1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ravaglia C, Vignigni G, Vizzuso A, Dubini A, Petrella E, Giampalma E, Maitan S, De Grauw AJ, Piciucchi S, Poletti V. Cone-Beam Computed Tomography Improves Location of Transbronchial Cryobiopsy in Interstitial Lung Disease with Limited Extent. Respiration 2024; 103:641-650. [PMID: 39074460 DOI: 10.1159/000540574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION Transbronchial lung cryobiopsy has been recommended as an acceptable alternative to surgical approach for making a histopathological diagnosis in patients with interstitial lung disease (ILD) of undetermined type. In limited diseases (especially if distributed along the subpleural region), sampling the specific area in which the pathological process is more represented could be challenging. Aim of the study was to determine the potential benefit of utilizing cone-beam computed tomography-guided cryobiopsy in patients with limited extent of ILD on CT scan and determine the single impact of each sequential biopsy progressively increasing the total number of biopsies. METHODS This study is a prospective analysis of patients with undetermined ILD and CT scan extent <15% undergoing cone-beam CT-guided cryobiopsy. Each biopsy sample was collected and processed individually and pathologic interpretations were performed sequentially with the pathologist reformulating a new report with the addition of each sample (cumulative yield). RESULTS Thirty six patients were enrolled. Pathological diagnostic yield was >90%, with almost 80% of diagnostic samples being the first one; when a second biopsy was performed, mean diagnostic yield increased with only a moderately significant difference. No severe adverse events were observed; pneumothorax was documented in 27.8% of the cases. CONCLUSION Sequential individual collection and pathologic interpretation of each biopsy sample has confirmed the possibility of obtaining a diagnostic specimen at the first pass if transbronchial cryobiopsy is performed under cone-beam CT.
Collapse
Affiliation(s)
- Claudia Ravaglia
- Department of Medical and Surgical Sciences (DIMEC), Bologna University, Pulmonology Unit, G.B. Morgagni Hospital, Forlì, Italy
| | | | | | | | | | | | - Stefano Maitan
- Intensive Care Unit, G.B. Morgagni Hospital, Forlì, Italy
| | | | | | - Venerino Poletti
- Department of Medical and Surgical Sciences (DIMEC), Bologna University, Pulmonology Unit, G.B. Morgagni Hospital, Forlì, Italy
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Joannes A, Voisin T, Morzadec C, Letellier A, Gutierrez FL, Chiforeanu DC, Le Naoures C, Guillot S, De Latour BR, Rouze S, Jaillet M, Crestani B, Wollin L, Jouneau S, Vernhet L. Anti-fibrotic effects of nintedanib on lung fibroblasts derived from patients with Progressive Fibrosing Interstitial Lung Diseases (PF-ILDs). Pulm Pharmacol Ther 2023; 83:102267. [PMID: 37972706 DOI: 10.1016/j.pupt.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase inhibitor nintedanib has been recently approved for the treatment of Interstitial Lung Diseases (ILDs) that manifest a progressive fibrosis phenotype other than Idiopathic pulmonary Fibrosis (IPF). Nintedanib reduces the development of lung fibrosis in various animal models resembling features of PF-ILD and in vitro, it inhibits the fibrosing phenotype of human lung fibroblasts (HLFs) isolated from patients with IPF. To get insight on the cellular and molecular mechanisms that drive the clinical efficiency of nintedanib in patients with non-IPF PF-ILD, we investigated its effects on the fibrosing functions of HLFs derived from patients with PF-hypersensitivity pneumonitis (PF-HP, n = 7), PF-sarcoidosis (n = 5) and pleuroparenchymal fibroelastosis (PPFE, n = 4). HLFs were treated with nintedanib (10 nM-1 μM) and then stimulated with PDGF-BB (25-50 ng/ml) or TGF-β1 (1 ng/ml) for 24-72 h to assess proliferation and migration or differentiation. At nanomolar concentrations, nintedanib reduced the levels of PDGF receptor and ERK1/2 phosphorylation, the proliferation and the migration of PF-HP, PF-sarcoidosis and PPFE HLFs stimulated with PDGF-BB. Moreover, nintedanib also attenuates the myofibroblastic differentiation driven by TGF-β1 but only when it is used at 1 μM. The drug reduced the phosphorylation of SMAD2/3 and decreased the induction of collagen, fibronectin and α-smooth muscle actin expression induced by TGF-β1. In conclusion, our results demonstrate that nintedanib counteracts fundamental fibrosing functions of lung fibroblasts derived from patients with PF-HP, PF-sarcoidosis and PPFE, at concentrations previously reported to inhibit control and IPF HLFs. Such effects may contribute to its clinical benefit in patients suffering from these irreversible ILDs.
Collapse
Affiliation(s)
- Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Tom Voisin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Alice Letellier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | | | | | - Cécile Le Naoures
- Department of Pathology and Cytology, Rennes University Hospital, 35033, Rennes, France
| | - Stéphanie Guillot
- Department of Respiratory Physiology, Rennes University Hospital, 35033, Rennes, France
| | | | - Simon Rouze
- Department of Thoracic, Cardiac and Vascular Surgery, Rennes University Hospital, 35033, Rennes, France
| | - Madeleine Jaillet
- Faculté de Médecine Xavier Bichat, Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France
| | - Bruno Crestani
- Faculté de Médecine Xavier Bichat, Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; Department of Pulmonology, AP-HP, Hôpital Bichat, FHU APOLLO, Inserm 1152, University of Paris, Paris, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co, KG, Biberach an der Riss, Germany
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Disease, Rennes University Hospital, 35033, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
4
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
5
|
Kurihara C, Sakurai R, Chuang TD, Waring AJ, Walther FJ, Rehan VK. Combination of pioglitazone, a PPARγ agonist, and synthetic surfactant B-YL prevents hyperoxia-induced lung injury in adult mice lung explants. Pulm Pharmacol Ther 2023; 80:102209. [PMID: 36907545 PMCID: PMC10205668 DOI: 10.1016/j.pupt.2023.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
INTRODUCTION Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-β signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates β-catenin and LEF-1) and TGF-β (upregulation of key TGF-β signaling intermediates TGF-β type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1β, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.
Collapse
Affiliation(s)
- Chie Kurihara
- Harbor-UCLA Medical Center, Department of Pediatrics, Torrance, CA, USA; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Reiko Sakurai
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Frans J Walther
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Virender K Rehan
- Harbor-UCLA Medical Center, Department of Pediatrics, Torrance, CA, USA; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
6
|
Lebel M, Cliche DO, Charbonneau M, Adam D, Brochiero E, Dubois CM, Cantin AM. Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 24:ijms24010499. [PMID: 36613948 PMCID: PMC9820272 DOI: 10.3390/ijms24010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Dominic O. Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - André M. Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +819-346-1110 (ext. 14881)
| |
Collapse
|
7
|
Duhig EE. Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology 2022; 54:517-525. [PMID: 35778287 DOI: 10.1016/j.pathol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) and its histological counterpart, usual interstitial pneumonia (UIP) remains debated. IPF/UIP is a disease characterised by respiratory restriction, and while there have been recent advances in treatment, mortality remains high. Genetic and environmental factors predispose to its development and aberrant alveolar repair is thought to be central. Following alveolar injury, the type II pneumocyte (AEC2) replaces the damaged thin type I pneumocytes. Despite the interstitial fibroblast being considered instrumental in formation of the fibrosis, there has been little consideration for a role for AEC2 in the repair of the septal interstitium. Elastin is a complex protein that conveys flexibility and recoil to the lung. The fibroblast is presumed to produce elastin but there is evidence that the AEC2 may have a role in production or deposition. While the lung is an elastic organ, the role of elastin in repair of lung injury and its possible role in UIP has not been explored in depth. In this paper, pathogenetic mechanisms of UIP involving AEC2 and elastin are reviewed and the possible role of AEC2 in elastin generation is proposed.
