that a nondamaged, healthy epithelium lowers the DCs' ability to induce inflammatory T-cell responses towards allergens. The purpose of this review was to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2-cell responses, influence the pathology of allergic diseases.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,ALK, Hørsholm, Denmark
| | - S Hansen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
24
|
Do DC, Zhao Y, Gao P. Cockroach allergen exposure and risk of asthma. Allergy 2016; 71:463-74. [PMID: 26706467 DOI: 10.1111/all.12827] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
Cockroach sensitization is an important risk factor for the development of asthma. However, its underlying immune mechanisms and the genetic etiology for differences in allergic responses remain unclear. Cockroach allergens identification and their expression as biologically active recombinant proteins have provided a basis for studying the mechanisms regarding cockroach allergen-induced allergic sensitization and asthma. Glycans in allergens may play a crucial role in the immunogenicity of allergic diseases. Protease-activated receptor (PAR)-2, Toll-like receptor (TLR), and C-type lectin receptors have been suggested to be important for the penetration of cockroach allergens through epithelial cells to mediate allergen uptake, dendritic cell maturation, antigen-presenting cell (APC) function in T-cell polarization, and cytokine production. Environmental pollutants, which often coexist with the allergen, could synergistically elicit allergic inflammation, and aryl hydrocarbon receptor (AhR) activation and signaling may serve as a link between these two elements. Genetic factors may also play an important role in conferring the susceptibility to cockroach sensitization. Several genes have been associated with cockroach sensitization and asthma-related phenotypes. In this review, we will discuss the epidemiological evidence for cockroach allergen-induced asthma, cockroach allergens, the mechanisms regarding cockroach allergen-induced innate immune responses, and the genetic basis for cockroach sensitization.
Collapse
Affiliation(s)
- D. C. Do
- Division Allergy and Clinical Immunology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Y. Zhao
- Division Allergy and Clinical Immunology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - P. Gao
- Division Allergy and Clinical Immunology; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
25
|
Yau MK, Lim J, Liu L, Fairlie DP. Protease activated receptor 2 (PAR2) modulators: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:471-83. [PMID: 26936077 DOI: 10.1517/13543776.2016.1154540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protease activated receptor 2 (PAR2) is a self-activated G protein-coupled receptor that has been implicated in several diseases, including inflammatory, gastrointestinal, respiratory, metabolic diseases, cancers and others, making it an important prospective drug target. No known endogenous ligands are available for PAR2, so having potent exogenous agonists and antagonists can be helpful for studying physiological functions of PAR2. AREAS COVERED This review covers agonist-, antagonist-, antibody- and pepducin-based modulators of PAR2 reported in patent applications between 2010-2015, along with their available structure-activity relationships, biological activities and potential uses for studying PAR2. EXPERT OPINION In the last six years, substantial efforts were made towards developing PAR2 modulators, but most lack potency or selectivity or have poor pharmacokinetic profiles. Many PAR2 modulators were assessed by measuring Gαq protein-mediated calcium release in cells. This may be insufficient to fully characterize ligand function, since different ligands signal through PAR2 via multiple signaling pathways. It may be feasible to develop biased ligands as drugs that can selectively modulate one or more specific signaling pathways linking PAR2 to a specific diseased state. Accordingly, potent, orally bioavailable, pathway- and receptor-selective PAR2 modulators may be an achievable goal to realizing effective drugs that can treat PAR2-mediated diseases.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - Junxian Lim
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - Ligong Liu
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| | - David P Fairlie
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|
26
|
