1
|
Miserocchi G. Physiopathology of High-Altitude Pulmonary Edema. High Alt Med Biol 2024. [PMID: 39331568 DOI: 10.1089/ham.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
2
|
Miserocchi G. Early Endothelial Signaling Transduction in Developing Lung Edema. Life (Basel) 2023; 13:1240. [PMID: 37374024 DOI: 10.3390/life13061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The lung promptly responds to edemagenic conditions through functional adaptations that contrast the increase in microvascular filtration. This review presents evidence for early signaling transduction by endothelial lung cells in two experimental animal models of edema, hypoxia exposure, and fluid overload (hydraulic edema). The potential role of specialized sites of the plasma membranes considered mobile signaling platforms, referred to as membrane rafts, that include caveolae and lipid rafts, is presented. The hypothesis is put forward that early changes in the lipid composition of the bilayer of the plasma membrane might trigger the signal transduction process when facing changes in the pericellular microenvironment caused by edema. Evidence is provided that for an increase in the extravascular lung water volume not exceeding 10%, changes in the composition of the plasma membrane of endothelial cells are evoked in response to mechanical stimuli from the interstitial compartment as well as chemical stimuli relating with changes in the concentration of the disassembled portions of structural macromolecules. In hypoxia, thinning of endothelial cells, a decrease in caveolae and AQP-1, and an increase in lipid rafts are observed. The interpretation of this response is that it favors oxygen diffusion and hinder trans-cellular water fluxes. In hydraulic edema, which generates greater capillary water leakages, an increase in cell volume and opposite changes in membrane rafts were observed; further, the remarkable increase in caveolae suggests a potential abluminal-luminal vesicular-dependent fluid reabsorption.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, Università di Milano Bicocca, 20900 Monza, Italy
| |
Collapse
|
3
|
Miserocchi G. The impact of heterogeneity of the air-blood barrier on control of lung extravascular water and alveolar gas exchange. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1142245. [PMID: 37251706 PMCID: PMC10213913 DOI: 10.3389/fnetp.2023.1142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The architecture of the air-blood barrier is effective in optimizing the gas exchange as long as it retains its specific feature of extreme thinness reflecting, in turn, a strict control on the extravascular water to be kept at minimum. Edemagenic conditions may perturb this equilibrium by increasing microvascular filtration; this characteristically occurs when cardiac output increases to balance the oxygen uptake with the oxygen requirement such as in exercise and hypoxia (either due to low ambient pressure or reflecting a pathological condition). In general, the lung is well equipped to counteract an increase in microvascular filtration rate. The loss of control on fluid balance is the consequence of disruption of the integrity of the macromolecular structure of lung tissue. This review, merging data from experimental approaches and evidence in humans, will explore how the heterogeneity in morphology, mechanical features and perfusion of the terminal respiratory units might impact on lung fluid balance and its control. Evidence is also provided that heterogeneities may be inborn and they could actually get worse as a consequence of a developing pathological process. Further, data are presented how in humans inter-individual heterogeneities in morphology of the terminal respiratory hinder the control of fluid balance and, in turn, hamper the efficiency of the oxygen diffusion-transport function.
Collapse
|
4
|
Andrés-Blasco I, Gallego-Martínez A, Machado X, Cruz-Espinosa J, Di Lauro S, Casaroli-Marano R, Alegre-Ituarte V, Arévalo JF, Pinazo-Durán MD. Oxidative Stress, Inflammatory, Angiogenic, and Apoptotic molecules in Proliferative Diabetic Retinopathy and Diabetic Macular Edema Patients. Int J Mol Sci 2023; 24:ijms24098227. [PMID: 37175931 PMCID: PMC10179600 DOI: 10.3390/ijms24098227] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study is to evaluate molecules involved in oxidative stress (OS), inflammation, angiogenesis, and apoptosis, and discern which of these are more likely to be implicated in proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) by investigating the correlation between them in the plasma (PLS) and vitreous body (VIT), as well as examining data obtained from ophthalmological examinations. Type 2 diabetic (T2DM) patients with PDR/DME (PDRG/DMEG; n = 112) and non-DM subjects as the surrogate controls (SCG n = 48) were selected according to the inclusion/exclusion criteria and programming for vitrectomy, either due to having PDR/DME or macular hole (MH)/epiretinal membrane (ERM)/rhegmatogenous retinal detachment. Blood samples were collected and