Collapse
Affiliation(s)
- Edwina E Duhig
- Sullivan Nicolaides Pathology, The John Flynn Hospital, Tugun, Qld, Australia; UQ Thoracic Research Centre, The Prince Charles Hospital, Chermside, Qld, Australia; Faculty of Medicine, The University of Queensland, Herston, Qld, Australia.
| |
Collapse
|
8
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
9
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
10
|
Joannes A, Morzadec C, Duclos M, Gutierrez FL, Chiforeanu DC, Le Naoures C, De Latour B, Rouzé S, Wollin L, Jouneau S, Vernhet L. Arsenic trioxide inhibits the functions of lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Toxicol Appl Pharmacol 2022; 441:115972. [PMID: 35276128 DOI: 10.1016/j.taap.2022.115972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease. Currently, no treatment can block or reverse the development of lung fibrosis in patients suffering from IPF. Recent studies indicate that arsenic trioxide (ATO), a safe, effective anti-cancer pro-oxidant drug, prevents the differentiation of normal human lung fibroblasts (NHLFs) in vitro and reduces experimental pulmonary fibrosis in vivo. In this context, we investigated the anti-fibrotic effects of ATO on the main fibrosis functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and non-IPF (control) HLFs were incubated with 0.01-1 μM ATO and stimulated with pro-fibrotic factors (PDGF-BB or TGF-β1). We measured their rates of proliferation, migration and differentiation and the cell stress response triggered by ATO. ATO did not affect cell viability but strongly inhibited the proliferation and migration of PDGF-BB-stimulated IPF and control HLFs. ATO also prevented myofibroblastic differentiation, as assessed by the expression of α-smooth muscle actin (α-SMA) and collagen-1, and the phosphorylation of SMAD2/3 in TGF-β1-stimulated HLFs. These antifibrotic effects were associated with increased expression of the transcription factor NRF2 and its target genes NQO1 and HMOX1. Genetic silencing of NRF2 inhibited the ATO-induced cell stress response but did not prevent the ATO-dependent inhibition of α-SMA expression in TGF-β1-stimulated HLFs. The results demonstrate that ATO, at concentrations similar to exposure in blood plasma of ATO-treated cancer patients, counteracted pro-fibrotic activities of HLFs from IPF patients. We propose to consider ATO for clinical exploration to define the therapeutic potential in patients with IPF.
Collapse
Affiliation(s)
- Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Maëla Duclos
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | | | - Cécile Le Naoures
- Department of Pathology and Cytology, Rennes University Hospital, 35033 Rennes, France
| | - Bertrand De Latour
- Department of Thoracic, Cardiac and Vascular Surgery, Rennes University Hospital, 35033 Rennes, France
| | - Simon Rouzé
- Department of Thoracic, Cardiac and Vascular Surgery, Rennes University Hospital, 35033 Rennes, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co, KG, Biberach an der Riss, Germany
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Disease, Rennes University Hospital, 35033, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
11
|
Kronborg-White S, Madsen LB, Bendstrup E, Poletti V. PD-L1 Expression in Patients with Idiopathic Pulmonary Fibrosis. J Clin Med 2021; 10:jcm10235562. [PMID: 34884264 PMCID: PMC8658518 DOI: 10.3390/jcm10235562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is the most common and severe form within the group of idiopathic interstitial pneumonias. It is characterized by repetitive alveolar injury in genetically susceptible individuals and abnormal wound healing, leading to dysregulated bronchiolar proliferation and excessive deposition of extracellular matrix, causing complete architectural distortion and fibrosis. Epithelial-to-mesenchymal transition is considered an important pathogenic event, a phenomenon also observed in various malignant neoplasms, in which tumor cells express programmed death-ligand one (PD-L1). The aim of this study was to assess the presence of PD-L1 in patients with IPF and other interstitial lung diseases (ILDs). Method: Patients with a clinically and radiologically suspected idiopathic interstitial pneumonia or other ILDs undergoing transbronchial cryobiopsy to confirm the diagnosis at the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, were included in this prospective observational study. Cellular membrane PD-L1 expression in epithelial cells was determined using the DAKO PD-L1 IHC 22C3 PharmDx Kit. Results: Membrane-bound PD-L1 (mPD-L1) was found in twelve (28%) of the forty-three patients with IPF and in five (9%) of the fifty-five patients with other ILDs (p = 0.015). When adjusting for age, gender and smoking status, the odds ratio of having IPF when expressing mPD-L1 in alveolar and/or bronchiolar epithelial cells was 4.3 (CI: 1.3–14.3). Conclusion: Expression of mPD-L1 in epithelial cells in the lung parenchymal zones was detected in a consistent subgroup of patients with IPF compared to other interstitial pneumonias. Larger studies are needed to explore the role of mPD-L1 in patients with IPF.
Collapse
Affiliation(s)
- Sissel Kronborg-White
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
- Correspondence:
| | - Line Bille Madsen
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
| | - Venerino Poletti
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.B.); (V.P.)
- Department of the Diseases of the Thorax, Ospedale Morgagni, University of Bologna, 47121 Forli, Italy
| |
Collapse
|
12
|
Connective Tissue Growth Factor Single Nucleotide Polymorphisms in (Familial) Pulmonary Fibrosis and Connective Tissue Disease Associated Interstitial Lung Disease. Lung 2021; 199:659-666. [PMID: 34812907 DOI: 10.1007/s00408-021-00494-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/31/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Connective tissue growth factor (CTGF) is an important mediator in fibrotic disease. Single nucleotide polymorphisms (SNPs) in CTGF have been found to be associated with different fibrotic diseases and CTGF protein was found to be upregulated in lung tissue, bronchoalveolar lavage cells, and plasma of idiopathic pulmonary fibrosis (IPF) patients. We investigated whether genetic variants predispose to sporadic IPF (spIPF), familial pulmonary fibrosis (FPF), and connective tissue disease associated ILD (CTD-ILD). METHODS In total, 294 patients with spIPF and 294 healthy individuals were genotyped for CTGF rs12526196, rs9402373, rs6918698, and rs9399005. For replication of CTGF rs6918698 findings in pulmonary fibrosis, 128 patients with FPF, 125 with CTD-ILD, and an independent control cohort of 130 individuals were included. Lung tissue of 6 IPF patients was stained for CTGF to assess pulmonary localization. RESULTS Of the four SNPs, only the minor allele frequency (MAF) of CTGF rs6918698 deviated between spIPF (MAF 0.41) and controls (MAF 0.47; OR 0.774 (0.615-0.975); p = 0.030). Further comparison of CTGF rs6918698G showed a difference between FPF (MAF 0.33) and controls (MAF 0.48; OR 0.545 (0.382-0.778); p = 0.001), but not with CTD-ILD. CTGF was localized in alveolar and bronchiolar epithelium, alveolar macrophages, myofibroblasts and endothelium and highly expressed in the basal cell layer of sandwich foci. CONCLUSION CTGF rs6918698G associates with spIPF and with FPF, but not with CTD-ILD in a Dutch cohort. CTGF is localized in lung tissue involved in IPF pathogenesis. Further research into the role of this SNP on CTGF expression and fibrogenesis is warranted.