Boitano S, Hoffman J, Flynn AN, Asiedu MN, Tillu DV, Zhang Z, Sherwood CL, Rivas CM, DeFea KA, Vagner J, Price TJ. The novel PAR2 ligand C391 blocks multiple PAR2 signalling pathways in vitro and in vivo. Br J Pharmacol 2015; 172:4535-4545. [PMID: 26140338 DOI: 10.1111/bph.13238] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/18/2015] [Accepted: 06/28/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Proteinase-activated receptor-2 (PAR2) is a GPCR linked to diverse pathologies, including acute and chronic pain. PAR2 is one of the four PARs that are activated by proteolytic cleavage of the extracellular amino terminus, resulting in an exposed, tethered peptide agonist. Several peptide and peptidomimetic agonists, with high potency and efficacy, have been developed to probe the functions of PAR2, in vitro and in vivo. However, few similarly potent and effective antagonists have been described. EXPERIMENTAL APPROACH We modified the peptidomimetic PAR2 agonist, 2-furoyl-LIGRLO-NH2 , to create a novel PAR2 peptidomimetic ligand, C391. C391 was evaluated for PAR2 agonist/antagonist activity to PAR2 across Gq signalling pathways using the naturally expressing PAR2 cell line 16HBE14o-. For antagonist studies, a highly potent and specific peptidomimetic agonist (2-aminothiazo-4-yl-LIGRL-NH2 ) and proteinase agonist (trypsin) were used to activate PAR2. C391 was also evaluated in vivo for reduction of thermal hyperalgesia, mediated by mast cell degranulation, in mice. KEY RESULTS C391 is a potent and specific peptidomimetic antagonist, blocking multiple signalling pathways (Gq -dependent Ca2+ , MAPK) induced following peptidomimetic or proteinase activation of human PAR2. In a PAR2-dependent behavioural assay in mice, C391 dose-dependently (75 μg maximum effect) blocked the thermal hyperalgesia, mediated by mast cell degranulation. CONCLUSIONS AND IMPLICATIONS C391 is the first low MW antagonist to block both PAR2 Ca2+ and MAPK signalling pathways activated by peptidomimetics and/or proteinase activation. C391 represents a new molecular structure for PAR2 antagonism and can serve as a basis for further development for this important therapeutic target.
Collapse
Affiliation(s)
- Scott Boitano
- Arizona Respiratory Center and Department of Physiology, University of Arizona, Tucson, AZ, USA.,The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Justin Hoffman
- Arizona Respiratory Center and Department of Physiology, University of Arizona, Tucson, AZ, USA.,The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Andrea N Flynn
- Arizona Respiratory Center and Department of Physiology, University of Arizona, Tucson, AZ, USA.,The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Marina N Asiedu
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Dipti V Tillu
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Zhenyu Zhang
- The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Cara L Sherwood
- Arizona Respiratory Center and Department of Physiology, University of Arizona, Tucson, AZ, USA.,The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Candy M Rivas
- Arizona Respiratory Center and Department of Physiology, University of Arizona, Tucson, AZ, USA.,The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ, USA
| | - Kathryn A DeFea
- Biomedical Sciences Division, University of California, Riverside, CA, USA
| | - Josef Vagner
- The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA
| | - Theodore J Price
- The BIO5 Collaborative Research Institute, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, University of Arizona, Tucson, AZ, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
27
|
Papazian D, Wagtmann VR, Hansen S, Würtzen PA. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro. Clin Exp Immunol 2015; 181:207-18. [PMID: 25707463 PMCID: PMC4516436 DOI: 10.1111/cei.12611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/29/2023] Open
Abstract
Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
- ALK, Global ResearchHørsholm, Denmark
| | | | - S Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
| | | |
Collapse
|
28
|
|
29
|
Florsheim E, Yu S, Bragatto I, Faustino L, Gomes E, Ramos RN, Barbuto JAM, Medzhitov R, Russo M. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. THE JOURNAL OF IMMUNOLOGY 2015; 194:4621-30. [PMID: 25876764 DOI: 10.4049/jimmunol.1402493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/01/2015] [Indexed: 01/08/2023]
Abstract
Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease.
Collapse
Affiliation(s)
- Esther Florsheim
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil; Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Shuang Yu
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Ivan Bragatto
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Lucas Faustino
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Eliane Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Rodrigo N Ramos
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - José Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Ruslan Medzhitov
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil;
| |
Collapse
|
30
|
Downey J, Gour N, Wills-Karp M. Mechanisms of Experimental Mouse Models of Airway Hyperresponsiveness. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
32
|
Post S, Heijink IH, Petersen AH, de Bruin HG, van Oosterhout AJM, Nawijn MC. Protease-activated receptor-2 activation contributes to house dust mite-induced IgE responses in mice. PLoS One 2014; 9:e91206. [PMID: 24651123 PMCID: PMC3961228 DOI: 10.1371/journal.pone.0091206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif) ligand 17 (CCL17) and thymic stromal lymphopoietin (TSLP), were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT) and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM-driven allergic airway disease.
