1
|
Zhang MH, Zhang WH, Lu Y, Yu LM, Han XX, Xu Y, Wu MJ, Ding WH, Liu YH. Dental pulp stem cells promote genioglossus repair and systemic amelioration in chronic intermittent hypoxia. iScience 2024; 27:111143. [PMID: 39524365 PMCID: PMC11543914 DOI: 10.1016/j.isci.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/25/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) and is not well addressed by current therapies. The genioglossus (GG) is the largest upper airway dilator controlling OSA pathology, making its repair a potential treatment. This study investigates dental pulp stem cells (DPSCs) in repairing GG injury in a CIH mouse model. We induced DPSCs to myogenic lineage cells (iDPSCs) and transplanted them into GG of CIH mice. DPSCs/iDPSCs grafts improved EMGGG and muscle type transitions while reducing tumor necrosis factor α (TNF-α), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatine kinase (CK) levels, improving body weight. Moreover, iDPSCs increased Pax7+/Ki67+ and human-derived STEM121 cells in the GG compared with DPSCs. DPSCs/iDPSCs enhanced Desmin+ myotube formation in myoblasts under hypoxia in vitro, with iDPSCs increased human-derived myogenic markers and nuclei in myotubes. These results indicate that iDPSCs, beyond their paracrine effects like DPSCs, directly participate in myogenic differentiation, supporting the potential use of DPSCs for OSA treatment.
Collapse
Affiliation(s)
- Meng-Han Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Wei-Hua Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Yun Lu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Li-Ming Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Yan Xu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Meng-Jie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wang-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yue-Hua Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
2
|
Xiaokereti J, Guo Y, Liang X, Sun H, Li K, Zhang L, Tang B. Renal denervation alleviates chronic obstructive sleep apnea-induced atrial fibrillation via inhibition of atrial fibrosis and sympathetic hyperactivity. Sleep Breath 2023; 27:1805-1818. [PMID: 36811692 DOI: 10.1007/s11325-023-02784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Previous studies have reported that renal denervation (RDN) prevents the occurrence of atrial fibrillation (AF) related to obstructive sleep apnea (OSA). However, the effect of RDN on chronic OSA (COSA)-induced AF is still unclear. METHODS Healthy beagle dogs were randomized into the OSA group (sham RDN + OSA), OSA-RDN group (RDN + OSA), and CON group (sham RDN + sham OSA). The COSA model was built via repeated apnea and ventilation rounds for 4 h each day lasting 12 weeks, and RDN was employed after 8 weeks of modeling. All dogs were implanted Reveal LINQ™ to detect spontaneous AF and AF burden. Circulating levels of norepinephrine, angiotensin II, and interleukin-6 were determined at baseline and end of the study. In addition, measurements of the left stellate ganglion, AF inducibility, and effective refractory period were conducted. The bilateral renal artery and cortex, left stellate ganglion, and left atrial tissues were collected for molecular analysis. RESULTS Of 18 beagles, 6 were randomized to each of the groups described above. RDN remarkably attenuated ERP prolongation and AF episodes and duration. RDN markedly suppressed the LSG hyperactivity and atrial sympathetic innervation, decreased the serum concentrations of Ang II and IL-6, further inhibited fibroblast-to-myofibroblast transformation via the TGF-β1/Smad2/3/α-SMA pathway, and reduced the expression of MMP-9, thus decreasing OSA-induced AF. CONCLUSIONS RDN may reduce AF by inhibiting sympathetic hyperactivity and AF in a COSA model.
Collapse
Affiliation(s)
- Jiasuoer Xiaokereti
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
| | - Yankai Guo
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
| | - Xiaoyan Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
| | - Huaxin Sun
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
| | - Kai Li
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China.
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China.
- Cardiac Pacing and Electrophysiological Department, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Road, Xinshi Zone, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Saleeb-Mousa J, Nathanael D, Coney AM, Kalla M, Brain KL, Holmes AP. Mechanisms of Atrial Fibrillation in Obstructive Sleep Apnoea. Cells 2023; 12:1661. [PMID: 37371131 DOI: 10.3390/cells12121661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some groups but is limited by its poor compliance. Thus, an improved understanding of the underlying arrhythmogenic mechanisms will facilitate the development of novel therapies and/or better selection of those currently available to complement CPAP in alleviating the burden of AF in OSA. Arrhythmogenesis in OSA is a multifactorial process characterised by a combination of acute atrial stimulation on a background of chronic electrical, structural, and autonomic remodelling. Chronic intermittent hypoxia (CIH), a key feature of OSA, is associated with long-term adaptive changes in myocyte ion channel currents, sensitising the atria to episodic bursts of autonomic reflex activity. CIH is also a potent driver of inflammatory and hypoxic stress, leading to fibrosis, connexin downregulation, and conduction slowing. Atrial stretch is brought about by negative thoracic pressure (NTP) swings during apnoea, promoting further chronic structural remodelling, as well as acutely dysregulating calcium handling and electrical function. Here, we provide an up-to-date review of these topical mechanistic insights and their roles in arrhythmia.
Collapse
Affiliation(s)
- James Saleeb-Mousa
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Demitris Nathanael
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew M Coney
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Manish Kalla
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| | - Keith L Brain
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24043708. [PMID: 36835120 PMCID: PMC9958695 DOI: 10.3390/ijms24043708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.
Collapse
|
5
|
Liang X, Wang W, Liu Y, Liu Y, Wang M, Shangguan W, Miao S, Gu T, Liu E, Li G. CircRNA_0263 and circRNA_1507 are dysregulated in a rat model of atrial fibrosis induced by chronic intermittent hypoxia. Am J Transl Res 2023; 15:63-81. [PMID: 36777857 PMCID: PMC9908462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 02/14/2023]
Abstract
Aims: This study aimed to characterize circular RNA (circRNA) profiles associated with atrial fibrosis-related atrial fibrillation (AF) and reveal critical circRNAs for AF. Methods: Sprague Dawley rats were randomly divided into control and atrial fibrosis-related AF groups (n = 15 in each group). The rats in the atrial fibrosis-related AF group were induced by chronic intermittent hypoxia (CIH), and then confirmed by electrocardiograms, echocardiography, hematoxylin-eosin staining, Masson staining, immunohistochemistry assays and western blotting. After that, the atrial tissues were sent for circRNA sequencing, and the differentially expressed circRNAs were identified and validated by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, a series of cell experiments were performed to explore the roles of two crucial circRNAs in rat atrial fibroblasts. Results: A CIH-induced AF model was successfully established in the rats. After sequencing, five upregulated and 11 downregulated circRNAs were identified in the CIH-induced AF group. These dysregulated circRNAs were primarily associated with "carbohydrate metabolism" and "cardiovascular diseases". Two circRNAs (circRNA_0263 and circRNA_1507) were predicted to regulate target gene expression by interacting with corresponding miRNAs, including rno-miR-29b-5p, rno-miR-29b-3p, rno-miR-496-5p, rno-miR-136-5p, and novel123-mature. Additionally, circRNA_0263 knockdown and circRNA_1507 overexpression inhibited the cell viability of fibroblasts, and downregulated the expression of fibrosis-related proteins. Conclusion: A series of circRNAs were identified as dysregulated in an AF rat model, and circRNA_0263 and circRNA_1507 might be crucial for atrial fibrosis-related AF development by competing with several miRNAs.