Collapse
|
13
|
Renzoni EA, Poletti V, Mackintosh JA. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 2021; 398:1437-1449. [PMID: 34499865 DOI: 10.1016/s0140-6736(21)01961-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
The interstitial pneumonias comprise a diverse group of diseases that are typically defined by their cause (either idiopathic or non-idiopathic) and their distinct histopathological features, for which radiology, in the form of high-resolution CT, is often used as a surrogate. One trend, fuelled by the failure of conventional therapies in a subset of patients and the broad-spectrum use of antifibrotic therapies, has been the focus on the progressive fibrosing phenotype of interstitial lung disease. The histological pattern, known as usual interstitial pneumonia, is the archetype of progressive fibrosis. However, it is clear that progressive fibrosis is not exclusive to this histological entity. Techniques including immunohistochemistry and single-cell RNA sequencing are providing pathogenetic insights and, if integrated with traditional histopathology, are likely to have an effect on the pathological classification of interstitial lung disease. This review, which focuses on the histopathology of interstitial lung disease and its relationship with progressive fibrosis, asks the question: is it all about usual interstitial pneumonia?
Collapse
Affiliation(s)
- Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK; Margaret Turner Warwick Centre for Fibrosing Lung Diseases, National Heart and Lung Institute, Imperial College London, London, UK
| | - Venerino Poletti
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Thoracic Diseases Department, GB Morgagni Hospital/University of Bologna, Forlì, Italy
| | - John A Mackintosh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Nathan S, Zhang H, Andreoli M, Leopold PL, Crystal RG. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir Res 2021; 22:97. [PMID: 33794877 PMCID: PMC8015171 DOI: 10.1186/s12931-021-01677-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023] Open
Abstract
Background Lysophosphatidic acid (LPA), generated extracellularly by the action of autotaxin and phospholipase A2, functions through LPA receptors (LPARs) or sphingosine-1-phosphate receptors (S1PRs) to induce pro-fibrotic signaling in the lower respiratory tract of patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that LPA induces changes in small airway epithelial (SAE) basal cells (BC) that create cross-talk between the BC and normal human lung fibroblasts (NHLF), enhancing myofibroblast formation. Methods To assess LPA-induced signaling, BC were treated with LPA for 2.5 min and cell lysates were analyzed by phosphokinase array and Western blot. To assess transcriptional changes, BC were treated with LPA for 3 h and harvested for collection and analysis of RNA by quantitative polymerase chain reaction (qPCR). To assess signaling protein production and function, BC were washed thoroughly after LPA treatment and incubated for 24 h before collection for protein analysis by ELISA or functional analysis by transfer of conditioned medium to NHLF cultures. Transcription, protein production, and proliferation of NHLF were assessed. Results LPA treatment induced signaling by cAMP response element-binding protein (CREB), extracellular signal-related kinases 1 and 2 (Erk1/2), and epithelial growth factor receptor (EGFR) resulting in elevated expression of connective tissue growth factor (CTGF), endothelin-1 (EDN1/ET-1 protein), and platelet derived growth factor B (PDGFB) at the mRNA and protein levels. The conditioned medium from LPA-treated BC induced NHLF proliferation and increased NHLF expression of collagen I (COL1A1), smooth muscle actin (ACTA2), and autotaxin (ENPP2) at the mRNA and protein levels. Increased autotaxin secretion from NHLF correlated with increased LPA in the NHLF culture medium. Inhibition of CREB signaling blocked LPA-induced changes in BC transcription and translation as well as the pro-fibrotic effects of the conditioned medium on NHLF. Conclusion Inhibition of CREB signaling may represent a novel target for alleviating the LPA-induced pro-fibrotic feedback loop between SAE BC and NHLF. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01677-0.
Collapse
Affiliation(s)
- Shyam Nathan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Mirko Andreoli
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
16
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
17
|
Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: components and modifiers. FEBS J 2020; 287:2636-2646. [PMID: 32145148 DOI: 10.1111/febs.15282] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/25/2019] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
The extracellular matrix (ECM) is a key noncellular component in all organs and tissues. It is composed of a large number of proteins including collagens, glycoproteins (GP), and ECM-associated proteins, which show diversity of biochemical and biophysical functions. The ECM is dynamic both in normal physiology of tissues and under pathological conditions. One cellular phenomenon associated with changes in both ECM components expression and in ECM remodeling enzymes secretion is cellular senescence. It represents a stable state form of cell cycle arrest induced in proliferating cells by various forms of stress. Short-term induction of senescence is essential for tumor suppression and tissue repair. However, long-term presence of senescent cells in tissues may have a detrimental role in promoting tissue damage and aging. Up to date, there is insufficient knowledge about the interplay between the ECM and senescence cells. Since changes in the ECM occur in many physiological and pathological conditions in which senescent cells are present, a better understanding of ECM-senescence interactions is necessary. Here, we will review the functions of the different ECM components and will discuss the current knowledge about their regulation in senescent cells and their influence on the senescence state.
Collapse
Affiliation(s)
- Naama Levi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nurit Papismadov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Solomonov
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Kinoshita T, Goto T. Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review. Int J Mol Sci 2019; 20:ijms20061461. [PMID: 30909462 PMCID: PMC6471841 DOI: 10.3390/ijms20061461] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs. Despite the increasing research interest in the pathogenesis of IPF, unfavorable survival rates remain associated with this condition. Recently, novel therapeutic agents have been shown to control the progression of IPF. However, these drugs do not improve lung function and have not been tested prospectively in patients with IPF and coexisting lung cancer, which is a common comorbidity of IPF. Optimal management of patients with IPF and lung cancer requires understanding of pathogenic mechanisms and molecular pathways that are common to both diseases. This review article reflects the current state of knowledge regarding the pathogenesis of pulmonary fibrosis and summarizes the pathways that are common to IPF and lung cancer by focusing on the molecular mechanisms.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 1608582, Japan.