processed to determine the glycemic profile, total cholesterol, and C reactive protein, as well as the malondialdehyde (MDA), 4-hydroxynonenal (4HNE), superoxide dismutase (SOD), and catalase (CAT) levels and total antioxidant capacity (TAC). In addition, interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and caspase 3 (CAS3) were assayed. The VITs were collected and processed to measure the expression levels of all the abovementioned molecules. Statistical analyses were conducted using the R Core Team (2022) program, including group comparisons and correlation analyses. Compared with the SCG, our findings support the presence of molecules involved in OS, inflammation, angiogenesis, and apoptosis in the PLS and VIT samples from T2DM. In PLS from PDRG, there was a decrease in the antioxidant load (p < 0.001) and an increase in pro-angiogenic molecules (p < 0.001), but an increase in pro-oxidants (p < 0.001) and a decline in antioxidants (p < 0.001) intravitreally. In PLS from DMEG, pro-oxidants and pro-inflammatory molecules were augmented (p < 0.001) and the antioxidant capacity diminished (p < 0.001), but the pro-oxidants increased (p < 0.001) and antioxidants decreased (p < 0.001) intravitreally. Furthermore, we found a positive correlation between the PLS-CAT and the VIT-SOD levels (rho = 0.5; p < 0.01) in PDRG, and a negative correlation between the PSD-4HNE and the VIT-TAC levels (rho = 0.5; p < 0.01) in DMEG. Integrative data of retinal imaging variables showed a positive correlation between the central subfield foveal thickness (CSFT) and the VIT-SOD levels (rho = 0.5; p < 0.01), and a negative correlation between the CSFT and the VIT-4HNE levels (rho = 0.4; p < 0.01) in PDRG. In DMEG, the CSFT displayed a negative correlation with the VIT-CAT (rho = 0.5; p < 0.01). Exploring the relationship of the abovementioned potential biomarkers between PLS and VIT may help detecting early molecular changes in PDR/DME, which can be used to identify patients at high risk of progression, as well as to monitor therapeutic outcomes in the diabetic retina.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| | - Alex Gallego-Martínez
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | - Ximena Machado
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | | | - Salvatore Di Lauro
- Department of Ophthalmology, University Clinic Hospital, 47003 Valladolid, Spain
| | - Ricardo Casaroli-Marano
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Department of Ophthalmology, Clinic Hospital, 08036 Barcelona, Spain
| | - Víctor Alegre-Ituarte
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Department of Ophthalmology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - José Fernando Arévalo
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Wilmer at Johns Hopkins Bayview Medical Center, Baltimore, MA 21224, USA
| | - María Dolores Pinazo-Durán
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| |
Collapse
|
5
|
Miserocchi G, Beretta E. A century of exercise physiology: lung fluid balance during and following exercise. Eur J Appl Physiol 2023; 123:1-24. [PMID: 36264327 DOI: 10.1007/s00421-022-05066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE This review recalls the principles developed over a century to describe trans-capillary fluid exchanges concerning in particular the lung during exercise, a specific condition where dyspnea is a leading symptom, the question being whether this symptom simply relates to fatigue or also implies some degree of lung edema. METHOD Data from experimental models of lung edema are recalled aiming to: (1) describe how extravascular lung water is strictly controlled by "safety factors" in physiological conditions, (2) consider how waning of "safety factors" inevitably leads to development of lung edema, (3) correlate data from experimental models with data from exercising humans. RESULTS Exercise is a strong edemagenic condition as the increase in cardiac output leads to lung capillary recruitment, increase in capillary surface for fluid exchange and potential increase in capillary pressure. The physiological low microvascular permeability may be impaired by conditions causing damage to the interstitial matrix macromolecular assembly leading to alveolar edema and haemorrhage. These conditions include hypoxia, cyclic alveolar unfolding/folding during hyperventilation putting a tensile stress on septa, intensity and duration of exercise as well as inter-individual proneness to develop lung edema. CONCLUSION Data from exercising humans showed inter-individual differences in the dispersion of the lung ventilation/perfusion ratio and increase in oxygen alveolar-capillary gradient. More recent data in humans support the hypothesis that greater vasoconstriction, pulmonary hypertension and slower kinetics of alveolar-capillary O2 equilibration relate with greater proneness to develop lung edema due higher inborn microvascular permeability possibly reflecting the morpho-functional features of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.