Collapse
Affiliation(s)
- Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Yu Liu
- Taikang Ningbo HospitalNingbo 315100, Zhejiang, People’s Republic of China
| | - Yanhong Liu
- Heart Center, Tianjin Third Central HospitalTianjin 300170, People’s Republic of China
| | - Manman Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical UniversityJining 272000, Shandong, People’s Republic of China
| | - Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Shuai Miao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, People’s Republic of China
| |
Collapse
|
6
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
7
|
Ifedili I, Ingram E, Blount C, Kayali S, Heckle M, Levine YC. Vagal milieu or electrophysiologic substrate? The link between atrial fibrillation and obstructive sleep apnea. Exp Biol Med (Maywood) 2022; 247:1827-1832. [PMID: 36112833 PMCID: PMC9679354 DOI: 10.1177/15353702221120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation is the most common cardiac arrhythmia with its prevalence expected to increase to 12.1 million people in the United States by 2030. Chronic underlying conditions that affect the heart and lungs predispose patients to develop atrial fibrillation. Obstructive sleep apnea is strongly associated with atrial fibrillation. Several pathophysiological mechanisms have been proposed to elucidate this relationship which includes electrophysiological substrate modification and the contribution of the autonomic nervous system. In this comprehensive review, we highlight important relationships and plausible causality between obstructive sleep apnea and atrial fibrillation which will improve our understanding in the evaluation, management, and prevention of atrial fibrillation. This is the most updated comprehensive review of the relationship between obstructive sleep apnea and atrial fibrillation.
Collapse
Affiliation(s)
- Ikechukwu Ifedili
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Eva Ingram
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Courtland Blount
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sharif Kayali
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Heckle
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Methodist Le Bonheur Healthcare, Memphis, TN 38104, USA
| | - Yehoshua C Levine
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Methodist Le Bonheur Healthcare, Memphis, TN 38104, USA
| |
Collapse
|
8
|
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Front Cardiovasc Med 2022; 9:879984. [PMID: 35859594 PMCID: PMC9289204 DOI: 10.3389/fcvm.2022.879984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and is associated with a significant clinical and economic burden. Rigorous assessment of the presence and degree of an atrial arrhythmic substrate is essential for determining treatment options, predicting long-term success after catheter ablation, and as a substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation of AF has developed into an essential rhythm-control strategy. Nowadays is one of the most common cardiac ablation procedures performed worldwide, with its success inversely related to the extent of atrial structural disease. Although atrial substrate evaluation remains complex, several diagnostic resources allow for a more comprehensive assessment and quantification of the extent of left atrial structural remodeling and the presence of atrial fibrosis. In this review, we summarize the current knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial substrates promoting the development of AF. We also describe the risk factors for its development and how to diagnose its presence using imaging, electrocardiograms, and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis biomarkers that could help diagnose atrial fibrotic substrates.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Xiong M, Zhao Y, Mo H, Yang H, Yue F, Hu K. Intermittent hypoxia increases ROS/HIF-1α 'related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int Immunopharmacol 2021; 100:108165. [PMID: 34560512 DOI: 10.1016/j.intimp.2021.108165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Obstructive sleep apnea (OSA) has been increasingly recognized as a risk factor for idiopathic pulmonary fibrosis (IPF). The intermittent hypoxia (IH) and re-oxygenation of OSA contribute to poor outcomes of IPF, however, the potential mechanism remains unknown. Here, C57BL/6J mice were administered intratracheal injection of Bleomycin (BLM) or saline and then exposed to IH (alternating cycles of FiO2 21% for 60S and FiO2 10% for 30 s, 40 cycles/hour, 8 h/day) to mimic OSA or intermittent air (IA) for 4 days, 8 days or 21 days. This study found that pulmonary fibrosis in BLM + IH treated mice was more severe than that in BLM + IA group at day 8 and 21, but not observed at day 4. Besides, the expression of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α),which are related to hypoxia reduced oxidative stress and inflammation, were higher in BLM + IH treated mice than BLM + IA mice, and IH increased these indexes in BLM treated mice from day 4 to day 21. Interestingly, a positive linear correlation between the HIF-1α expression and hydroxyproline (HYP) content was observed. We further found some inflammatory cells in bronchoalveolar lavage fluid were increased significantly from day 4 to 21, and there was a positive correlation between inflammation and ROS expression. Our results demonstrated that IH aggravated BLM-induced pulmonary fibrosis, and ROS/HIF-1α related oxidative stress and inflammation involved. The increase of ROS/HIF-1α related oxidative stress and inflammation may be a potential mechanism of moderate-to-severe OSA in potentiating pulmonary fibrosis of IPF, which warrants further study.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Laczay B, Faulx MD. Obstructive Sleep Apnea and Cardiac Arrhythmias: A Contemporary Review. J Clin Med 2021; 10:jcm10173785. [PMID: 34501232 PMCID: PMC8432034 DOI: 10.3390/jcm10173785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disorder with a growing incidence worldwide that closely mirrors the global obesity epidemic. OSA is associated with enormous healthcare costs in addition to significant morbidity and mortality. Much of the morbidity and mortality related to OSA can be attributed to an increased burden of cardiovascular disease, including cardiac rhythm disorders. Awareness of the relationship between OSA and rhythm disorders is variable among physicians, a fact that can influence patient care, since the presence of OSA can influence the incidence, prevalence, and successful treatment of multiple rhythm disorders. Herein, we provide a review of this topic that is intentionally broad in scope, covering the relationship between OSA and rhythm disorders from epidemiology and pathophysiology to diagnosis and management, with a particular focus on the recognition of undiagnosed OSA in the general clinical population and the intimate relationship between OSA and atrial fibrillation.
Collapse
|
11
|
Corban MT, Toya T, Ahmad A, Lerman LO, Lee HC, Lerman A. Atrial Fibrillation and Endothelial Dysfunction: A Potential Link? Mayo Clin Proc 2021; 96:1609-1621. [PMID: 33775421 DOI: 10.1016/j.mayocp.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and coronary atherosclerosis is the leading cause of death in the United States and worldwide. Endothelial dysfunction is the earliest clinically detectable form of atherosclerosis. Control of shared AF and coronary atherosclerosis risk factors improves both AF-free survival and vascular endothelial function. Decades of AF research have yielded fundamental insight into AF pathophysiology, but current pharmacological and catheter-based invasive AF therapies have limited long-term efficacy and substantial side effects, possibly because of incomplete understanding of underlying complex AF pathophysiology. We hereby discuss potential mechanistic links between endothelial dysfunction and AF (risk-factor-associated systemic inflammation and oxidative stress, myocardial ischemia, common gene variants, vascular shear stress, and fibroblast growth factor-23), explore a potential new vascular dimension to AF pathophysiology, highlight a growing body of evidence supporting an association between systemic vascular endothelial dysfunction, AF, and stroke, and discuss potential common effective therapies.
Collapse
Affiliation(s)
- Michel T Corban
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Takumi Toya
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ali Ahmad
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Lilach O Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Hon-Chi Lee
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN.