Collapse
Affiliation(s)
- Sijranke Post
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H. Heijink
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjen H. Petersen
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harold G. de Bruin
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoon J. M. van Oosterhout
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn C. Nawijn
- Lab. Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Ullah MA, Loh Z, Gan WJ, Zhang V, Yang H, Li JH, Yamamoto Y, Schmidt AM, Armour CL, Hughes JM, Phipps S, Sukkar MB. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol 2014; 134:440-50. [PMID: 24506934 DOI: 10.1016/j.jaci.2013.12.1035] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. OBJECTIVES To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. METHODS TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. RESULTS The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. CONCLUSION The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Zhixuan Loh
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Wan Jun Gan
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Vivian Zhang
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Huan Yang
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, New York, NY
| | - Jian Hua Li
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, New York, NY
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ann Marie Schmidt
- Department of Pathology, Langone Medical Centre, New York University, New York, NY
| | - Carol L Armour
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - J Margaret Hughes
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; Faculty of Pharmacy, University of Sydney, Sydney, Australia
| | - Simon Phipps
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia.
| | - Maria B Sukkar
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; School of Pharmacy, Graduate School of Health, University of Technology, Sydney, Australia.
| |
Collapse
|
34
|
Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol 2013; 4:356. [PMID: 24204367 PMCID: PMC3816228 DOI: 10.3389/fimmu.2013.00356] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases.
Collapse
Affiliation(s)
- Fabián Salazar
- Division of Immunology, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham , UK
| | | |
Collapse
|
35
|
Kim HK, Baum R, Lund S, Khorram N, Yang SL, Chung KR, Doherty TA. Impaired induction of allergic lung inflammation by Alternaria alternata mutant MAPK homologue Fus3. Exp Lung Res 2013; 39:399-409. [PMID: 24102366 DOI: 10.3109/01902148.2013.835009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The fungal allergen Alternaria alternata is associated with development of asthma, though the mechanisms underlying the allergenicity of Alternaria are largely unknown. The aim of this study was to identify whether the MAP kinase homologue Fus3 of Alternaria contributed to allergic airway responses. Wild-type (WT) and Fus3 deficient Alternaria extracts were given intranasal to mice. Extracts from Fus3 deficient Alternaria that had a functional copy of Fus3 introduced were also administered (CpFus3). Mice were challenged once and levels of BAL eosinophils and innate cytokines IL-33, thymic stromal lymphopoeitin (TSLP), and IL-25 (IL-17E) were assessed. Alternaria extracts or protease-inhibited extract were administered with (OVA) during sensitization prior to ovalbumin only challenges to determine extract adjuvant activity. Levels of BAL inflammatory cells, Th2 cytokines, and OX40-expressing Th2 cells as well as airway infiltration and mucus production were measured. WT Alternaria induced innate airway eosinophilia within 3 days. Mice given Fus3 deficient Alternaria were significantly impaired in developing airway eosinophilia that was largely restored by CpFus3. Further, BAL IL-33, TSLP, and Eotaxin-1 levels were reduced after challenge with Fus3 mutant extract compared with WT and CpFus3 extracts. WT and CpFus3 extracts demonstrated strong adjuvant activity in vivo as levels of BAL eosinophils, Th2 cytokines, and OX40-expressing Th2 cells as well as peribronchial inflammation and mucus production were induced. In contrast, the adjuvant activity of Fus3 extract or protease-inhibited WT extract was largely impaired. Finally, protease activity and Alt a1 levels were reduced in Fus3 mutant extract. Thus, Fus3 contributes to the Th2-sensitizing properties of Alternaria.