| |
Collapse
|
6
|
Guo X, Meng Y, Wang Y, Nan S, Lu Y, Lu D, Yin Y. Mice lacking 1,4,5-triphosphate inositol type III receptor demonstrate inhibition of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 2022; 629:165-170. [PMID: 36122454 DOI: 10.1016/j.bbrc.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a respiratory disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. Persistent hypoxia alters the metabolic and transport functions of endothelial cells and promotes thrombosis and inflammation. Type 3 inositol-1,4,5-trisphosphate receptor (IP3R3) controls the release of calcium ions from the endoplasmic reticulum to the cytoplasm and mitochondria and is involved in cell proliferation, migration, and protein synthesis. In this study, we investigated the role and function of IP3R3 in HPH. The results showed that the expression level of IP3R3 was increased in pulmonary artery endothelial cells (PAECs) in a rat HPH model. The pulmonary artery pressure indices of IP3R3(-/-) mice with persistent hypoxia were significantly lower than those of HPH mice. The expression level of IP3R3 was significantly increased in hypoxia-treated PAECs. Knockdown of IP3R3 significantly inhibited the proliferation, migration and mesenchymal transition of PAECs induced by hypoxia. In conclusion, knockdown of IP3R3 can inhibit hypoxia-induced dysfunctions in PAECs, thus enabling IP3R3(-/-) mice to avoid HPH development. IP3R3 plays a key role in HPH and can be used as a potential target for the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yumiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shifa Nan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yuchen Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Shatursky O, Gnatyuk O, Afonina U, Pyrshev K, Dovbeshko G, Yesylevskyy S, Borisova T. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183945. [PMID: 35461828 PMCID: PMC9023372 DOI: 10.1016/j.bbamem.2022.183945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/05/2022]
Abstract
Remdesivir is a novel antiviral drug, which is active against the SARS-CoV-2 virus. Remdesivir is known to accumulate in the brain but it is not clear whether it influences the neurotransmission. Here we report diverse and pronounced effects of remdesivir on transportation and release of excitatory and inhibitory neurotransmitters in rat cortex nerve terminals (synaptosomes) in vitro. Direct incorporation of remdesivir molecules into the cellular membranes was shown by FTIR spectroscopy, planar phospholipid bilayer membranes and computational techniques. Remdesivir decreases depolarization-induced exocytotic release of L-[14C] glutamate and [3H] GABA, and also [3H] GABA uptake and extracellular level in synaptosomes in a dose-dependent manner. Fluorimetric studies confirmed remdesivir-induced impairment of exocytosis in nerve terminals and revealed a decrease in synaptic vesicle acidification. Our data suggest that remdesivir dosing during antiviral therapy should be precisely controlled to prevent possible neuromodulatory action at the presynaptic level. Further studies of neurotropic and membranotropic effects of remdesivir are necessary.
Collapse
Affiliation(s)
- Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Oleg Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Olena Gnatyuk
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Uliana Afonina
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Kyrylo Pyrshev
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Galina Dovbeshko
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Semen Yesylevskyy
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| |
Collapse
|
8
|
Beretta E, Romanò F, Sancini G, Grotberg JB, Nieman GF, Miserocchi G. Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Front Physiol 2021; 12:781874. [PMID: 34987415 PMCID: PMC8720972 DOI: 10.3389/fphys.2021.781874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
This review analyses the mechanisms by which lung fluid balance is strictly controlled in the air-blood barrier (ABB). Relatively large trans-endothelial and trans-epithelial Starling pressure gradients result in a minimal flow across the ABB thanks to low microvascular permeability aided by the macromolecular structure of the interstitial matrix. These edema safety factors are lost when the integrity of the interstitial matrix is damaged. The result is that small Starling pressure gradients, acting on a progressively expanding alveolar barrier with high permeability, generate a high transvascular flow that causes alveolar flooding in minutes. We modeled the trans-endothelial and trans-epithelial Starling pressure gradients under control conditions, as well as under increasing alveolar pressure (Palv) conditions of up to 25 cmH2O. We referred to the wet-to-dry weight (W/D) ratio, a specific index of lung water balance, to be correlated with the functional state of the interstitial structure. W/D averages ∼5 in control and might increase by up to ∼9 in severe edema, corresponding to ∼70% loss in the integrity of the native matrix. Factors buffering edemagenic conditions include: (i) an interstitial capacity for fluid accumulation located in the thick portion of ABB, (ii) the increase in interstitial pressure due to water binding by hyaluronan (the "safety factor" opposing the filtration gradient), and (iii) increased lymphatic flow. Inflammatory factors causing lung tissue damage include those of bacterial/viral and those of sterile nature. Production of reactive oxygen species (ROS) during hypoxia or hyperoxia, or excessive parenchymal stress/strain [lung overdistension caused by patient self-induced lung injury (P-SILI)] can all cause excessive inflammation. We discuss the heterogeneity of intrapulmonary distribution of W/D ratios. A W/D ∼6.5 has been identified as being critical for the transition to severe edema formation. Increasing Palv for W/D > 6.5, both trans-endothelial and trans-epithelial gradients favor filtration leading to alveolar flooding. Neither CT scan nor ultrasound can identify this initial level of lung fluid balance perturbation. A suggestion is put forward to identify a non-invasive tool to detect the earliest stages of perturbation of lung fluid balance before the condition becomes life-threatening.