| |
Collapse
|
12
|
Kim W, Na JO, Thomas RJ, Jang WY, Kang DO, Park Y, Choi JY, Roh SY, Choi CU, Kim JW, Kim EJ, Rha SW, Park CG, Seo HS, Lim HE. Impact of Catheter Ablation on Sleep Quality and Relationship Between Sleep Stability and Recurrence of Paroxysmal Atrial Fibrillation After Successful Ablation: 24-Hour Holter-Based Cardiopulmonary Coupling Analysis. J Am Heart Assoc 2020; 9:e017016. [PMID: 33241769 PMCID: PMC7763792 DOI: 10.1161/jaha.120.017016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Sleep fragmentation and sleep apnea are common in patients with atrial fibrillation (AF). We investigated the impact of radio‐frequency catheter ablation (RFCA) on sleep quality in patients with paroxysmal AF and the effect of a change in sleep quality on recurrence of AF. Methods and Results Of 445 patients who underwent RFCA for paroxysmal AF between October 2007 and January 2017, we analyzed 225 patients who had a 24‐hour Holter test within 6 months before RFCA. Sleep quality was assessed by cardiopulmonary coupling analysis using 24‐hour Holter data. We compared cardiopulmonary coupling parameters (high‐frequency coupling, low‐frequency coupling, very‐low‐frequency coupling) before and after RFCA. Six months after RFCA, the high‐frequency coupling (marker of stable sleep) and very‐low‐frequency coupling (rapid eye movement/wake marker) was significantly increased (29.84%–36.15%; P<0.001; and 26.20%–28.76%; P=0.002, respectively) while low‐frequency coupling (unstable sleep marker) was decreased (41.25%–32.13%; P<0.001). We divided patients into 3 tertiles according to sleep quality before RFCA, and the risk of AF recurrence in each group was compared. The second tertile was used as a reference; patients with unstable sleep (Tertile 3) had a significantly lower risk of AF recurrence (hazard ratio [HR], 0.32; 95% CI, 0.12–0.83 for high‐frequency coupling; and HR, 0.22; 95% CI, 0.09–0.58 for low‐frequency coupling). Conclusions Sleep quality improved after RFCA in patients with paroxysmal AF. The recurrence rate was significantly lower in patients who had unstable sleep before RFCA. These results suggest that RFCA can influence sleep quality, and sleep quality assessment before RFCA may provide a risk marker for recurrence after RFCA in patients with paroxysmal AF.
Collapse
Affiliation(s)
- Woohyeun Kim
- Division of Cardiology Department of Internal Medicine College of Medicine Hanyang University Seoul Korea
| | - Jin Oh Na
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine Department of Medicine Beth Israel Deaconess Medical Center Boston MA
| | - Won Young Jang
- Cardiovascular Center Catholic University of Korea St. Vincent Hospital Suwon Korea
| | - Dong Oh Kang
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Yoonjee Park
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Jah Yeon Choi
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Seung-Young Roh
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Cheol Ung Choi
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Jin Won Kim
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Eung Ju Kim
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Seung-Woon Rha
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Chang Gyu Park
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Hong Seog Seo
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Hong Euy Lim
- Division of Cardiology Hallym University Sacred Heart Hospital Hallym University College of Medicine Anyang Korea
| |
Collapse
|
13
|
Kang HH, Kim IK, Yeo CD, Kim SW, Lee HY, Im JH, Kwon HY, Lee SH. The Effects of Chronic Intermittent Hypoxia in Bleomycin-Induced Lung Injury on Pulmonary Fibrosis via Regulating the NF-κB/Nrf2 Signaling Pathway. Tuberc Respir Dis (Seoul) 2020; 83:S63-S74. [PMID: 33027868 PMCID: PMC7837382 DOI: 10.4046/trd.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is associated with pulmonary fibrosis. Chronic intermittent hypoxia (CIH) is considered to be a surrogate of OSA. However, its exact role in pulmonary fibrosis remains uncertain. Therefore, we investigated the mechanism underlying CIH-induced pulmonary fibrosis and the role of the anti-fibrotic agent in bleomycin (BLE) induced lung injury. Methods Mice were divided into eight groups: the normoxia (NOR), CIH, NOR plus BLE, CIH plus BLE, NOR plus pirfenidone (PF), CIH plus PF, NOR plus BLE and PF, and CIH plus BLE and PF groups. BLE was administered intratracheally on day 14 following CIH or NOR exposure. Subsequently, the mice were exposed to CIH or NOR for an additional 4 weeks. PF was administered orally on day 5 after BLE instillation once daily for 3 weeks. Results In the BLE-treated groups, CIH-induced more collagen deposition in lung tissues than NOR, and significantly increased hydroxyproline and transforming growth factor-β expression. The CIH and BLE-treated groups showed increased lung inflammation compared to NOR or CIH groups. Following CIH with BLE treatment, nuclear factor-κB (NF-κB) protein expression was significantly increased, whereas nuclear factor-erythroid-related factor 2 (Nrf2) and heme oxygenase-1 protein levels were decreased. After PF treatment, NF-κB and Kelch-like ECH-associated protein 1 expression were suppressed, and Nrf2 expression was increased. Conclusion CIH accelerated lung fibrosis in BLE-induced lung injury in mice, potentially by regulating the NF-κB/Nrf2 signaling pathway. Our results implicate PF as a potential therapeutic agent for treating pulmonary fibrosis in individuals with OSA and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Hyeon Im
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Fitzpatrick SF, King AD, O'Donnell C, Roche HM, Ryan S. Mechanisms of intermittent hypoxia-mediated macrophage activation - potential therapeutic targets for obstructive sleep apnoea. J Sleep Res 2020; 30:e13202. [PMID: 32996666 DOI: 10.1111/jsr.13202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 01/24/2023]
Abstract
Intermittent hypoxia (IH) plays a key role in the pathogenesis of insulin resistance (IR) in obstructive sleep apnoea (OSA). IH induces a pro-inflammatory phenotype of the adipose tissue with M1 macrophage polarisation, subsequently impeding adipocyte insulin signalling, and these changes are in striking similarity to those seen in obesity. However, the detailed molecular mechanisms of IH-induced macrophage polarisation are unknown and identification of same should lead to the identification of novel therapeutic targets. In the present study, we tested the hypothesis that IH acts through similar mechanisms as obesity, activating Toll-like-receptor (TLR)4/nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) signalling pathways leading to the upregulation and secretion of the key cytokines interleukin (IL)-1β and IL-6. Bone-marrow derived macrophages (BMDMs) from lean and obese C57BL/6 male mice were exposed to a state-of-the-art in vitro model of IH. Independent of obesity, IH led to a pro-inflammatory M1 phenotype characterised by increased inducible nitric oxide synthase and IL-6 mRNA expression, robust increase in NF-κB DNA-binding activity and IL-6 secretion. Furthermore, IH significantly increased pro-IL-1β mRNA and protein expression and mature IL-1β secretion compared to control treatment. Providing mechanistic insight, pre-treatment with the TLR4 specific inhibitor, TAK-242, prevented IH-induced M1 polarisation and upregulation of IL-1β mRNA and pro-IL-1β protein expression. Moreover, IH-induced increase in IL-1β secretion was prevented in BMDMs isolated from NLRP3 knockout mice. Thus, targeting TLR4/NF-κB and NLRP3 signalling pathways may provide novel therapeutic options for metabolic complications in OSA.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ailbhe D King
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Cliona O'Donnell
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Silke Ryan
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
15
|
de Oliveira FG, Pinto I, Valdigem B, Senra T, Bertolami A. Evaluation of late atrial enhancement by cardiac magnetic resonance imaging in patients with obstructive sleep apnea. Sleep Med 2020; 74:204-210. [PMID: 32861012 DOI: 10.1016/j.sleep.2020.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/23/2020] [Accepted: 06/21/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is a growing public health problem especially due to its association with thromboembolic phenomena. Among its risk factors, obstructive sleep apnea (OSA) has increased in incidence and is often under diagnosed. OSA increases the risk of AF by mechanisms not fully known, but it may lead to remodeling and structural alteration of the atria. Cardiac magnetic resonance (CMR), in addition to assessing heart morphology, allows the identification of areas of fibrosis, including the atrium, by the late gadolinium enhancement technique (LGE) and could identify cases of OSA with potential atrial instability. OBJECTIVE To evaluate the relationship of LGE atrial by CMR in patients with atrial fibrillation with OSA. METHODS We selected 81 patients who were divided into four groups: Group 1: 20 OSA patients without AF, Group 2: 20 OSA and AF patients, Group 3: 21 patients with only atrial fibrillation without OSA and Group 4: 20 healthy patients without associated comorbidities. All underwent CMR for morphofunctional evaluation and LGE research. RESULTS The average age was 57.1+-10.59 years. Clinical variables such as hypertension (p = 0.24) and Diabetes Mellitus (p = 0.20) were not predictors of AF in OSA patients. Of the 40 cases with OSA, 18, 45% had severe obstructive disorder, and in this group AF was more prevalent. The mean left ventricular ejection fraction was 62.9% (+-7.46) and it did not differ between groups (p = 0.2). Patients with concomitant OSA and AF had significantly larger left atria (p < 0.001). Cases of OSA with AF showed significantly more atrial LGE (95% vs. 30%, p < 0.001), being an independent predictor in multivariate analysis (P < 0,001). CONCLUSION Atrial LGE is independently associated with the presence of AF in patients with OSA. These elements may help to identify cases of higher risk for developing AF in OSA patients in clinical practice.