Collapse
Affiliation(s)
- Hee-Kyoo Kim
- 1Department of Medicine, University of California , San Diego, California , USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
37
|
Tsai YM, Hsu SC, Zhang J, Zhou YF, Plunkett B, Huang SK, Gao PS. Functional interaction of cockroach allergens and mannose receptor (CD206) in human circulating fibrocytes. PLoS One 2013; 8:e64105. [PMID: 23734186 PMCID: PMC3667076 DOI: 10.1371/journal.pone.0064105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/09/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The innate pattern recognition C-type-lectin receptors (CLRs), including mannose receptor (MRC1; CD206), have been suggested to functionally interact with allergens and are critical in controlling immune response. Fibrocytes have been considered to play a role in allergic asthma. Here we sought to investigate the functional interaction of cockroach allergens with CD206 in fibrocytes. METHODS Profiling of N-linked glycans from natural purified cockroach allergen Bla g 2 was accomplished by MALDI-MS. The binding activity of cockroach allergens to CD206 was determined by solid-phase binding assays. Levels of CD206 expression on human fibrocytes and CD206 mediated signaling and cytokine production in Bla g 2 treated fibrocytes were determined. RESULTS Profiling of N-linked glycans from Bla g 2 revealed a predominance of small, mannose-terminated glycans with and without fucose. Significant binding of Bla g 2 to CD206 was observed, which was inhibited by yeast mannan (a known CD206 ligand), free mannose, and a blocking antibody (anti-hMR). Flow cytometric analyses of human fibrocytes (CD45(+) and collagen-1(+)) showed selective expression of CD206 on fibrocytes. Functionally, a concentration-dependent uptake of FITC labeled Bla g 2 by fibrocytes was observed, but was significantly inhibited by anti-hMR. Bla g 2 can stimulate up-regulation of inflammatory cytokines including TNF-alpha and IL-6 and activation of nuclear factor kappa B (NF-kB/p65), p38 mitogen-activated protein kinase (p38), ERK, and JNK in cultured fibrocytes. This increased secretion of TNF-alpha and IL-6 and activation of NF-kB, ERK, and JNK was significantly inhibited by the addition of either mannan or mannose. Furthermore, Bla g 2 induced increase in TNF-alpha and IL-6 production was also inhibited by the use of NF-kB, ERK, and JNK inhibitors. CONCLUSION These results provide evidence supporting the existence of a functional cockroach allergen-CD206 axis in human fibrocytes, suggesting a role for CD206 in regulating allergen induced allergic responses in asthma.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pulmonary and Critical Care Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Chang Hsu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jian Zhang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Yu-Feng Zhou
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beverly Plunkett
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shau-Ku Huang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Song Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Gandhi VD, Davidson C, Asaduzzaman M, Nahirney D, Vliagoftis H. House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation. Curr Allergy Asthma Rep 2013; 13:262-70. [DOI: 10.1007/s11882-013-0349-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Zhang H, Yang H, Ma W, Zhang Z, He S. Modulation of PAR expression and tryptic enzyme induced IL-4 production in mast cells by IL-29. Cytokine 2013; 61:469-77. [PMID: 23218741 DOI: 10.1016/j.cyto.2012.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-29 is a relatively newly discovered cytokine, which has been shown to be actively involved in the pathogenesis of allergic inflammation. However, little is known of the effects of IL-29 on protease activated receptor (PAR) expression and potential mechanisms of cytokine production in mast cells. In the present study, we examined potential influence of IL-29 on PAR expression and cytokine production in P815 and bone marrow derived mast cells (BMMCs) by using flow cytometry analysis, quantitative real time PCR, and ELISA techniques. The results showed that IL-29 downregulated the expression of PAR-1 by up to 56.2%, but had little influence on the expression of PAR-2, PAR-3 and PAR-4. IL-29 also induced downregulation of expression of PAR-1 mRNA. However, when mast cells were pre-incubated with IL-29, thrombin-, trypsin- and tryptase-induced expression of PAR-2, PAR-3 and PAR-4 was upregulated, respectively. IL-29 provoked approximately up to 1.9-fold increase in IL-4 release when mast cells was challenged with IL-29. Administration of IL-29 blocking antibody, AG490 or LY294002 abolished IL-29-induced IL-4 release from P815 cells. It was found that IL-29 diminished trypsin- and tryptase-induced IL-4 release from P815 cells following 16 h incubation. In conclusion, IL-29 can regulate expression of PARs and tryptase- and trypsin-induced IL-4 production in mast cells, through which participates in the mast cell related inflammation.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pathophysiology, Hainan Medical College, Haikou, Hainan 571101, China
| | | | | | | | | |
Collapse
|
40
|
Flynn AN, Hoffman J, Tillu DV, Sherwood CL, Zhang Z, Patek R, Asiedu MNK, Vagner J, Price TJ, Boitano S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. FASEB J 2013; 27:1498-510. [PMID: 23292071 DOI: 10.1096/fj.12-217323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protease-activated receptor-2 (PAR₂) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR₂ is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR₂ is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR₂ agonist (2-aminothiazol-4-yl-LIGRL-NH₂) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC₅₀ values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR₂: EC₅₀ for Ca(2+) response as low as 3.95 nM; EC₅₀ for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC₅₀ of 14.4 pmol. STLs failed to elicit responses in PAR2(-/-) cells at agonist concentrations of >300-fold their EC₅₀ values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR₂ and represent opportunities for drug development at other protease activated receptors and across GPCRs.