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi 4008506, Japan.
| |
Collapse
|
19
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
20
|
Hindman B, Ma Q. Carbon nanotubes and crystalline silica induce matrix remodeling and contraction by stimulating myofibroblast transformation in a three-dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity. Arch Toxicol 2018; 92:3291-3305. [PMID: 30229330 DOI: 10.1007/s00204-018-2306-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis is a poorly understood pathologic condition. Carbon nanotubes (CNTs) are nanomaterials with potentials for broad applications. CNTs can induce pulmonary fibrosis in animals, a cause for concern for exposed workers and consumers. Given the large number of CNTs available on the market and the seemingly infinite number of ways these particles can be modified in ways that may affect toxicity, in vitro models that can be used to quickly and effectively investigate the relative fibrogenicity of CNTs are much needed. Here we analyzed the fibrogenic potentials of six CNTs of varying physical properties and crystalline silica using two- and three-dimensional (2D and 3D, respectively) in vitro models. WI38-VA13 human pulmonary fibroblasts were treated with CNTs or silica, with TGF-β1, a known inducer of fibroblast differentiation, as positive control. The cells were examined for fibrotic matrix alterations, including myofibroblast transformation, matrix remodeling, and matrix contraction. While all tested CNTs induced myofibroblast differentiation in 2D and 3D cultures, the 3D culture allowed the examination of myofibroblast clustering, collagen deposition and rearrangement, cell division, and matrix contraction in response to fibrogenic exposures, processes critical for fibrosis in vivo. At 1 µg/ml, MWCNTs elicit higher induction of myofibroblast differentiation and matrix remodeling than SWCNTs. Among MWCNTs, those with the highest and lowest aspect ratios produced the largest effects, which were comparable to those by TGF-β1 and higher than those by silica. Thus, the 3D collagen-based model enables the study of matrix fibrotic processes induced by CNTs and silica particles directly and effectively.
Collapse
Affiliation(s)
- Bridget Hindman
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.
| |
Collapse
|
21
|
Increased Levels of Free Circulating Dna in Patients with Idiopathic Pulmonary Fibrosis. Int J Biol Markers 2018. [DOI: 10.5301/jbm.2010.6115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is difficult to diagnose because of numerous interstitial lung diseases with similar symptoms. As serum DNA has proven useful for early lung cancer detection, we aimed to define the relevance of this marker in discriminating IPF from other fibrotic and nonfibrotic/nonmalignant lung diseases. DNA was quantified in 191 subjects: 64 healthy individuals, 58 patients with IPF, 17 patients with nonspecific pulmonary fibrosis (13 idiopathic nonspecific interstitial pneumonia, 4 chronic hypersensitivity pneumonitis), and 52 patients with other diffuse/nonmalignant lung diseases. The median value of free DNA in IPF patients was 61.1 ng/mL (range 7.1–405), which was significantly higher than that of healthy donors (median 6.8, range 2.2–184) (p<0.001) and that of patients with other diffuse/nonmalignant lung diseases (median 28.0, range 4.2–281) (p=0.004). The area under the ROC curve was 0.926 (95% CI 0.879–0.973) when IPF patients were compared with healthy donors, and 0.702 (95% CI 0.609–0.796) when a comparison was made with non-IPF pulmonary diseases. In conclusion, we observed significantly higher levels of free circulating DNA in patients with IPF than in those with other fibrotic or diffuse/nonmalignant lung diseases.
Collapse
|
22
|
Rodriguez LR, Emblom-Callahan M, Chhina M, Bui S, Aljeburry B, Tran LH, Novak R, Lemma M, Nathan SD, Grant GM. Global Gene Expression Analysis in an in vitro Fibroblast Model of Idiopathic Pulmonary Fibrosis Reveals Potential Role for CXCL14/CXCR4. Sci Rep 2018; 8:3983. [PMID: 29507348 PMCID: PMC5838110 DOI: 10.1038/s41598-018-21889-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressive disorder that is marked by an over accumulation of activated fibroblast populations. Despite the improved understanding of many mechanisms within this disease, global gene expression analysis has few focused studies on the fibroblast, the central effector cell of progressive fibrosis. We present a unique analysis of IPF pulmonary fibroblasts as they transition through cell culture and identify in vitro altered cellular processes. Fibroblasts were isolated from diseased (n = 8) and non-diseased (n = 4) lungs. Global gene expression analysis was carried out at the initial point of isolation and after 3 weeks of culture. We identify several genes that are altered by removal of the fibroblast from the IPF environment. Comparison of this subset of genes to four previously published whole lung analyses refined our list to a small subset of key fibroblast specific genes important in IPF. Application of STRING database analysis and confirmation via in-vitro and histological assay highlights the CXCL14/CXCR4 chemokine axis with a possible role in the progression and/or activation of fibroblasts within the IPF lung. Our findings, present a possible therapeutic target for IPF and a model for the study and discovery of novel protein and processes in this terrible disease.
Collapse
Affiliation(s)
- Luis R Rodriguez
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | | | - Mantej Chhina
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | - Sarah Bui
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | - Bilal Aljeburry
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | - Luc H Tran
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | - Rebecca Novak
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | - Merte Lemma
- Inova Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Steven D Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Geraldine M Grant
- Department of Biology, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA.
| |
Collapse
|
23
|
Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 2018; 128:45-53. [PMID: 29293088 DOI: 10.1172/jci93557] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is dynamically tuned to optimize physiological function. Its major properties, including composition and mechanics, profoundly influence cell biology. Cell-ECM interactions operate through an integrated set of sensor and effector circuits that use several classes of receptors and signal transduction pathways. At the single-cell level, the ECM governs differentiation, metabolism, motility, orientation, proliferation, and survival. At the cell population level, the ECM provides higher-order guidance that is essential for physiological function. When pathological changes in the ECM lead to impairment of organ function, we use the term "fibrosis." In this Review, we differentiate fibrosis initiation from progression and focus primarily on progressive lung fibrosis impairing organ function. We present a working model to explain how the altered ECM is not only a consequence but also a driver of fibrosis. Additionally, we advance the concept that fibrosis progression occurs in a fibrogenic niche that is composed of a fibrogenic ECM that nurtures fibrogenic mesenchymal progenitor cells and their fibrogenic progeny.