Collapse
Affiliation(s)
| | - Ibraim Pinto
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Bruno Valdigem
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Tiago Senra
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | | |
Collapse
|
16
|
Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res 2020; 115:357-372. [PMID: 30239604 DOI: 10.1093/cvr/cvy224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Aims TGF-β1 plays an important role in atrial fibrosis and atrial fibrillation (AF); previous studies have shown that the atria are more susceptible to TGF-β1 mediated fibrosis than the ventricles. Natriuretic peptides (NPs) play an important role in cardiac remodelling and fibrosis, but the role of natriuretic peptide clearance (NPR-C) receptor is largely unknown. We investigated the role of NPR-C in modulating TGF-β1 signalling in the atria. Methods and results MHC-TGF-β1 transgenic (TGF-β1-Tx) mice, which develop isolated atrial fibrosis and AF, were cross-bred with NPR-C knock-out mice (NPR-C-KO). Transverse aortic constriction (TAC) was performed in wild type (Wt) and NPR-C knockout mice to study. Atrial fibrosis and AF inducibility in a pathophysiologic model. Electrophysiology, molecular, and histologic studies were performed in adult mice. siRNA was used to interrogate the interaction between TGF-β1 and NP signalling pathways in isolated atrial and ventricular fibroblasts/myofibroblasts. NPR-C expression level was 17 ± 5.8-fold higher in the atria compared with the ventricle in Wt mice (P = 0.009). Cross-bred mice demonstrated markedly decreased pSmad2 and collagen expression, atrial fibrosis, and AF compared with TGF-β1-Tx mice with intact NPR-C. There was a marked reduction in atrial fibrosis gene expression and AF inducibility in the NPR-C-KO-TAC mice compared with Wt-TAC. In isolated fibroblasts, knockdown of NPR-C resulted in a marked reduction of pSmad2 (56 ± 4% and 24 ± 14% reduction in atrial and ventricular fibroblasts, respectively) and collagen (76 ± 15% and 35 ± 23% reduction in atrial and ventricular fibroblasts/myofibroblasts, respectively) in response to TGF-β1 stimulation. This effect was reversed by simultaneously knocking down NPR-A but not with simultaneous knock down of PKG-1. Conclusion The differential response to TGF-β1 stimulated fibrosis between the atria and ventricle are in part mediated by the abundance of NPR-C receptors in the atria.
Collapse
Affiliation(s)
- Dolkun Rahmutula
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Hao Zhang
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Emily E Wilson
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| |
Collapse
|
17
|
Dai H, Yuan Y, Yin S, Zhang Y, Han Y, Sun L, Li T, Xu J, Sheng L, Gong Y, Li Y. Metoprolol Inhibits Profibrotic Remodeling of Epicardial Adipose Tissue in a Canine Model of Chronic Obstructive Sleep Apnea. J Am Heart Assoc 2020; 8:e011155. [PMID: 30686096 PMCID: PMC6405574 DOI: 10.1161/jaha.118.011155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Whether chronic obstructive sleep apnea ( OSA ) could promote epicardial adipose tissue ( EAT ) secretion of profibrotic adipokines, and thereby contribute to atrial fibrosis, and the potential therapeutic effects of metoprolol remain unknown. Methods and Results A chronic OSA canine model was established by repeatedly clamping the endotracheal tube for and then reopening it for 4 hours every other day for 12 weeks. In a metoprolol treatment group, metoprolol succinate was administered daily for 12 weeks. The EAT infiltration and left atrial fibrosis were examined. The expressions of adipokines secreted by EAT and hypoxic 3T3-L1 adipocytes were detected. The changes in collagen synthesis, transforming growth factor-β1 expression, and cell differentiation and proliferation in cardiac fibroblasts induced by hypoxic 3T3-L1 adipocyte-derived conditioned medium were further analyzed. Chronic OSA induced infiltration of EAT into the left atrium. OSA enhanced the profibrotic effect of EAT on the adjacent atrial myocardium. Moreover, OSA induced profibrotic cytokine secretion from EAT . We also found that hypoxia induced adipokine secretion in cultured adipocytes, and the medium conditioned by the hypoxic adipocytes increased collagen and transforming growth factor-β1 protein expression and cell proliferation of cardiac fibroblasts. More importantly, metoprolol attenuated infiltration of EAT and alleviated the profibrotic effect of EAT by inhibiting adipokine secretion. Metoprolol also inhibited hypoxia-induced adipokine secretion in adipocytes and thereby blocked the hypoxic adipocyte-derived conditioned medium-induced fibrotic response of cardiac fibroblasts. Conclusions Chronic OSA enhanced the profibrotic effect of EAT on the neighboring atrial myocardium by stimulating the secretion of profibrotic adipokines from EAT , which was significantly attenuated by metoprolol. This study gives insights into mechanisms underlying OSA -induced atrial fibrillation and also provides experimental evidence for the protective effects of metoprolol.
Collapse
Affiliation(s)
- Hui Dai
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China.,2 Department of Emergency Xinhua Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yue Yuan
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Shuangli Yin
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yun Zhang
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yu Han
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Li Sun
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Tiankai Li
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Jicheng Xu
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Li Sheng
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yongtai Gong
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yue Li
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| |
Collapse
|
18
|
McRae C, Kapoor A, Kanda P, Hibbert B, Davis DR. Systematic review of biological therapies for atrial fibrillation. Heart Rhythm 2019; 16:1399-1407. [DOI: 10.1016/j.hrthm.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/09/2022]
|
19
|
Abstract
With the growing obesity epidemic, the global burden of AF and obstructive sleep apnoea (OSA) is increasing at an alarming rate. Obesity, age, male gender, alcohol consumption, smoking and heart failure are common risk factors for both AF and OSA and they are independently associated with adverse cardiovascular outcomes. Weak evidence from observational studies link OSA to the development of AF. Hypoxia/hypercapnia, systemic inflammation and autonomic nervous system modulation are biological mechanisms that link OSA to AF. Patients with OSA have a poor response to catheter ablation of AF and often suffer recurrences. Observational data shows that continuous positive airway pressure is associated with a reduction in AF burden and a better response to catheter ablation of AF. However, prospective randomised studies are needed to confirm the usefulness of continuous positive airway pressure in the treatment of AF in patients with OSA.