Collapse
Affiliation(s)
- Andrea N Flynn
- Department of Physiology, Arizona Health Sciences Center, Tucson, AZ 85724-5030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim JY, Sohn JH, Choi JM, Lee JH, Hong CS, Lee JS, Park JW. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway. PLoS One 2012; 7:e47971. [PMID: 23094102 PMCID: PMC3477122 DOI: 10.1371/journal.pone.0047971] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 01/28/2023] Open
Abstract
The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.
Collapse
Affiliation(s)
- Joo Young Kim
- Ewha Womans University College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Sohn
- Department of Life Science, Hanyang University, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, South Korea
| | - Chein-Soo Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo-Shil Lee
- Center for Immunology and Pathology, Korea National Institute of Health, Osong, South Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
42
|
Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schweibert L, Weaver CT, Brown GD, Steele C. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3653-60. [PMID: 22933634 PMCID: PMC3448838 DOI: 10.4049/jimmunol.1201797] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensitization to fungi, such as the mold Aspergillus fumigatus, is increasingly becoming linked with asthma severity. We have previously shown that lung responses generated via the β-glucan receptor Dectin-1 are required for lung defense during acute, invasive A. fumigatus infection. Unexpectedly, in an allergic model of chronic lung exposure to live A. fumigatus conidia, β-glucan recognition via Dectin-1 led to the induction of multiple proallergic (Muc5ac, Clca3, CCL17, CCL22, and IL-33) and proinflammatory (IL-1β and CXCL1) mediators that compromised lung function. Attenuated proallergic and proinflammatory responses in the absence of Dectin-1 were not associated with changes in Ido (IDO), Il12p35/Ebi3 (IL-35), IL-10, or TGF-β levels. Assessment of Th responses demonstrated that purified lung CD4(+) T cells produced IL-4, IL-13, IFN-γ, and IL-17A, but not IL-22, in a Dectin-1-dependent manner. In contrast, we observed robust, Dectin-1-dependent IL-22 production by unfractionated lung digest cells. Intriguingly, the absence of IL-22 alone mimicked the attenuated proallergic and proinflammatory responses observed in the absence of Dectin-1, suggesting that Dectin-1-mediated IL-22 production potentiated responses that led to decrements in lung function. To this end, neutralization of IL-22 improved lung function in normal mice. Collectively, these results indicate that the β-glucan receptor Dectin-1 contributes to lung inflammation and immunopathology associated with persistent fungal exposure via the production of IL-22.
Collapse
Affiliation(s)
- Lauren M. Lilly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Melissa A. Gessner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Chad W. Dunaway
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Allison E. Metz
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Lisa Schweibert
- Department of Physiology, University of Alabama at Birmingham, Birmingham, AL
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Gordon D. Brown
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
43
|
Abstract
Allergic asthma is on the rise in developed countries, and cockroach exposure is a major risk factor for the development of asthma. In recent years, a number of studies have investigated the importance of allergen-associated proteases in modulating allergic airway inflammation. Many of the studies have suggested the importance of allergen-associated proteases as having a direct role on airway epithelial cells and dendritic cells. In most cases, activation of the protease activated receptor (PAR)-2 has been implicated as a mechanism behind the potent allergenicity associated with cockroaches. In this review, we focus on recent evidence linking cockroach proteases to activation of a variety of cells important in allergic airway inflammation and the role of PAR-2 in this process. We will highlight recent data exploring the potential mechanisms involved in the biological effects of the allergen.