Collapse
|
24
|
Caliò A, Lever V, Rossi A, Gilioli E, Brunelli M, Dubini A, Tomassetti S, Piciucchi S, Nottegar A, Rossi G, Kambouchner M, Cancellieri A, Barbareschi M, Pelosi G, Doglioni C, Cavazza A, Carella R, Graziano P, Murer B, Poletti V, Chilosi M. Increased frequency of bronchiolar histotypes in lung carcinomas associated with idiopathic pulmonary fibrosis. Histopathology 2017; 71:725-735. [PMID: 28556957 DOI: 10.1111/his.13269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
AIMS The association between lung cancer and idiopathic pulmonary fibrosis (IPF) is well known, but the significance of this association is poorly understood. Bronchiolar honeycomb cysts have been proposed as possible precursors for the development of carcinoma, but limited evidence in support of this hypothesis is available. The aim of this study was to investigate this hypothesis analysing a series of carcinomas arising in IPF by immunohistochemistry. METHODS AND RESULTS Thirty-three lung carcinomas arising in patients with IPF were analysed with a panel of immunohistochemical markers. The antibodies included those against pneumocyte markers [thyroid transcription factor 1 (TTF1), napsin-A, and surfactant protein A], the goblet cell marker mucin 5AC, markers of basal/squamous cell differentiation [cytokeratin (CK) 5/6 and ΔN-p63], and markers related to enteric differentiation (CDX2, mucin 2, CK20, and villin). A series of 100 consecutive lung adenocarcinomas arising in smokers without IPF were investigated as controls. All carcinomas arising in IPF patients were peripherally located on imaging analysis. The diagnoses were: eight squamous cell carcinomas, 20 adenocarcinomas, three small-cell carcinomas (including one composite small-cell carcinoma and adenocarcinoma), and two large-cell carcinomas. Among adenocarcinomas, a 'pneumocyte' profile (TTF1/napsin-A/SPA1-triple-positive) was observed in seven of 20 (35% versus 84% in non-IPF controls, P = 0.0001). The remaining 13 adenocarcinomas (65%) showed rare histotypes: four invasive mucinous adenocarcinomas (20% in IPF patients versus 1% in non-IPF controls, P = 0.002), seven tumours (35%) that were characterized by variable expression of markers of enteric differentiation, and two tumours (10%) that showed a peculiar basaloid component. CONCLUSIONS The immunohistochemical characterization of carcinomas arising in IPF patients shows striking divergence from that in non-IPF smokers. The prevalence of rare entities showing bronchiole-related markers is in line with the hypothesis that these tumours arise from transformed small airways in honeycomb lung areas where abnormal bronchiolar proliferation takes place.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Veronica Lever
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Andrea Rossi
- Department of Pneumology AOUI, University of Verona, Verona, Italy
| | - Eliana Gilioli
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | | | | | | | - Alessia Nottegar
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Giulio Rossi
- Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | | | | | | | | | | | - Alberto Cavazza
- Department of Pathology, Arcispedale S. Maria Nuova/I.R.C.C.S., Reggio Emilia, Italy
| | | | - Paolo Graziano
- Department of Pathology, San Giovanni Rotondo Hospital, San Giovanni Rotondo, Italy
| | - Bruno Murer
- Department of Pathology, Mestre Hospital, Mestre, Italy
| | | | - Marco Chilosi
- Department of Pathology AOUI, University of Verona, Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| |
Collapse
|
25
|
Habiel DM, Hogaboam CM. Heterogeneity of Fibroblasts and Myofibroblasts in Pulmonary Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017; 5:101-110. [PMID: 29082111 PMCID: PMC5654579 DOI: 10.1007/s40139-017-0134-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Idiopathic Pulmonary Fibrosis (IPF) is the most common form of interstitial lung diseases of unknown eathiopathogenesis, mean survival of 3-5 years and limited therapeutics. Characterized by a loss of alveolar type II epithelial cells and aberrant activation of stromal cells, considerable effort was undertaken to characterize the origin and activation mechanisms of fibroblasts and myofibroblasts in IPF lungs. In this review, the origin and contribution of fibroblast and myofibroblasts in lung fibrosis will be summarized. RECENT FINDINGS Lineage tracing experiments suggested that interstitial lung fibroblasts and lipofibroblasts, pericytes and mesothelial cells differentiate into myofibroblasts. However, epithelial and bone marrow derived cells may give rise to collagen expressing fibroblasts but do not differentiate into myofibroblasts. SUMMARY There is great heterogeneity in fibroblasts and myofibroblasts in fibrotic lungs. Further, there is evidence for the expansion of pericyte derived myofibroblasts and loss of lipofibroblasts and lipofibroblast derived myofibroblasts in IPF.
Collapse
Affiliation(s)
- David M. Habiel
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Cory M. Hogaboam
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
26
|
Ahmed Abdi B, Lopez H, Karrar S, Renzoni E, Wells A, Tam A, Etomi O, Hsuan JJ, Martin GR, Shiwen X, Denton CP, Abraham D, Stratton R. Use of Patterned Collagen Coated Slides to Study Normal and Scleroderma Lung Fibroblast Migration. Sci Rep 2017; 7:2628. [PMID: 28572686 PMCID: PMC5453993 DOI: 10.1038/s41598-017-02621-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 11/09/2022] Open
Abstract
Systemic sclerosis (SSc) is a spreading fibrotic disease affecting the skin and internal organs. We aimed to model pathogenic fibroblast migration in SSc in order to identify enhancing factors, measure the effect of migrating cells on underlying extracellular matrix (ECM) and test possible therapeutic inhibitors. Novel patterned collagen substrates were used to investigate alignment and migration of skin and lung fibroblasts from SSc patients and healthy controls. Normal lung but not skin fibroblasts consistently elongated and aligned with underlying collagen and migrated dependent on PDGF or serum. SSc lung fibroblasts remained growth factor dependent, did not migrate more rapidly and were less restricted to alignment of the collagen. Multiple collagen proline and lysine-modifying enzymes were identified in SSc but not control fibroblast extracellular matrix preparations, indicating differential levels of ECM modification by the diseased cells. Profiling of migrating cells revealed a possible SCF/c-Kit paracrine mechanism contributing to migration via a subpopulation of cells. Heparin, which binds ligands including PDGF and SCF, and imatininib which blocks downstream tyrosine kinase receptors, both inhibited lung fibroblast migration individually but showed synergy in SSc cells. Pathologic lung fibroblasts from SSc patients modify ECM during migration but remain growth factor dependent and sensitive to inhibitors.
Collapse
Affiliation(s)
- Bahja Ahmed Abdi
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
| | - Henry Lopez
- MuriGenics, Inc., 941 Railroad Avenue, Vallejo, CA, 94592, USA
| | - Sarah Karrar
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Elisabetta Renzoni
- Imperial College London, Royal Brompton Campus, Sydney Street, London, SW3 6NP, UK
| | - Athol Wells
- Imperial College London, Royal Brompton Campus, Sydney Street, London, SW3 6NP, UK
| | - Angela Tam
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Oseme Etomi
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - J Justin Hsuan
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College Medical School Rowland Hill Street, London, NW3 2PF, UK
| | - George R Martin
- MuriGenics, Inc., 941 Railroad Avenue, Vallejo, CA, 94592, USA
| | - Xu Shiwen
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Disease, Royal Free Hospital Campus, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
27
|
Ding Q, Subramanian I, Luckhardt TR, Che P, Waghray M, Zhao XK, Bone N, Kurundkar AR, Hecker L, Hu M, Zhou Y, Horowitz JC, Vittal R, Thannickal VJ. Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-β. Am J Physiol Lung Cell Mol Physiol 2017; 312:L926-L935. [PMID: 28360109 DOI: 10.1152/ajplung.00121.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial cell (AEC) injury and apoptosis are prominent pathological features of idiopathic pulmonary fibrosis (IPF). There is evidence of AEC plasticity in lung injury repair response and in IPF. In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-β1 (TGF-β1). Rat type II alveolar epithelial cells (RLE-6TN) were treated with or without TGF-β1, and the expressions of mesenchymal markers, phenotype, and function were analyzed. Pharmacological protein kinase inhibitors were utilized to screen for SMAD-dependent and -independent pathways. SMAD and FAK signaling was analyzed using siRNA knockdown, inhibitors, and expression of a mutant construct of FAK. Apoptosis was measured using cleaved caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. TGF-β1 induced the acquisition of mesenchymal markers, including α-smooth muscle actin, in RLE-6TN cells and enhanced the contraction of three-dimensional collagen gels. This phenotypical transition or plasticity, epithelial-myofibroblast plasticity (EMP), is dependent on SMAD3 and FAK signaling. FAK activation was found to be dependent on ALK5/SMAD3 signaling. We observed that TGF-β1 induces both EMP and apoptosis in the same cell culture system but not in the same cell. While blockade of SMAD signaling inhibited EMP, it had a minimal effect on apoptosis; in contrast, inhibition of FAK signaling markedly shifted to an apoptotic fate. The data support that FAK activation determines whether AECs undergo EMP vs. apoptosis in response to TGF-β1 stimulation. TGF-β1-induced EMP is FAK- dependent, whereas TGF-β1-induced apoptosis is favored when FAK signaling is inhibited.