Collapse
Affiliation(s)
- Egidio Beretta
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers, Centrale Lille, FRE 2017-LMFL-Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, Lille, France
| | - Giulio Sancini
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Gary F. Nieman
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Rudyk O, Aaronson PI. Redox Regulation, Oxidative Stress, and Inflammation in Group 3 Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:209-241. [PMID: 33788196 DOI: 10.1007/978-3-030-63046-1_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group 3 pulmonary hypertension (PH), which occurs secondary to hypoxia lung diseases, is one of the most common causes of PH worldwide and has a high unmet clinical need. A deeper understanding of the integrative pathological and adaptive molecular mechanisms within this group is required to inform the development of novel drug targets and effective treatments. The production of oxidants is increased in PH Group 3, and their pleiotropic roles include contributing to disease progression by promoting prolonged hypoxic pulmonary vasoconstriction and pathological pulmonary vascular remodeling, but also stimulating adaptation to pathological stress that limits the severity of this disease. Inflammation, which is increasingly being viewed as a key pathological feature of Group 3 PH, is subject to complex regulation by redox mechanisms and is exacerbated by, but also augments oxidative stress. In this review, we investigate aspects of this complex crosstalk between inflammation and oxidative stress in Group 3 PH, focusing on the redox-regulated transcription factor NF-κB and its upstream regulators toll-like receptor 4 and high mobility group box protein 1. Ultimately, we propose that the development of specific therapeutic interventions targeting redox-regulated signaling pathways related to inflammation could be explored as novel treatments for Group 3 PH.
Collapse
Affiliation(s)
- Olena Rudyk
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre of Research Excellence, London, UK.
| | - Philip I Aaronson
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Zuniga-Hertz JP, Patel HH. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol 2019; 10:1340. [PMID: 31736773 PMCID: PMC6828933 DOI: 10.3389/fphys.2019.01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The increase in atmospheric oxygen levels imposed significant environmental pressure on primitive organisms concerning intracellular oxygen concentration management. Evidence suggests the rise of cholesterol, a key molecule for cellular membrane organization, as a cellular strategy to restrain free oxygen diffusion under the new environmental conditions. During evolution and the increase in organismal complexity, cholesterol played a pivotal role in the establishment of novel and more complex functions associated with lipid membranes. Of these, caveolae, cholesterol-rich membrane domains, are signaling hubs that regulate important in situ functions. Evolution resulted in complex respiratory systems and molecular response mechanisms that ensure responses to critical events such as hypoxia facilitated oxygen diffusion and transport in complex organisms. Caveolae have been structurally and functionally associated with respiratory systems and oxygen diffusion control through their relationship with molecular response systems like hypoxia-inducible factors (HIF), and particularly as a membrane-localized oxygen sensor, controlling oxygen diffusion balanced with cellular physiological requirements. This review will focus on membrane adaptations that contribute to regulating oxygen in living systems.
Collapse
Affiliation(s)
- Juan Pablo Zuniga-Hertz
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Huang J, Frid M, Gewitz MH, Fallon JT, Brown D, Krafsur G, Stenmark K, Mathew R. Hypoxia-induced pulmonary hypertension and chronic lung disease: caveolin-1 dysfunction an important underlying feature. Pulm Circ 2019; 9:2045894019837876. [PMID: 30806156 PMCID: PMC6434444 DOI: 10.1177/2045894019837876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Caveolin-1 (cav-1) has been shown to play a significant role in the pathogenesis of pulmonary hypertension (PH). In the monocrotaline model of PH, the loss of endothelial cav-1 as well as reciprocal activation of proliferative and anti-apoptotic pathways initiate the disease process and facilitate its progression. In order to examine the role of cav-1 in hypoxia-induced PH, we exposed rats and neonatal calves to hypobaric hypoxia and obtained hemodynamic data and assessed the expression of cav-1 and related proteins eNOS, HSP90, PTEN, gp130, PY-STAT3, β-catenin, and Glut1 in the lung tissue. Chronic hypoxic exposure in rats (48 h-4 weeks) and calves (two weeks) did not alter the expression of cav-1, HSP90, or eNOS. PTEN expression was significantly decreased accompanied by PY-STAT3 activation and increased expression of gp130, Glut1, and β-catenin in hypoxic animals. We also examined cav-1 expression in the lung sections from steers with chronic hypoxic disease (Brisket disease) and from patients with chronic lung disease who underwent lung biopsy for medical reasons. There was no cav-1 loss in Brisket disease. In chronic lung disease cases, endothelial cav-1 expression was present, albeit with less intense staining in some cases. In conclusion, hypoxia did not alter the cav-1 expression in experimental models. The presence of cav-1, however, did not suppress hypoxia-induced activation of PY-STAT3 and β catenin, increased gp130 and Glut1 expression, or prevent the PTEN loss, indicating cav-1 dysfunction in hypoxia-induced PH.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Maria Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael H. Gewitz
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - John T. Fallon
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Greta Krafsur
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajamma Mathew
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
Tu L, Ghigna MR, Phan C, Bordenave J, Le Hiress M, Thuillet R, Ricard N, Huertas A, Humbert M, Guignabert C. [Towards new targets for the treatment of pulmonary arterial hypertension : Importance of cell-cell communications]. Biol Aujourdhui 2016; 210:65-78. [PMID: 27687598 DOI: 10.1051/jbio/2016010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure (mPAP), resulting in a progressive functional decline despite current available therapeutic options. There are multiple mechanisms predisposing to and/or promoting the aberrant pulmonary vascular remodeling in PAH, and these involve not only altered crosstalk between cells within the vascular wall but also sustained inflammation and dysimmunity, cell accumulation in the vascular wall and excessive activation of some growth factor-stimulated signaling pathways, in addition to the interaction of systemic hormones, local growth factors, cytokines, and transcription factors. Heterozygous germline mutations in the bone morphogenetic protein receptor, type-2 (BMPR2) gene, a gene encoding a receptor for the transforming growth factor (TGF)-β superfamily, can predispose to the disease. Although the spectrum of therapeutic options for PAH has expanded in the last 20 years, available therapies remain essentially palliative. Over the past decade, however, a better understanding of key regulators of this irreversible remodeling of the pulmonary vasculature has been obtained. New and more effective approaches are likely to emerge. The present article profiles the innovative research into novel pathways and therapeutic targets that may lead to the development of targeted agents in PAH.