Collapse
Affiliation(s)
- Kristen Page
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave ML7006, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Lutfi R, Lewkowich IP, Zhou P, Ledford JR, Page K. The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen. JOURNAL OF INFLAMMATION-LONDON 2012; 9:32. [PMID: 22954301 PMCID: PMC3724482 DOI: 10.1186/1476-9255-9-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/23/2012] [Indexed: 12/12/2022]
Abstract
Background Serine proteases in German cockroach (GC) have been shown to mediate allergic airway inflammation through the activation of protease activated receptor (PAR)-2. Neutrophils play an important role in regulating the innate immune response, and are recruited into the airways following GC frass exposure. As such, we investigated the role of PAR-2 in airway neutrophil recruitment, activation and cytokine production following allergen exposure. Methods Wild type and PAR-2-deficient mice were administered a single intratracheal instillation of PBS or GC frass and neutrophil recruitment, expression of PAR-2, CD80, CD86, and MHC class II were assessed by flow cytometry and levels of tumor necrosis factor (TNF)α was assessed by ELISA. Uptake of AlexaFluor 405-labeled GC frass by neutrophils was performed by flow cytometry. Results Neutrophil recruitment in the lung and airways following GC frass exposure was significantly decreased in PAR-2-deficient mice compared to wild type mice. GC frass exposure increased the level of PAR-2 on pulmonary neutrophils and increased numbers of PAR-2-positive neutrophils were found in the lungs; however PAR-2 did not play a role in meditating allergen uptake. Comparing wild type and PAR-2-deficient mice, we found that a single exposure to GC frass increased levels of CD80 and CD86 on pulmonary neutrophils, an effect which was independent of PAR-2 expression. Neutrophils isolated from the whole lungs of naïve PAR-2-deficient mice treated ex vivo with GC frass produced significantly less TNFα than in similarly treated wild type neutrophils. Lastly, neutrophils were isolated from the bronchoalveolar lavage fluid of wild type and PAR-2-deficient mice following a single intratracheal exposure to GC frass. Airway neutrophils from PAR-2-deficient mice released substantially decreased levels of TNFα, suggesting a role for PAR-2 in neutrophil-derived cytokine production. Conclusions Together these data suggest PAR-2 expression can be upregulated on lung neutrophils following allergen exposure and the consequence is altered release of TNFα which could drive the early innate immune response.
Collapse
Affiliation(s)
- Riad Lutfi
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.
Collapse
|
46
|
Lutfi R, Ledford JR, Zhou P, Lewkowich IP, Page K. Dendritic cell-derived tumor necrosis factor α modifies airway epithelial cell responses. J Innate Immun 2012; 4:542-52. [PMID: 22517116 DOI: 10.1159/000336984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/01/2012] [Indexed: 12/31/2022] Open
Abstract
Mucosal dendritic cells (DC) are intimately associated with the airway epithelium and thus are ideally situated to be first responders to pathogens. We hypothesize that DC drive innate immune responses through early release of tumor necrosis factor (TNF) α, which drives airway epithelial cell responses. In a mouse model, TNFα release was significantly increased following a single exposure to German cockroach (GC) frass, an event independent of neutrophil recruitment into the airways. While lung epithelial cells and alveolar macrophages failed to release TNFα following GC frass exposure, bone marrow-derived DC (BMDC) produced substantial amounts of TNFα suggesting their importance as early responding cells. This was confirmed by flow cytometry of pulmonary myeloid DC. Addition of GC frass-pulsed BMDC or conditioned media from GC frass-pulsed BMDC to primary mouse tracheal epithelial cells (MTEC) or MLE-15 cells induced chemokine (C-C) motif ligand (CCL) 20 and granulocyte macrophage (GM) colony-stimulating factor (CSF), both of which are important for DC recruitment, survival and differentiation. Importantly, DC do not produce CCL20 or GM-CSF following allergen exposure. Blocking TNFα receptor 1 (TNFR1) completely abolished chemokine production, suggesting that BMDC-derived TNFα induced airway epithelial cell activation and enhancement of the innate immune response. Lastly, blocking TNFR1 in vivo resulted in significantly decreased CCL20 and GM-CSF production in the lungs of mice. Together, our data strongly suggest that DC-derived TNFα plays a crucial role in the initiation of innate immune responses through the modification of airway epithelial cell responses.
Collapse
Affiliation(s)
- R Lutfi
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
47
|
Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. J Allergy (Cairo) 2012; 2012:903659. [PMID: 22523502 PMCID: PMC3303585 DOI: 10.1155/2012/903659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/12/2022] Open
Abstract
Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity.