Collapse
Affiliation(s)
- Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama;
| | - Indhu Subramanian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Alameda Health System, Oakland, California
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Pulin Che
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meghna Waghray
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xue-Ke Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China; and
| | - Nathaniel Bone
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Louise Hecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meng Hu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Predescu SA, Zhang J, Bardita C, Patel M, Godbole V, Predescu DN. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein. Front Physiol 2017; 8:128. [PMID: 28352235 PMCID: PMC5348516 DOI: 10.3389/fphys.2017.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Jian Zhang
- Department of Biological Sciences, Columbia University New York, NY, USA
| | - Cristina Bardita
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Monal Patel
- Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Varun Godbole
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Dan N Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| |
Collapse
|
29
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
30
|
Chilosi M, Caliò A, Rossi A, Gilioli E, Pedica F, Montagna L, Pedron S, Confalonieri M, Doglioni C, Ziesche R, Grubinger M, Mikulits W, Poletti V. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol 2017; 30:26-38. [PMID: 27586205 DOI: 10.1038/modpathol.2016.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tubβ3, and β-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tubβ3, ZEB1, and β-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.
Collapse
Affiliation(s)
- Marco Chilosi
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Anna Caliò
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Andrea Rossi
- Pulmonary Division, University and Hospital Trust, Verona, Italy
| | - Eliana Gilioli
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Federica Pedica
- Anatomic Pathology, University and Hospital Trust, Verona, Italy.,Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Licia Montagna
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Serena Pedron
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Marco Confalonieri
- Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Rolf Ziesche
- Department of Pulmonary Medicine, Department of Medicine-II University of Wien, Vienna, Austria
| | - Markus Grubinger
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Venerino Poletti
- Pulmonology Unit, Department of Thoracic Diseases, GB Morgagni-L Pierantoni Hospital, Forlì, Italy.,Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
31
|
Abstract
The lung is constantly exposed to airborne infectious agents due to the large surface area of approximately 100 m2. Therefore pneumonia is one of the most common lung diseases. Understanding infection requires understanding the routes of infections, the way invading organisms infect epithelial cells, as well as defense mechanisms of the lung tissue acquired during evolution. Different variants of infectious and non-infectious pneumonias are discussed; special types of pneumonias such as granulomatous and fibrosing pneumonias are presented under separate sections. Causing organisms and other causes of pneumonias are included, and their mode of action is included as far as understood.
Collapse
|
32
|
Chen H, Qu J, Huang X, Kurundkar A, Zhu L, Yang N, Venado A, Ding Q, Liu G, Antony VB, Thannickal VJ, Zhou Y. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat Commun 2016; 7:12564. [PMID: 27535718 PMCID: PMC4992155 DOI: 10.1038/ncomms12564] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix stiffening is a prominent feature of pulmonary fibrosis. In this study, we demonstrate that matrix stiffness regulates the ability of fibrotic lung myofibroblasts to invade the basement membrane (BM). We identify α6-integrin as a mechanosensing integrin subunit that mediates matrix stiffness-regulated myofibroblast invasion. Increasing α6-expression, specifically the B isoform (α6B), couples β1-integrin to mediate MMP-2-dependent pericellular proteolysis of BM collagen IV, leading to myofibroblast invasion. Human idiopathic pulmonary fibrosis lung myofibroblasts express high levels of α6-integrin in vitro and in vivo. Genetic ablation of α6 in collagen-expressing mesenchymal cells or pharmacological blockade of matrix stiffness-regulated α6-expression protects mice against bleomycin injury-induced experimental lung fibrosis. These findings suggest that α6-integrin is a matrix stiffness-regulated mechanosensitive molecule which confers an invasive fibroblast phenotype and mediates experimental lung fibrosis. Targeting this mechanosensing α6(β1)-integrin offers a novel anti-fibrotic strategy against lung fibrosis. Matrix stiffening is a feature of pulmonary fibrosis, and is amplified by lung myofibroblasts. Here the authors find that a6 integrin expression is upregulated on lung myofibroblasts in response to matrix stiffness, and this integrin is required for myofibroblast invasion, and fibrosis in an experimental disease model.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Xiangwei Huang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Ashish Kurundkar
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Lanyan Zhu
- The Second Xiangya Hospital, Central-South University, Changsha 410011, China
| | - Naiheng Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Aida Venado
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA.,Department of Medicine, University of California at San Francisco, San Francisco, California 94143 USA
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Gang Liu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| |
Collapse
|
33
|
Piciucchi S, Tomassetti S, Ravaglia C, Gurioli C, Gurioli C, Dubini A, Carloni A, Chilosi M, Colby TV, Poletti V. From "traction bronchiectasis" to honeycombing in idiopathic pulmonary fibrosis: A spectrum of bronchiolar remodeling also in radiology? BMC Pulm Med 2016; 16:87. [PMID: 27216855 PMCID: PMC4877976 DOI: 10.1186/s12890-016-0245-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The diagnostic and prognostic impact of traction bronchiectasis on high resolution CT scan (HRCT) in patients suspected to have idiopathic pulmonary fibrosis (IPF) is increasing significantly. MAIN BODY Recent data demonstrated that cysts in honeycombing areas are covered by epithelium expressing bronchiolar markers. In IPF bronchiolization is the final consequence of a variety of pathogenic events starting from alveolar stem cell exhaustion, and ending in a abnormal/dysplastic proliferation of bronchiolar epithelium. CT scan features of traction bronchiectasis and honeycombing should be interpreted under the light of these new pathogenetic and morphologic considerations. SHORT CONCLUSION We suggest that in IPF subjects traction bronchiectasis and honeycombing -now defined as distinct entities on HRCT scan- are actually diverse aspects of a continuous spectrum of lung remodeling.