Collapse
Affiliation(s)
- Ly Tu
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - Service de Pathologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Carole Phan
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Jennifer Bordenave
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Morane Le Hiress
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Nicolas Ricard
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Alice Huertas
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Marc Humbert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Christophe Guignabert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 2015; 310:C181-92. [PMID: 26771520 DOI: 10.1152/ajpcell.00087.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Adam Kassan
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Anna R Busija
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
14
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
Zhang QY, Fu JH, Xue XD. Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells. Exp Ther Med 2014; 8:493-498. [PMID: 25009607 PMCID: PMC4079425 DOI: 10.3892/etm.2014.1739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator (oxygen volume fraction, 0.9), respectively. Twenty-four, 48 and 72 h after cell attachment, the gene transcription and protein expression levels of aquaporin-1 (AQP1) were detected via quantitative polymerase chain reaction and western blot analysis. Flow cytometry was conducted to detect the volume of the cells in the experimental and control groups. In the present study, it was identified that AQP1 expression and cell volume were greater in the experimental group when compared with the control group. Thus, hyperoxia may disturb the gene expression regulation of AQP1 in AECII, resulting in water transport dysfunction. This may be one of the mechanisms underlying pulmonary edema caused by hyperoxic lung injury.
Collapse
Affiliation(s)
- Qiu-Yue Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China ; Pediatrics Intensive Care Units, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian-Hua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin-Dong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
16
|
Barboni B, Bernabò N, Palestini P, Botto L, Pistilli MG, Charini M, Tettamanti E, Battista N, Maccarrone M, Mattioli M. Type-1 cannabinoid receptors reduce membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate. PLoS One 2011; 6:e23038. [PMID: 21829686 PMCID: PMC3150387 DOI: 10.1371/journal.pone.0023038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mammalian spermatozoa acquire their full fertilizing ability (so called capacitation) within the female genital tract, where they are progressively exposed to inverse gradients of inhibiting and stimulating molecules. METHODOLOGY/PRINCIPAL FINDINGS In the present research, the effect on this process of anandamide, an endocannabinoid that can either activate or inhibit cannabinoid receptors depending on its concentration, and bicarbonate, an oviductal activatory molecule, was assessed, in order to study the role exerted by the type 1 cannabinoid receptor (CB1R) in the process of lipid membrane remodeling crucial to complete capacitation. To this aim, boar sperm were incubated in vitro under capacitating conditions (stimulated by bicarbonate) in the presence or in the absence of methanandamide (Met-AEA), a non-hydrolysable analogue of anandamide. The CB1R involvement was studied by using the specific inhibitor (SR141716) or mimicking its activation by adding a permeable cAMP analogue (8Br-cAMP). By an immunocytochemistry approach it was shown that the Met-AEA inhibits the bicarbonate-dependent translocation of CB1R from the post-equatorial to equatorial region of sperm head. In addition it was found that Met-AEA is able to prevent the bicarbonate-induced increase in membrane disorder and the cholesterol extraction, both preliminary to capacitation, acting through a CB1R-cAMP mediated pathway, as indicated by MC540 and filipin staining, EPR spectroscopy and biochemical analysis on whole membranes (CB1R activity) and on membrane enriched fraction (C/P content and anisotropy). CONCLUSIONS/SIGNIFICANCE Altogether, these data demonstrate that the endocannabinoid system strongly inhibits the process of sperm capacitation, acting as membrane stabilizing agent, thus increasing the basic knowledge on capacitation-related signaling and potentially opening new perspectives in diagnostics and therapeutics of male infertility.