Collapse
|
48
|
Doherty TA, Khorram N, Sugimoto K, Sheppard D, Rosenthal P, Cho JY, Pham A, Miller M, Croft M, Broide DH. Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. THE JOURNAL OF IMMUNOLOGY 2012; 188:2622-9. [PMID: 22327070 DOI: 10.4049/jimmunol.1101632] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naive wild-type (WT) mice were challenged once intranasally with Alternaria. Naive WT mice developed significant bronchoalveolar lavage eosinophilia following Alternaria challenge when analyzed 24 h later. In contrast to Alternaria, neither Aspergillus nor Candida induced bronchoalveolar lavage eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naive WT mice had a >20-fold increase in the level of expression of found in inflammatory zone 1 (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression as early as 3 h after a single Alternaria challenge that persisted for ≥5 d and was significantly reduced in STAT6-deficient, but not protease-activated receptor 2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, whereas STAT6 present in bone marrow-derived cells contributed to airway eosinophilia. Studies investigating which cells in the nonchallenged lung bind FIZZ1 demonstrated that CD45(+)CD11c(+) cells (macrophages and dendritic cells), as well as collagen-1-producing CD45(-) cells (fibroblasts), can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.
Collapse
Affiliation(s)
- Taylor A Doherty
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0635, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Natarajan S, Kim J, Bouchard J, Cruikshank W, Remick DG. Pulmonary endotoxin tolerance protects against cockroach allergen-induced asthma-like inflammation in a mouse model. Int Arch Allergy Immunol 2012; 158:120-30. [PMID: 22269653 DOI: 10.1159/000330896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/12/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Compounds which activate the innate immune system, such as lipopolysaccharide, are significant components of ambient air, and extremely difficult to remove from the environment. It is currently unclear how prior inhalation of endotoxin affects allergen sensitization. We examined whether lung-specific endotoxin tolerance induction prior to sensitization can modulate the response to allergen. METHODS Endotoxin tolerance was induced by repeated intratracheal exposure to endotoxin. All mice were then sensitized and challenged by direct intratracheal instillation of cockroach allergen. RESULTS After allergen sensitization and challenge, endotoxin tolerant mice had significantly decreased airways hyperresponsiveness to methacholine challenge, which was confirmed by invasive lung function tests. Decreased goblet cell hyperplasia and mucus production were also found by histological assessment. Tolerant mice were protected from airway eosinophilia through the mechanism of reduced CCL11 and CCL24. Interestingly, endotoxin tolerant mice had only a modest reduction in cockroach-specific IgE; however, total IgE was significantly reduced. CONCLUSIONS These data show that induction of endotoxin tolerance prior to sensitization protects against the hallmark features of asthma-like inflammation, and that transient modulation of innate immunity can have long-lasting effects on adaptive responses.
Collapse
Affiliation(s)
- Sudha Natarajan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
50
|
Munitz A, Cole ET, Karo-Atar D, Finkelman FD, Rothenberg ME. Resistin-like molecule-α regulates IL-13-induced chemokine production but not allergen-induced airway responses. Am J Respir Cell Mol Biol 2012; 46:703-13. [PMID: 22246861 DOI: 10.1165/rcmb.2011-0391oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistin-like molecule α (Relm-α) is one of the most up-regulated gene products in allergen- and parasite-associated Th2 responses. Localized to alternatively activated macrophages, Relm-α was shown to exert an anti-inflammatory effect in parasite-induced Th2 responses, but its role in experimental asthma remains unexplored. Here, we analyzed the cellular source, the IL-4 receptors required to stimulate Relm-α production, and the role of Relm-α after experimental asthma induction by IL-4, IL-13, or multiple experimental regimes, including ovalbumin and Aspergillus fumigatus immunization. We demonstrate that Relm-α was secreted into the airway lumen, dependent on both the IL-13 receptor-α1 chain and likely the Type I IL-4 receptor, and differentially localized to epithelial cells and myeloid cells, depending on the specific cytokine or aeroallergen trigger. Studies performed with Retnla gene-targeted mice demonstrate that Relm-α was largely redundant in terms of inducing the infiltration of Th2 cytokines, mucus, and inflammatory cells into the lung. These results mirror the dispensable role that other alternatively activated macrophage products (such as arginase 1) have in allergen-induced experimental asthma and contrast with their role in the setting of parasitic infections. Taken together, our findings demonstrate the distinct utilization of IL-4/IL-13 receptors for the induction of Relm-α in the lungs. The differential regulation of Relm-α expression is likely determined by the relative expression levels of IL-4, IL-13, and their corresponding receptors, which are differentially expressed by divergent cells (i.e., epithelial cells and macrophages.) Finally, we identify a largely redundant functional role for Relm-α in acute experimental models of allergen-associated Th2 immune responses.
Collapse
Affiliation(s)
- Ariel Munitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|