Collapse
Affiliation(s)
- Sara Piciucchi
- Department of Radiology, Azienda USL Romagna, Ospedale GB Morgagni, Via C. Forlanini, Forlì, FC 34-47121, Italy.
| | - Sara Tomassetti
- Department of Diseases of the Thorax, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
| | - Claudia Ravaglia
- Department of Diseases of the Thorax, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
| | - Christian Gurioli
- Department of Diseases of the Thorax, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
| | - Carlo Gurioli
- Department of Diseases of the Thorax, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
| | - Alessandra Dubini
- Department of Pathology, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
| | - Angelo Carloni
- Department of Radiology, Ospedale Santa Maria, Terni, Italy
| | - Marco Chilosi
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Thomas V Colby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Venerino Poletti
- Department of Diseases of the Thorax, Azienda USL Romagna, Ospedale GB Morgagni, Forlì, Italy
- Department of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
34
|
Park AM, Kanai K, Itoh T, Sato T, Tsukui T, Inagaki Y, Selman M, Matsushima K, Yoshie O. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis. PLoS One 2016; 11:e0148998. [PMID: 26859835 PMCID: PMC4747463 DOI: 10.1371/journal.pone.0148998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kyosuke Kanai
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takao Sato
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Yoshie
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
35
|
Vancheri C. Idiopathic pulmonary fibrosis and cancer: do they really look similar? BMC Med 2015; 13:220. [PMID: 26399408 PMCID: PMC4581087 DOI: 10.1186/s12916-015-0478-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/03/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim of this opinion article is to understand to what extent idiopathic pulmonary fibrosis (IPF) can be considered, in its clinical and pathogenic features, similar to cancer. Indeed, IPF has common risk factors with cancer, a low survival, and, most importantly, epigenetic and genetic alterations, abnormal expression of microRNAs, cellular and molecular aberrances, and the activation of similar signalling pathways. DISCUSSION The pathogenic link between the two diseases may have a number of practical consequences. It may improve our understanding of IPF drawing on cancer biology knowledge. In addition, the recognition of similar pathogenic pathways may also encourage the use of cancer drugs for the treatment of IPF. Nintedanib, an inhibitor of tyrosine kinase receptors initially developed for cancer, has been recently approved for the treatment of IPF thanks to the observation that these receptors are also abnormally activated in IPF. The vision of IPF as a cancer-like disease may improve our understanding of the pathogenesis of this disease also opening new scenarios for repositioning cancer drugs for IPF. In addition, it may increase the level of awareness towards this dreadful disease at the public, political, and healthcare level.
Collapse
Affiliation(s)
- Carlo Vancheri
- Regional Centre for Interstitial and Rare Lung Diseases, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78 - building 4, first floor, 95123, Catania, Italy.
| |
Collapse
|
36
|
Noguchi S, Eitoku M, Moriya S, Kondo S, Kiyosawa H, Watanabe T, Suganuma N. Regulation of Gene Expression by Sodium Valproate in Epithelial-to-Mesenchymal Transition. Lung 2015; 193:691-700. [PMID: 26286207 DOI: 10.1007/s00408-015-9776-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important mechanism in cancer metastasis and pulmonary fibrosis. Previous studies demonstrated effect of histone H3 and H4 acetylation in cancer and pulmonary fibrosis, so we hypothesized that histone modification might play a crucial role in gene regulation during EMT. In this study, we investigated the mechanism behind EMT by analyzing comprehensive gene expression and the effect of sodium valproate (VPA), a class I histone deacetylase inhibitory drug, on histone modification. METHODS EMT was induced in human alveolar epithelial cells (A549) using 5 ng/mL of transforming growth factor (TGF)-β1. Various concentrations of VPA were then administered, and Western blotting was used to analyze histone acetylation or methylation. Comprehensive gene expression analysis was carried out by RNA sequencing, and chromatin immunoprecipitation was performed with an anti-acetyl histone H3 lysine 27 antibody. RESULTS TGF-β1 stimulation led to a decrease in histone acetylation, especially that of histone H3K27, and H3K27ac localization was decreased at particular gene loci. This decrease was recovered by VPA treatment, which also up-regulated the mRNA expression of genes down-regulated by TGF-β1, and correlated with the localization of H3K27ac. However, genes up-regulated by TGF-β1 stimulation were not suppressed by VPA, with the exception of COL1A1. CONCLUSIONS Histone acetylation was down-regulated by TGF-β1 stimulation in A549 cells. VPA partially inhibited EMT and the decrease of histone acetylation, which plays an important role in the progression of EMT.
Collapse
Affiliation(s)
- Shuhei Noguchi
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Shigeharu Moriya
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinji Kondo
- Research Integration Center, Research Organization of Information and Systems, National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Hidenori Kiyosawa
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Watanabe
- Organization for Regional Alliances, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan.,Graduate School of Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
37
|
Cordeiro CR, Alfaro TM, Freitas S, Cemlyn-Jones J. Idiopathic pulmonary fibrosis. Lung Cancer 2015. [DOI: 10.1183/2312508x.10009414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J, El Agha E, Klepetko W, Seeger W, Schermuly R, Günther A, Bellusci S. Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 2015; 16:83. [PMID: 26138239 PMCID: PMC4495640 DOI: 10.1186/s12931-015-0242-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts. Methods FGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed. Results Whole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects. Conclusions Strong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Martina Korfei
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Zaneta Sibinska
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xia Tian
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Salma Dilai
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Beate Schneider
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, General Hospital University Vienna, Vienna, Austria
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Ralph Schermuly
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany.,AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany. .,German Center for Lung Research, Greifenstein, Germany. .,Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation.
| |
Collapse
|
39
|
Characteristic Patterns in the Fibrotic Lung. Comparing Idiopathic Pulmonary Fibrosis with Chronic Lung Allograft Dysfunction. Ann Am Thorac Soc 2015; 12 Suppl 1:S34-41. [DOI: 10.1513/annalsats.201410-476mg] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Radiological characteristics, histological features and clinical outcomes of lung cancer patients with coexistent idiopathic pulmonary fibrosis. Lung 2014; 193:71-7. [PMID: 25381634 DOI: 10.1007/s00408-014-9664-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite advances in diagnosis and management, the outcomes for both lung cancer and idiopathic pulmonary fibrosis (IPF) are still unfavourable. The pathophysiology and outcomes for patients with concomitant lung cancer and IPF remains unclear. METHODOLOGY A retrospective analysis was performed of all patients presenting with concomitant IPF and lung cancer to our centre over a 3-year period. Patients with connective tissue disease, asbestos exposure, sarcoidosis, previous thoracic radiation, radiological evidence of fibrosis but no histological confirmation of lung cancer, or the use of medications known to cause pulmonary fibrosis were excluded. We describe clinical, radiological and pathological characteristics of this group. We also report the response to standardized lung cancer therapy in this cohort. RESULTS Of 637 lung cancer patients, 34 were identified with concomitant IPF (5.3 %) and all were smokers. 85 % had non-small cell lung cancer, 41 % were squamous cell cancers. The majority of tumours were located in the lower lobes, peripheral and present in an area of honeycombing. Despite the fact that approximately 2/3rds of the patients had localised or locally advanced lung cancer, the outcome of therapy for lung cancer was extremely poor regardless of tumour stage or severity of IPF. CONCLUSIONS At our centre, 1/20 patients with lung cancer have concomitant IPF. The majority of these tumours are small in size, peripheral in location and squamous cell carcinoma; in an area of honey combing. The outcome for concomitant lung cancer and IPF regardless of stage or therapy is poor.