Collapse
Affiliation(s)
- Ghanshyam Shantha
- Clinical Cardiac Electrophysiology, University of Michigan Ann Arbor, MI, US
| | - Frank Pelosi
- Clinical Cardiac Electrophysiology, University of Michigan Ann Arbor, MI, US
| | - Fred Morady
- Clinical Cardiac Electrophysiology, University of Michigan Ann Arbor, MI, US
| |
Collapse
|
20
|
Aortic remodelling induced by obstructive apneas is normalized with mesenchymal stem cells infusion. Sci Rep 2019; 9:11443. [PMID: 31391506 PMCID: PMC6685984 DOI: 10.1038/s41598-019-47813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/22/2019] [Indexed: 02/08/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSA) promotes aortic dilatation, increased stiffness and accelerated atherosclerosis, but the mechanisms of vascular remodelling are not known. We aimed to assess vascular remodelling, its mechanisms, and the effect of mesenchymal stem cells (MSC) infusions in a clinically relevant rat model of chronic OSA involving recurrent airway obstructions leading thoracic pressure swings and intermittent hypoxia/hypercapnia (OSA-rats). Another group of rats were placed in the same setup without air obstructions (Sham-rats) and were considered controls. Our study demonstrates that chronic, non-invasive repetitive airway obstructions mimicking OSA promote remarkable structural changes of the descending thoracic aorta such as eccentric aortic hypertrophy due to an increased wall thickness and lumen diameter, an increase in the number of elastin fibers which, in contrast, get ruptured, but no changes in tunica media fibrosis. As putative molecular mechanisms of the OSA-induced vascular changes we identified an increase in reactive oxygen species and renin-angiotensin system markers and an imbalance in oxide nitric synthesis. Our results also indicate that MSC infusion blunts the OSA-related vascular changes, most probably due to their anti-inflammatory properties.
Collapse
|
21
|
Siontis KC, Oral H. Atrial Fibrillation and Obstructive Sleep Apnea: Beyond the Pulmonary Veins. Circ Arrhythm Electrophysiol 2019; 10:CIRCEP.117.005890. [PMID: 29133382 DOI: 10.1161/circep.117.005890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Konstantinos C Siontis
- From the Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Hakan Oral
- From the Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor.
| |
Collapse
|
22
|
Franczak A, Bil-Lula I, Sawicki G, Fenton M, Ayas N, Skomro R. Matrix metalloproteinases as possible biomarkers of obstructive sleep apnea severity - A systematic review. Sleep Med Rev 2019; 46:9-16. [PMID: 31060030 DOI: 10.1016/j.smrv.2019.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea is an underdiagnosed sleep-related breathing disorder affecting millions of people. Recurrent episodes of apnea/hypopnea result in intermittent hypoxia leading to oxidative stress. Obstructive sleep apnea is considered an independent risk factor for cardiovascular disease but the exact pathophysiology of adverse cardiovascular outcomes of obstructive sleep apnea has not been fully elucidated. Matrix metalloproteinases (MMPs) have been associated with both oxidative stress and cardiovascular diseases. Hypoxic conditions were shown to influence MMP expression, secretion and activity. Moreover, matrix metalloproteinases contribute to ischemia/reperfusion injury. Therefore, action of matrix metalloproteinases can provide a possible molecular mechanism linking obstructive sleep apnea with oxidative stress and cardiovascular disease. The aim of this paper was to review the current evidence of association between matrix metalloproteinases and obstructive sleep apnea with focus on hypoxemia and severity of obstructive sleep apnea.
Collapse
Affiliation(s)
- Aleksandra Franczak
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Sawicki
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mark Fenton
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Canadian Sleep and Circadian Network
| | - Najib Ayas
- University of British Columbia, Vancouver, B.C. Canada; Canadian Sleep and Circadian Network
| | - Robert Skomro
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Canadian Sleep and Circadian Network; Division of Angiology, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
23
|
Mass Spectrometry Based Comparative Proteomics Using One Dimensional and Two Dimensional SDS-PAGE of Rat Atria Induced with Obstructive Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:541-561. [DOI: 10.1007/978-3-030-15950-4_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Farré N, Jorba I, Torres M, Falcones B, Martí-Almor J, Farré R, Almendros I, Navajas D. Passive Stiffness of Left Ventricular Myocardial Tissue Is Reduced by Ovariectomy in a Post-menopause Mouse Model. Front Physiol 2018; 9:1545. [PMID: 30455648 PMCID: PMC6230582 DOI: 10.3389/fphys.2018.01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Heart failure (HF) – a very prevalent disease with high morbidity and mortality – usually presents with diastolic dysfunction. Although post-menopause women are at increased risk of HF and diastolic dysfunction, poor attention has been paid to clinically and experimentally investigate this group of patients. Specifically, whether myocardial stiffness is affected by menopause is unknown. Aim: To investigate whether loss of female sexual hormones modifies the Young’s modulus (E) of left ventricular (LV) myocardial tissue in a mouse model of menopause induced by ovariectomy (OVX). Methods: After 6 months of bilateral OVX, eight mice were sacrificed, fresh LV myocardial strips were prepared (∼8 × 1 × 1 mm), and their passive stress–stretch relationship was measured. E was computed by exponential fitting of the stress–stretch relationship. Subsequently, to assess the relative role of cellular and extracellular matrix components in determining OVX-induced changes in E, the tissues strips were decellularized and subjected to the same stretching protocol to measure E. A control group of eight sham-OVX mice was simultaneously studied. Results: E (kPa; m ± SE) in OVX mice was ∼twofold lower than in controls (11.7 ± 1.8 and 22.1 ± 4.4, respectively; p < 0.05). No significant difference between groups was found in E of the decellularized tissue (31.4 ± 12.05 and 40.9 ± 11.5, respectively; p = 0.58). Conclusion: Loss of female sexual hormones in an OVX model induces a reduction in the passive stiffness of myocardial tissue, suggesting that active relaxation should play a counterbalancing role in diastolic dysfunction in post-menopausal women with HF.
Collapse
Affiliation(s)
- Núria Farré
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Torres
- Department of Pneumology, Hospital Clinic Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Bryan Falcones
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Julio Martí-Almor
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
25
|
Braun RK, Broytman O, Braun FM, Brinkman JA, Clithero A, Modi D, Pegelow DF, Eldridge M, Teodorescu M. Chronic intermittent hypoxia worsens bleomycin-induced lung fibrosis in rats. Respir Physiol Neurobiol 2018; 256:97-108. [PMID: 28456608 PMCID: PMC5659967 DOI: 10.1016/j.resp.2017.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 11/26/2022]
Abstract
Obstructive sleep apnea (OSA) has been linked to increased mortality in pulmonary fibrosis. Its key feature, chronic intermittent hypoxia (CIH), can lead to oxidative stress and inflammation, known to lead to fibrotic pathology in other organs. We tested the effects of CIH in an animal model of bleomycin-induced lung fibrosis. Sprague Dawley rats were instilled intratracheally with bleomycin (Blm) or saline (Sal), and exposed to CIH or normal air (Norm) for 9 or 30 days. Pulmonary function was tested and lungs were harvested for histological and molecular analyses. In Blm-treated animals, 30days of CIH compared to Norm increased total lung collagen content (p=0.008) and reduced Quasi-static lung compliance (p=0.04). CIH upregulated lipid peroxidation and increased NF-κB activation, IL-17 mRNA and Col1α1 mRNA expression. Our results indicate that following Blm-induced lung injury, CIH amplifies collagen deposition via oxidative and inflammatory pathways, culminating in stiffer lungs. Thus, OSA may augment fibrosis in patients with interstitial lung disease.
Collapse
Affiliation(s)
- Rudolf K Braun
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Oleg Broytman
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; James B. Skatrud Pulmonary/Sleep Research Laboratory, Medical Service, William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, United States
| | - Felix M Braun
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Colorado College, Colorado Springs, CO, United States
| | - Jacqueline A Brinkman
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; James B. Skatrud Pulmonary/Sleep Research Laboratory, Medical Service, William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, United States
| | - Andrew Clithero
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Kansas City University of Medicine and Biosciences, Kansas City, MO, United States
| | - Dhruvangkumar Modi
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - David F Pegelow
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mihaela Teodorescu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; James B. Skatrud Pulmonary/Sleep Research Laboratory, Medical Service, William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, United States.
| |
Collapse
|
26
|
Farré N, Otero J, Falcones B, Torres M, Jorba I, Gozal D, Almendros I, Farré R, Navajas D. Intermittent Hypoxia Mimicking Sleep Apnea Increases Passive Stiffness of Myocardial Extracellular Matrix. A Multiscale Study. Front Physiol 2018; 9:1143. [PMID: 30158879 PMCID: PMC6104184 DOI: 10.3389/fphys.2018.01143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s-6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (∼7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress-strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young's modulus (EM) computed at 0.2 strain by fitting Fung's constitutive model to the stress-strain relationship. ECM stiffness was characterized at the microscale as the Young's modulus (Em) measured in decellularized tissue slices (∼12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ∼1.5-fold increase in σ (p < 0.001) and a ∼2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.