Collapse
Affiliation(s)
- Barbara Barboni
- Department of Biomedical Comparative Sciences, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Palestini P, Botto L, Rivolta I, Miserocchi G. Remodelling of membrane rafts expression in lung cells as an early sign of mechanotransduction-signalling in pulmonary edema. J Lipids 2011; 2011:695369. [PMID: 21785732 PMCID: PMC3139192 DOI: 10.1155/2011/695369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/22/2011] [Indexed: 11/17/2022] Open
Abstract
Membrane rafts (MRs) are clusters of lipids, organized in a "quasicrystalline" liquid-order phase, organized on the cell surface and whose pattern of molecules and physicochemical properties are distinct from those of the surrounding plasma membrane. MRs may be considered an efficient and fairly rapid cell-activated mechanism to express or mask surface receptors aimed at triggering specific response pathways. This paper reports observations concerning the role of MRs in the control of lung extravascular water that ought to be kept at minimum to assure gas diffusion, supporting the hypothesis that MRs expression is a potential mechanism of sensing minor changes in the volume of extravascular water. We present the evidence that MRs expression specifically relates to signal-transduction processes evoked by mechanical stimuli arising in the interstitial lung compartment when a small increase in extravascular volume occurs. We further hypothesize that a differential expression of MRs might also reflect the damage to precise components of the extracellular matrix caused by the perturbation in water balance and thus can trigger a molecule-oriented specific matrix remodelling.
Collapse
Affiliation(s)
- Paola Palestini
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Laura Botto
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Ilaria Rivolta
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| | - Giuseppe Miserocchi
- Department of Experimental Medicine, University of Milano-Bicocca, 48 Via Cadore, 20052 Monza, Italy
| |
Collapse
|
18
|
|
19
|
Larbi A, Cabreiro F, Zelba H, Marthandan S, Combet E, Friguet B, Petropoulos I, Barnett Y, Pawelec G. Reduced oxygen tension results in reduced human T cell proliferation and increased intracellular oxidative damage and susceptibility to apoptosis upon activation. Free Radic Biol Med 2010; 48:26-34. [PMID: 19796677 DOI: 10.1016/j.freeradbiomed.2009.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/25/2022]
Abstract
Cell culture and in vitro models are the basis for much biological research, especially in human immunology. Ex vivo studies of T cell physiology employ conditions attempting to mimic the in vivo situation as closely as possible. Despite improvements in controlling the cellular milieu in vitro, most of what is known about T cell behavior in vitro is derived from experiments on T cells exposed to much higher oxygen levels than are normal in vivo. In this study, we report a reduced proliferative response and increased apoptosis susceptibility after T cell activation at 2% oxygen compared to in air. To explain this observation, we tested the hypothesis of an impaired efficacy of intracellular protective mechanisms including antioxidant levels, oxidized protein repair (methionine sulfoxide reductases), and degradation (proteasome) activities. Indeed, after activation, there was a significant accumulation of intracellular oxidized proteins at more physiological oxygen levels concomitant with a reduced GSH:GSSG ratio. Proteasome and methionine sulfoxide reductase activities were also reduced. These data may explain the increased apoptotic rate observed at more physiological oxygen levels. Altogether, this study highlights the importance of controlling oxygen levels in culture when investigating oxygen-dependent phenomena such as oxidative stress.
Collapse
Affiliation(s)
- Anis Larbi
- Center for Medical Research, Tübingen Aging and Tumor Immunology Group, University of Tübingen, 72072 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Selected Abstracts from the Symposium on the Effects of Chronic Hypoxia on Diseases at High Altitude, August 2008, La Paz, Bolivia. Wilderness Environ Med 2009. [DOI: 10.1580/08-weme-sa-282.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Botto L, Laura B, Beretta E, Egidio B, Bulbarelli A, Alessandra B, Rivolta I, Ilaria R, Lettiero B, Barbara L, Leone BE, Eugenio LB, Miserocchi G, Giuseppe M, Palestini P, Paola P. Hypoxia-induced modifications in plasma membranes and lipid microdomains in A549 cells and primary human alveolar cells. J Cell Biochem 2009; 105:503-13. [PMID: 18636548 DOI: 10.1002/jcb.21850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We evaluated the response to mild hypoxia exposure of A549 alveolar human cells and of a continuous alveolar cell line from human excised lungs (A30) exposed to 5% O(2) for 5 and 24 h. No signs of increased peroxidation and of early apoptosis were detected. After 24 h of hypoxia total cell proteins/DNA ratio decreased significantly by about 20%. Similarly, we found a decrease in membrane phospholipid and cholesterol content. The membrane fluidity assessed by fluorescence anisotropy measurements was unchanged. We also prepared the detergent resistant membrane fraction (DRM) to analyze the distribution of the two types of lipid microdomains, caveolae and lipid rafts. The DRM content of Cav-1, marker of caveolae, was decreased, while CD55, marker of lipid rafts, increased in both cell lines. Total content of these markers in the membranes was unchanged indicating remodelling of their distribution between detergent-resistant and detergent-soluble fraction of the cellular membrane. The changes in protein markers distribution did not imply changes in the corresponding mRNA, except in the case of Cav-1 for A30 line. In the latter case we found a parallel decrease in Cav-1 and in the corresponding mRNA. We conclude that an exposure to a mild degree of hypoxia triggers a significant remodelling of the lipid microdomains expression, confirming that they are highly dynamic structures providing a prompt signalling platform to changes of the pericellular microenvironment.