Collapse
Affiliation(s)
- Núria Farré
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Torres
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
27
|
Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2018; 314:H1160-H1168. [DOI: 10.1152/ajpheart.00173.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea, which involves chronic intermittent hypoxia (CIH), is a major risk factor for developing atrial fibrillation (AF). Whether or not CIH alone alters cardiac mechanisms to support AF is unknown. This study investigated the effects of CIH on atrial electrophysiology and arrhythmia vulnerability and evaluated the role of autonomics in CIH promotion of AF. Adult male Sprague-Dawley rats were exposed to 8 h/day of CIH or normoxia for 7 days. After exposure, rats were anesthetized for intracardiac electrophysiological experiments. Atrial effective refractory periods (AERPs) and AF inducibility were determined using programmed electrical stimulation and burst pacing in the absence and presence of autonomic receptor agonists and antagonists. Western blot analysis measured atrial protein expression of muscarinic M2, M3, and β1-adrenergic receptors. Compared with normoxia-exposed control rats, CIH-exposed rats had enhanced AF vulnerability using both programmed electrical stimulation and burst pacing, accompanied by greater AERP responses to carbachol and propranolol, lesser responses to isoproterenol, and higher atrial M2 receptor protein levels. Enhanced atrial vulnerability was accentuated by carbachol and abolished by atropine, indicating that the AF-promoting effects of CIH depended principally on parasympathetic activation. Enhancement of atrial vulnerability and AERP shortening with cholinergic agonists in CIH-exposed rats is consistent with sensitivity to parasympathetic activation. Higher responses to adrenergic receptor blockade in CIH-exposed rats is consistent with sympathetic potentiation. These findings implicate CIH as an important mediator of enhanced AF susceptibility in obstructive sleep apnea and provide novel insights into the underlying mechanisms. NEW & NOTEWORTHY Our study demonstrates, for the first time, that chronic intermittent hypoxia alone enhances vulnerability to atrial arrhythmia induction, which depends principally on parasympathetic activation. Enhanced atrial vulnerability was accompanied by heightened electrophysiological responses of the atrial myocardium to carbachol and isoproterenol, dampened responses to propranolol, and increased atrial M2 receptor protein levels.
Collapse
Affiliation(s)
- Sara L. Bober
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Douglas L. Jones
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Decorin-Modified Umbilical Cord Mesenchymal Stem Cells (MSCs) Attenuate Radiation-Induced Lung Injuries via Regulating Inflammation, Fibrotic Factors, and Immune Responses. Int J Radiat Oncol Biol Phys 2018; 101:945-956. [PMID: 29976507 DOI: 10.1016/j.ijrobp.2018.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the therapeutic effects of decorin (DCN)-modified mesenchymal stem cells (MSCs) on radiation-induced lung injuries (RILIs) and to clarify the underlying mechanisms. METHODS AND MATERIALS Umbilical cord-derived mesenchymal stem cells (MSCs) were modified with Ad(E1-).DCN to generate DCN-expressing MSCs (DCN-modified MSCs [MSCs.DCN]). In an experimental mouse model of RILI, MSCs.DCN and MSCs.Null [MSCs modified with Ad(E1-).Null] were intravenously engrafted at 6 hours or 28 days after irradiation. The therapeutic effects on lung inflammation and fibrosis were evaluated by histopathologic analysis at 28 days and 3 months after irradiation. Inflammatory cytokines and chemokines were analyzed in both sera and lung tissues, and subtypes of T lymphocytes including regulatory T cells (Tregs) were analyzed in the peripheral blood and spleen. RESULTS Both MSC treatments could alleviate histopathologic injuries by reducing lymphocyte infiltration, decreasing apoptosis, increasing proliferation of epithelial cells, and inhibiting fibrosis in the later phase. However, treatment with MSCs.DCN resulted in much more impressive therapeutic effects. Moreover, we discovered that MSC treatment reduced the expression of chemokines and inflammatory cytokines and increased the expression of anti-inflammatory cytokines in both the peripheral blood and local pulmonary tissues. An important finding was that MSCs.DCN were much more effective in inducing interferon-γ expression, inhibiting collagen type III α1 expression in pulmonary tissues, and decreasing the proportion of Tregs. Furthermore, our data suggested that treatment during the acute phase (6 hours) after irradiation evoked much stronger responses both in attenuating inflammation and in inhibiting fibrosis than in the later phase (28 days). CONCLUSIONS MSCs.DCN could attenuate acute inflammation after irradiation and significantly inhibit later fibrosis. Likewise, DCN enhanced the functions of MSCs by targeting profibrotic factors and Tregs.
Collapse
|
29
|
Wang W, Zhang K, Li X, Ma Z, Zhang Y, Yuan M, Suo Y, Liang X, Tse G, Goudis CA, Liu T, Li G. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats. Cardiovasc Ther 2018; 36:e12321. [PMID: 29380561 DOI: 10.1111/1755-5922.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Kai Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Xiongfeng Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Zuowang Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Gary Tse
- Department of Medicine and Therapeutics; Chinese University of Hong Kong; Hong Kong China
- Li Ka Shing Institute of Health Sciences; Faculty of Medicine; Chinese University of Hong Kong; Hong Kong China
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease; Department of Cardiology; Tianjin Institute of Cardiology; Second Hospital of Tianjin Medical University; Tianjin China
| |
Collapse
|
30
|
Marulanda-Londoño E, Chaturvedi S. The Interplay between Obstructive Sleep Apnea and Atrial Fibrillation. Front Neurol 2017; 8:668. [PMID: 29312113 PMCID: PMC5732262 DOI: 10.3389/fneur.2017.00668] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Obstructive sleep apnea (OSA) is also an increasingly common condition. Both entities are risk factors for ischemic stroke and both conditions are linked with increased mortality. Mechanical effects of obesity and sleep apnea can lead to increased afterload, left ventricular hypertrophy, and left atrial fibrosis and remodeling. These changes can result in an increased risk of AF development. The current paper summarizes the evidence for the bidirectional relationship between AF and OSA. The merits of selective screening for these two conditions are also discussed.
Collapse
Affiliation(s)
- Erika Marulanda-Londoño
- Stroke Program, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Seemant Chaturvedi
- Stroke Program, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
31
|
Channaveerappa D, Lux JC, Wormwood KL, Heintz TA, McLerie M, Treat JA, King H, Alnasser D, Goodrow RJ, Ballard G, Decker R, Darie CC, Panama BK. Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. J Cell Mol Med 2017; 21:2223-2235. [PMID: 28402037 PMCID: PMC5571519 DOI: 10.1111/jcmm.13145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnoea (OSA) affects 9-24% of the adult population. OSA is associated with atrial disease, including atrial enlargement, fibrosis and arrhythmias. Despite the link between OSA and cardiac disease, the molecular changes in the heart which occur with OSA remain elusive. To study OSA-induced cardiac changes, we utilized a recently developed rat model which closely recapitulates the characteristics of OSA. Male Sprague Dawley rats, aged 50-70 days, received surgically implanted tracheal balloons which were inflated to cause transient airway obstructions. Rats were given 60 apnoeas per hour of either 13 sec. (moderate apnoea) or 23 sec. (severe apnoea), 8 hrs per day for 2 weeks. Controls received implants, but no inflations were made. Pulse oximetry measurements were taken at regular intervals, and post-apnoea ECGs were recorded. Rats had longer P wave durations and increased T wave amplitudes following chronic OSA. Proteomic analysis of the atrial tissue homogenates revealed that three of the nine enzymes in glycolysis, and two proteins related to oxidative phosphorylation, were down regulated in the severe apnoea group. Several sarcomeric and pro-hypertrophic proteins were also up regulated with OSA. Chronic OSA causes proteins changes in the atria which suggest impairment of energy metabolism and enhancement of hypertrophy.