Collapse
Affiliation(s)
- Laura Botto
- Department of Experimental Medicine (DIMS), University of Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Hypoxia is a potent stimulus for inflammation and remodeling. Hypoxia develops in chronic sinusitis as shown via tissue oxygen concentrations and colonization with obligate anaerobes. This hypoxia reflects occlusion of the sinus ostia and thereby failure of transepithelial oxygenation, nonvascularized exudates, and the tendency of inflammatory hyperplasia to exceed neovascularization. RECENT FINDINGS Hypoxia-induced transcription factors are responsible for transcription of numerous inflammatory cytokines and growth factors, including vascular endothelial growth factor, CXCL8, CCL11, transforming growth factor-beta, inducible nitric oxide synthase, as well as matrix remodeling proteins such as procollagen and matrix metalloproteinases. SUMMARY Many diseases, such as asthma, share the tendency to afflict respiratory epithelium of the lower (bronchi) and upper (sinus) airway. Although the histopathology and inflammation of asthma and its associated sinusitis share many features, aggressive fibrosis, polyp formation and intense hyperplasia are not features of asthma, a disease seldom associated with significant chronic hypoxia. In contrast, fibrosis is a cardinal feature of hypoxic diseases of the lungs such as interstitial lung diseases and primary pulmonary hypertension. Arguably, chronic sinusitis can be viewed as reflecting both 'asthma' and 'primary pulmonary hypertension' of the upper airway.
Collapse
|
23
|
Costello CM, Howell K, Cahill E, McBryan J, Konigshoff M, Eickelberg O, Gaine S, Martin F, McLoughlin P. Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 295:L272-84. [PMID: 18469115 DOI: 10.1152/ajplung.00358.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus we hypothesized that there are genes for which expression is altered selectively in the lung in response to alveolar hypoxia. Using a novel subtractive array strategy, we compared gene responses to hypoxia in primary human pulmonary microvascular endothelial cells (HMVEC-L) with those in cardiac microvascular endothelium and identified 90 genes (forming 9 clusters) differentially regulated in the lung endothelium. From one cluster, we confirmed that the bone morphogenetic protein (BMP) antagonist, gremlin 1, was upregulated in the hypoxic murine lung in vivo but was unchanged in five systemic organs. We also demonstrated that gremlin protein was significantly increased by hypoxia in vivo and inhibited HMVEC-L responses to BMP stimulation in vitro. Furthermore, significant upregulation of gremlin was measured in lungs of patients with pulmonary hypertensive disease. From a second cluster, we showed that CXC receptor 7, a receptor for the proangiogenic chemokine CXCL12, was selectively upregulated in the hypoxic lung in vivo, confirming that our subtractive strategy had successfully identified a second lung-selective hypoxia-responsive gene. We conclude that hypoxia, typical of that encountered in pulmonary disease, causes lung-specific alterations in gene expression. This gives new insights into the mechanisms of pulmonary hypertension and vascular loss in chronic lung disease and identifies gremlin 1 as a potentially important mediator of vascular changes in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Christine M Costello
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miserocchi G, Sancini G, Mantegazza F, Chiappino G. Translocation pathways for inhaled asbestos fibers. Environ Health 2008; 7:4. [PMID: 18218073 PMCID: PMC2265277 DOI: 10.1186/1476-069x-7-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 01/24/2008] [Indexed: 05/24/2023]
Abstract
We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 mum, diameter < 0.25 mum) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances.
Collapse
Affiliation(s)
- G Miserocchi
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - G Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - F Mantegazza
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20052, Monza, Italy
| | - Gerolamo Chiappino
- Clinic of Occupational Medicine and Research Centre of Inhaled Particles, University of Milano, Via San Barnaba, 8 – 20122 Milano, Italy
| |
Collapse
|
25
|
Pelosi P, Rocco PRM, Negrini D, Passi A. The extracellular matrix of the lung and its role in edema formation. AN ACAD BRAS CIENC 2007; 79:285-97. [PMID: 17625682 DOI: 10.1590/s0001-37652007000200010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/24/2007] [Indexed: 11/22/2022] Open
Abstract
The extracellular matrix is composed of a three-dimensional fiber mesh filled with different macromolecules such as: collagen (mainly type I and III), elastin, glycosaminoglycans, and proteoglycans. In the lung, the extracellular matrix has several functions which provide: 1) mechanical tensile and compressive strength and elasticity, 2) low mechanical tissue compliance contributing to the maintenance of normal interstitial fluid dynamics, 3) low resistive pathway for an effective gas exchange, d) control of cell behavior by the binding of growth factors, chemokines, cytokines and the interaction with cell-surface receptors, and e) tissue repair and remodeling. Fragmentation and disorganization of extracellular matrix components comprises the protective role of the extracellular matrix, leading to interstitial and eventually severe lung edema. Thus, once conditions of increased microvascular filtration are established, matrix remodeling proceeds fairly rapidly due to the activation of proteases. Conversely, a massive matrix deposition of collagen fiber decreases interstitial compliance and therefore makes the tissue safety factor stronger. As a result, changes in lung extracellular matrix significantly affect edema formation and distribution in the lung.
Collapse
Affiliation(s)
- Paolo Pelosi
- Servizio di Anestesia B, Department of Ambient, Health and Safety, University of Insubria, and Ospedale di Circolo e Fondazione Macchi, Varese, Italy.
| | | | | | | |
Collapse
|
26
|
Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. Eur J Cell Biol 2007; 87:147-61. [PMID: 18023499 DOI: 10.1016/j.ejcb.2007.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/06/2007] [Accepted: 10/08/2007] [Indexed: 11/21/2022] Open
Abstract
Leakiness of the endothelial bed is attributed to the over-perfusion of the pulmonary bed, which leads to high altitude pulmonary edema (HAPE). Inhalation of nitric oxide has been successfully employed to treat HAPE patients. We hypothesize that nitric oxide intervenes in the permeability of the pulmonary macrovascular endothelial bed to rectify the leaky bed under hypoxia. Our present work explores the underlying mechanism of 'hypoxia-mediated' endothelial malfunction by using human umbilical cord-derived immortalized endothelial cells, ECV-304, and bovine pulmonary artery primary endothelial cells. The leakiness of the endothelial monolayer was increased by two-fold under hypoxia in comparison to cells under normoxia, while optical tweezers-based tethering assays reported a higher membrane tension of endothelial cells under hypoxia. Phalloidin staining demonstrated depolymerization of F-actin stress fibers and highly polarized F-actin patterns in endothelial cells under hypoxia. Nitric oxide, 8-Br-cGMP and sildenafil citrate (phosphodiesterase type 5 inhibitor) led to recovery from hypoxia-induced leakiness of the endothelial monolayers. Results of the present study also suggest that 'hypoxia-induced' cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability under hypoxia. We conclude that nitric oxide-based recovery of hypoxia-induced leakiness of endothelial cells is a cyclic guanosine monophosphate (cGMP)-dependent phenomenon.
Collapse
|
27
|
Gonzalez-Gronow M, Kaczowka SJ, Payne S, Wang F, Gawdi G, Pizzo SV. Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel. J Biol Chem 2007; 282:32811-20. [PMID: 17848573 DOI: 10.1074/jbc.m703342200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both plasminogen fragments induce Ca(2+) signaling cascades; however, kringle 5 acts through voltage-dependent anion channel and microplasminogen does so via the glucose-regulated protein 78. Because trafficking of voltage-dependent anion channel to the cell surface is associated with heat shock proteins, we investigated a possible association between voltage-dependent anion channel and glucose-regulated protein 78 on the surface of 1-LN human prostate tumor cells. We demonstrate that these proteins co-localize, and changes in the expression of the glucoseregulated protein 78 affect the expression of voltage-dependent anion channel. To differentiate the functions of these receptor proteins, either when acting singly or as a complex, we employed human hexokinase I as a specific ligand for voltage-dependent anion channel, in addition to kringle 5. We show that kringle 5 inhibits 1-LN cell proliferation and promotes caspase-7 activity by a mechanism that requires binding to cell surface voltage-dependent anion channel and is inhibited by human hexokinase I.
Collapse
|
28
|
Beretta E, Gualtieri M, Botto L, Palestini P, Miserocchi G, Camatini M. Organic extract of tire debris causes localized damage in the plasma membrane of human lung epithelial cells. Toxicol Lett 2007; 173:191-200. [PMID: 17855028 DOI: 10.1016/j.toxlet.2007.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/28/2007] [Accepted: 07/31/2007] [Indexed: 11/30/2022]
Abstract
The potential toxicity of tire debris organic extracts on human alveolar epithelial cells (A549) was investigated. We analysed time- and dose dependent modifications produced on plasma membrane molecular composition and on lipid microdomains expression (caveolae and lipid rafts) that represent specific signalling platforms. Cells were exposed to increasing organic extract concentrations (10, 60 and 75mug/ml) for 24, 48 and 72h. An up to three fold dose and time dependent increase in specific protein markers of lipid microdomains was found, suggesting a corresponding increase in signalling platforms. Since the total pool of these plasma membrane markers was unchanged, we supposed that these proteins were translocated within the plasma membrane as to assemble the newly formed lipid microdomains. Despite no major modifications in lipid bilayer composition, a time- and dose dependent toxic effect was documented at 48h of exposure by an increase of cells positive to Trypan Blue assay. After 48h a dose dependent increase in the cell medium of the cytosolic enzyme lactate dehydrogenase was also observed, indicating greater damage of the plasma membrane as prenecrotic sign. The overall ultrastructural morphology of the plasma membrane of treated cells was not greatly modified, suggesting that organic extracts from tire debris cause focalized discontinuities on cell surfaces.
Collapse
Affiliation(s)
- E Beretta
- Department of Experimental Medicine, Via Cadore 48, 20052 Monza, University of Milano-Bicocca, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Department of Pediatrics, Developmental Lung Biology Laboratory, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|