Collapse
Affiliation(s)
- Devika Channaveerappa
- Biochemistry and Proteomics GroupDepartment of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamNYUSA
| | - Jacob C. Lux
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Kelly L. Wormwood
- Biochemistry and Proteomics GroupDepartment of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamNYUSA
| | - Timothy A. Heintz
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Meredith McLerie
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Jacqueline A. Treat
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Hannah King
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Donia Alnasser
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Robert J. Goodrow
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| | - Glenn Ballard
- Electrical Engineering TechnologyMohawk Valley Community CollegeUticaNYUSA
| | - Robert Decker
- Electrical Engineering TechnologyMohawk Valley Community CollegeUticaNYUSA
| | - Costel C. Darie
- Biochemistry and Proteomics GroupDepartment of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamNYUSA
| | - Brian K. Panama
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNYUSA
| |
Collapse
|
32
|
Fikry EM, Hassan WA, Gad AM. Bone marrow and adipose mesenchymal stem cells attenuate cardiac fibrosis induced by methotrexate in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28815865 DOI: 10.1002/jbt.21970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self-renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) or adipose-derived mesenchymal stem cells (AD-MSCs) against the development of methotrexate (MTX)-induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 106 cells of MTX + BM-MSCs and MTX + AD-MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma-glutamyl transferase, creatine kinase, and caspase-3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Ebtehal Mohammad Fikry
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hassan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|
33
|
Obstructive sleep and atrial fibrillation: Pathophysiological mechanisms and therapeutic implications. Int J Cardiol 2017; 230:293-300. [DOI: 10.1016/j.ijcard.2016.12.120] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022]
|
34
|
Micheu MM, Rosca AM, Deleanu OC. Stem/progenitor cells and obstructive sleep apnea syndrome - new insights for clinical applications. World J Stem Cells 2016; 8:332-341. [PMID: 27822340 PMCID: PMC5080640 DOI: 10.4252/wjsc.v8.i10.332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell - based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field.
Collapse
|
35
|
Tung P, Anter E. Atrial Fibrillation And Sleep Apnea: Considerations For A Dual Epidemic. J Atr Fibrillation 2016; 8:1283. [PMID: 27909488 PMCID: PMC5089463 DOI: 10.4022/jafib.1283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and shares many of the same risk factors as another common clinical condition, sleep apnea. The estimated prevalence of sleep apnea has increased over the past decade, and reflects a parallel increase in the most prominent risk factors of obesity and overweight. Both obstructive and central sleep apnea have been associated with AF in multiple studies, with the risk of AF increasing 2-4-fold compared to those without sleep breathing disorder. Continuous positive airway pressure (CPAP) has been shown to reduce the rate of AF recurrence following catheter ablation in patients with sleep apnea. However, the mechanisms by which sleep apnea precipitates AF or vice versa, remain unclear. In this Review, we examine the current date linking AF and sleep apnea, discuss the existing data supporting a mechanistic link between the two conditions, present the existing evidence for the effectiveness of CPAP in this growing population, and suggest approaches to screen AF patients for sleep breathing disorders.
Collapse
Affiliation(s)
- Patricia Tung
- Atrius Healthcare, Department of Cardiology, Boston, MA
| | - Elad Anter
- Harvard-Thorndike Electrophysiology Institute Cardiovascular Division, Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Fabritz L, Guasch E, Antoniades C, Bardinet I, Benninger G, Betts TR, Brand E, Breithardt G, Bucklar-Suchankova G, Camm AJ, Cartlidge D, Casadei B, Chua WWL, Crijns HJGM, Deeks J, Hatem S, Hidden-Lucet F, Kääb S, Maniadakis N, Martin S, Mont L, Reinecke H, Sinner MF, Schotten U, Southwood T, Stoll M, Vardas P, Wakili R, West A, Ziegler A, Kirchhof P. Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nat Rev Cardiol 2015; 13:230-7. [DOI: 10.1038/nrcardio.2015.194] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Dzeshka MS, Lip GYH, Snezhitskiy V, Shantsila E. Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. J Am Coll Cardiol 2015; 66:943-59. [PMID: 26293766 DOI: 10.1016/j.jacc.2015.06.1313] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is associated with structural, electrical, and contractile remodeling of the atria. Development and progression of atrial fibrosis is the hallmark of structural remodeling in AF and is considered the substrate for AF perpetuation. In contrast, experimental and clinical data on the effect of ventricular fibrotic processes in the pathogenesis of AF and its complications are controversial. Ventricular fibrosis seems to contribute to abnormalities in cardiac relaxation and contractility and to the development of heart failure, a common finding in AF. Given that AF and heart failure frequently coexist and that both conditions affect patient prognosis, a better understanding of the mutual effect of fibrosis in AF and heart failure is of particular interest. In this review paper, we provide an overview of the general mechanisms of cardiac fibrosis in AF, differences between fibrotic processes in atria and ventricles, and the clinical and prognostic significance of cardiac fibrosis in AF.
Collapse
Affiliation(s)
- Mikhail S Dzeshka
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Grodno State Medical University, Grodno, Belarus
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom.
| |
Collapse
|
38
|
Calvo N, Ramos P, Montserrat S, Guasch E, Coll-Vinent B, Domenech M, Bisbal F, Hevia S, Vidorreta S, Borras R, Falces C, Embid C, Montserrat JM, Berruezo A, Coca A, Sitges M, Brugada J, Mont L. Emerging risk factors and the dose-response relationship between physical activity and lone atrial fibrillation: a prospective case-control study. Europace 2015; 18:57-63. [PMID: 26333377 PMCID: PMC4739323 DOI: 10.1093/europace/euv216] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Aims The role of high-intensity exercise and other emerging risk factors in lone atrial fibrillation (Ln-AF) epidemiology is still under debate. The aim of this study was to analyse the contribution of each of the emerging risk factors and the impact of physical activity dose in patients with Ln-AF. Methods and results Patients with Ln-AF and age- and sex-matched healthy controls were included in a 2:1 prospective case–control study. We obtained clinical and anthropometric data transthoracic echocardiography, lifetime physical activity questionnaire, 24-h ambulatory blood pressure monitoring, Berlin questionnaire score, and, in patients at high risk for obstructive sleep apnoea (OSA) syndrome, a polysomnography. A total of 115 cases and 57 controls were enrolled. Conditional logistic regression analysis associated height [odds ratio (OR) 1.06 [1.01–1.11]], waist circumference (OR 1.06 [1.02–1.11]), OSA (OR 5.04 [1.44–17.45]), and 2000 or more hours of cumulative high-intensity endurance training to a higher AF risk. Our data indicated a U-shaped association between the extent of high-intensity training and AF risk. The risk of AF increased with an accumulated lifetime endurance sport activity ≥2000 h compared with sedentary individuals (OR 3.88 [1.55–9.73]). Nevertheless, a history of <2000 h of high-intensity training protected against AF when compared with sedentary individuals (OR 0.38 [0.12–0.98]). Conclusion A history of ≥2000 h of vigorous endurance training, tall stature, abdominal obesity, and OSA are frequently encountered as risk factors in patients with Ln-AF. Fewer than 2000 total hours of high-intensity endurance training associates with reduced Ln-AF risk.
Collapse
Affiliation(s)
- Naiara Calvo
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Pablo Ramos
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Silvia Montserrat
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Eduard Guasch
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Blanca Coll-Vinent
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Mònica Domenech
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain Unitat d'Hipertensió i Risc Vascular, Hospital Clínic, Catalonia, Spain
| | - Felipe Bisbal
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Sara Hevia
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Silvia Vidorreta
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Roger Borras
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Carles Falces
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Cristina Embid
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain Unitat del Son. Servei Pneumologia, Hospital Clínic, CIBERES Barcelona, Catalonia, Spain
| | - Josep Maria Montserrat
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain Unitat del Son. Servei Pneumologia, Hospital Clínic, CIBERES Barcelona, Catalonia, Spain
| | - Antonio Berruezo
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Antonio Coca
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain Unitat d'Hipertensió i Risc Vascular, Hospital Clínic, Catalonia, Spain
| | - Marta Sitges
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Josep Brugada
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | - Lluís Mont
- Unitat de Fibril.lació Auricular, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| |
Collapse
|
39
|
Maan A, Mansour M, Anter E, Patel VV, Cheng A, Refaat MM, Ruskin JN, Heist EK. Obstructive Sleep Apnea and Atrial Fibrillation: Pathophysiology and Implications for Treatment. Crit Pathw Cardiol 2015; 14:81-85. [PMID: 26102018 DOI: 10.1097/hpc.0000000000000044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obstructive sleep apnea (OSA) is increasingly recognized as an important risk factor for arrhythmogenesis. Epidemiological and clinical studies have suggested a strong association between OSA and atrial fibrillation (AF). With the increasing global epidemic of obesity, the incidence of OSA is also expected to rise. Various mechanisms mediated through adverse electrical and structural changes have been proposed to explain the increased risk of AF in patients with OSA. Multiple studies have also observed a greater risk of AF recurrence after cardioversion and catheter ablation (CA) in the patients with untreated OSA. The epidemiological and pathophysiological associations between OSA and AF have significant implications on the treatment outcomes of rhythm-control strategies for AF. Adequate screening and optimal management of OSA are of key importance to help improve the clinical outcomes following cardioversion and CA. In this review, we sought to describe the role of various mechanisms by which OSA mediates the pathogenesis of AF and contributes to adverse outcomes following CA.
Collapse
Affiliation(s)
- Abhishek Maan
- From the *Division of Electrophysiology, Massachusetts General Hospital, Boston, MA; †Harvard Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Boston, MA; ‡Department of Physiology, Cardiovascular Research Center, Section of Clinical Cardiac Electrophysiology, Temple University School of Medicine, Philadelphia, PA; §Division of Electrophysiology, Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Obesity and atrial fibrillation: A comprehensive review of the pathophysiological mechanisms and links. J Cardiol 2015; 66:361-9. [PMID: 25959929 DOI: 10.1016/j.jjcc.2015.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/15/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem with epidemic proportions that has been associated with atrial fibrillation (AF). Even though the underlying pathophysiological mechanisms have not been completely elucidated, several experimental and clinical studies implicate obesity in the initiation and perpetuation of AF. Of note, hypertension, diabetes mellitus, metabolic syndrome, coronary artery disease, and obstructive sleep apnea, represent clinical correlates between obesity and AF. In addition, ventricular adaptation, diastolic dysfunction, and epicardial adipose tissue appear to be implicated in atrial electrical and structural remodeling, thereby promoting the arrhythmia in obese subjects. The present article provides a concise overview of the association between obesity and AF, and highlights the underlying pathophysiological mechanisms.
Collapse
|
41
|
Cao C, Wu B, Wu Y, Yu Y, Ma H, Sun S, Zhang Q, Ding Q, Chen L, Deng Z. Functional polymorphisms in the promoter region of MMP-2 and MMP-9 and susceptibility to obstructive sleep apnea. Sci Rep 2015; 5:8966. [PMID: 25753939 PMCID: PMC4354173 DOI: 10.1038/srep08966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/11/2015] [Indexed: 01/08/2023] Open
Abstract
Genetic susceptibility to obstructive sleep apnea (OSA) has been a research focus in the scientific community in the past few years. In this study, we recruited 375 subjects to investigate whether functional polymorphisms in the promoter region of matrix metalloproteinase (MMP)-2 (-1306C/T) and MMP-9 (-1562C/T) increased susceptibility to OSA. Our study showed no significant association between MMP-2 -1306C/T polymorphism and risk of OSA (T vs. C: OR = 1.01, 95% CI = 0.67-1.52; P = 0.97). Compared with the MMP-9 -1562C allele, the -1562T allele was associated with increased risk of OSA (T vs. C: OR = 1.56, 95% CI = 1.02-2.39; P = 0.04). However, neither MMP-2 -1306C/T nor MMP-9 -1562C/T polymorphism was found to be associated with severity of the disease. Our study suggested that the MMP-2 -1306C/T polymorphism was not associated with OSA susceptibility, whereas the MMP-9 -1562T allele was associated with increased risk of OSA.
Collapse
Affiliation(s)
- Chao Cao
- 1] Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China [2] Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital, Institute of Respiratory Diseases, Guangdong Medicine College, Zhanjiang 524000, China
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiming Yu
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| | - Hongying Ma
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| | - Shifang Sun
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| | - Qiaoli Zhang
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| | - Qunli Ding
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| | - Li Chen
- Department of Medical Oncology, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zaichun Deng
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo 315020, China
| |
Collapse
|
42
|
Zhao J, Xu W, Yun F, Zhao H, Li W, Gong Y, Yuan Y, Yan S, Zhang S, Ding X, Wang D, Zhang C, Dong D, Xiu C, Yang N, Liu L, Xue J, Li Y. Chronic obstructive sleep apnea causes atrial remodeling in canines: mechanisms and implications. Basic Res Cardiol 2014; 109:427. [PMID: 25015734 DOI: 10.1007/s00395-014-0427-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023]
Abstract
Obstructive sleep apnea (OSA) is closely related to atrial fibrillation (AF). However, the roles and mechanisms of chronic OSA in atrial remodeling are still unclear. Canine model of chronic OSA was simulated by stopping the ventilator and closing the airway for 4 h per day and lasting for 12 weeks. AF inducibility and duration was increased while atrial effective refractory period (AERP) was shortened after chronic apnea. Meanwhile, upregulation of proteins encoding inward rectifier K(+) current (IK1), delayed rectifier K(+) current (IKr and IKs), acetylcholine activated K(+) current (IKACh), transient outward K(+) current (Ito) and ultra-rapid delayed rectifier potassium current (IKur) as well as downregulation of protein encoding L-type Ca(2+) current (ICa,L) were found after chronic OSA. Besides abnormal electrical activity, chronic OSA induced apoptosis and interstitial fibrosis of atrial myocytes, which was partly mediated by caspase 9, phosphorylation of extracellular-regulated kinase 1/2, and α-smooth muscle actin. In addition, atrial sympathetic and parasympathetic hyperinnervation were found manifesting by enhanced growth-associated protein 43, tyrosine hydroxylase and elevated choline acetyltransferase. Moreover, protein expression of β1, β2, and M2 receptor were markedly increased by chronic OSA. In summary, we firstly demonstrated in canine model that chronic OSA could shorten AERP and lead to altered expression of important channel proteins, moreover, induce atrial structure remodeling by increased atrial apoptosis, fibrosis, and autonomic remodeling, eventually promoting the development of a substrate of AF. Our findings suggested that reversing atrial remodeling might be a potential therapeutic strategy for OSA-induced AF.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|