Collapse
|
41
|
Poletti V, Ravaglia C, Tomassetti S. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Rev Respir Med 2014; 8:539-45. [DOI: 10.1586/17476348.2014.915750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Bellaye PS, Burgy O, Causse S, Garrido C, Bonniaud P. Heat shock proteins in fibrosis and wound healing: Good or evil? Pharmacol Ther 2014; 143:119-32. [DOI: 10.1016/j.pharmthera.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
|
43
|
Stella GM, Inghilleri S, Pignochino Y, Zorzetto M, Oggionni T, Morbini P, Luisetti M. Activation of oncogenic pathways in idiopathic pulmonary fibrosis. Transl Oncol 2014; 7:650-5. [PMID: 24935008 PMCID: PMC4225690 DOI: 10.1016/j.tranon.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause. The most recent hypotheses on IPF pathogenesis suggest a central role of epithelial cell damage, followed by a dysregulated molecular cross talk between epithelial cells and fibroblasts. Thus, IPF progression has often been assimilated to that of cancer, and several signaling patterns appear to be disrupted in both diseases. Here, we analyze the expression in an IPF series of a panel of molecules, which are known to play a role in tumorigenic process. Our findings, although preliminary, reveal that IPF landscape is enriched in neoplastic potential expressed in a context of complex genomic polyclonality and cellular heterogeneity. These results provide a rationale for further investigations aimed to exploit—in a similar fashion to cancer—targeted therapies for a “precision medicine” approach to IPF.
Collapse
Affiliation(s)
- Giulia M Stella
- Laboratory of Biochemistry and Genetics, Pneumology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Simona Inghilleri
- Laboratory of Biochemistry and Genetics, Pneumology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ymera Pignochino
- Division of Medical Oncology, IRCCS Institute for Cancer Research and Treatment, Candiolo Italy
| | - Michele Zorzetto
- Laboratory of Biochemistry and Genetics, Pneumology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Tiberio Oggionni
- Laboratory of Biochemistry and Genetics, Pneumology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Morbini
- Pathology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Luisetti
- Laboratory of Biochemistry and Genetics, Pneumology Unit, Department of Molecular Medicine, University and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
44
|
Poletti V, Casoni GL, Gurioli C, Ryu JH, Tomassetti S. Lung cryobiopsies: A paradigm shift in diagnostic bronchoscopy? Respirology 2014; 19:645-54. [DOI: 10.1111/resp.12309] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Venerino Poletti
- Department of Diseases of the Thorax/Pulmonology Unit; Ospedale GB Morgagni; Forlì Italy
| | - Gian Luca Casoni
- Department of Diseases of the Thorax/Pulmonology Unit; Ospedale GB Morgagni; Forlì Italy
| | - Carlo Gurioli
- Department of Diseases of the Thorax/Pulmonology Unit; Ospedale GB Morgagni; Forlì Italy
| | - Jay H. Ryu
- Respiratory and Critical Care Medicine; Mayo Clinic; Rochester Minnesota USA
| | - Sara Tomassetti
- Department of Diseases of the Thorax/Pulmonology Unit; Ospedale GB Morgagni; Forlì Italy
| |
Collapse
|
45
|
Song P, Zheng JX, Liu JZ, Xu J, Wu LY, Liu C, Zhu Q, Wang Y. Effect of the Wnt1/β-catenin signalling pathway on human embryonic pulmonary fibroblasts. Mol Med Rep 2014; 10:1030-6. [PMID: 24859686 DOI: 10.3892/mmr.2014.2261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease associated with a high rate of mortality, characterised by an accumulation of fibroblasts/myofibroblasts in the fibroblastic foci (FF) and by an excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The pathogenesis of this fatal disorder remains unclear. Previous evidence suggests that myofibroblasts are key effectors of the deposition of ECM. In the present study, human embryonic pulmonary fibroblast (HEPF) cells were incubated with different concentrations of Wnt1. The present study revealed that cell proliferation improved following stimulation using different concentrations of Wnt1 in a concentration-dependent manner. When the concentration exceeded 20 µg/l, cell proliferation was significant (P<0.05) and the cell expression of α-SMA, vimentin and collagen I mRNA, as well as protein expression, significantly increased (P<0.05). Bronchoalveolar lavage fluid (BALF) was then obtained from bleomycin (BLM)-induced models of pulmonary fibrosis. HEPF cells were cultured with Dulbecco's modified Eagle's medium plus BALF. The mRNA and protein expression of α-SMA, vimentin and collagen I significantly increased and these increases were associated with β-catenin. Furthermore, following being infected with the lentivirus expressing β-catenin shRNA, HEPF cells were cultured with BALF. However, the mRNA and protein expression of α-SMA, vimentin and collagen I did not increase significantly. The present study suggested that the Wnt1/β-catenin signalling pathway can promote HEPF cell proliferation and induced HEPF cells can change into myofibroblasts and promote ECM deposition. These findings may provide a theoretical basis for the treatment of IPF.
Collapse
Affiliation(s)
- Ping Song
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jin-Xu Zheng
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ji-Zhu Liu
- Respiratory Department, Huaibei Miner General Hospital, Huaibei, Anhui 235000, P.R. China
| | - Jiao Xu
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Li-Yan Wu
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chao Liu
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qin Zhu
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Wang
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
46
|
Bartis D, Mise N, Mahida RY, Eickelberg O, Thickett DR. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax 2013; 69:760-5. [PMID: 24334519 DOI: 10.1136/thoraxjnl-2013-204608] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process when epithelial cells gradually transform into mesenchymal-like cells losing their epithelial functionality and characteristics. EMT is thought to be involved in the pathogenesis of numerous lung diseases ranging from developmental disorders, fibrotic tissue remodelling to lung cancer. The most important question--namely what is the importance and contribution of EMT in the pathogenesis of several chronic lung conditions (asthma, COPD, bronchiolitis obliterans syndrome and lung fibrosis)--is currently intensely debated. This review gives a brief insight into the mechanism and assessment methods of EMT in various pulmonary diseases and summarises the recent literature highlighting the controversial experimental data and conclusions.
Collapse
Affiliation(s)
- Domokos Bartis
- Department of Clinical Respiratory Sciences, Centre for Translational Inflammation and Fibrosis Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Nikica Mise
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum, München, Germany
| | - Rahul Y Mahida
- Department of Clinical Respiratory Sciences, Centre for Translational Inflammation and Fibrosis Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum, München, Germany
| | - David R Thickett
- Department of Clinical Respiratory Sciences, Centre for Translational Inflammation and Fibrosis Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 2013; 162:156-73. [PMID: 23831269 DOI: 10.1016/j.trsl.2013.06.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
Different anatomic and physiological changes occur in the lung of aging people that can affect pulmonary functions, and different pulmonary diseases, including deadly diseases such as chronic obstructive pulmonary disease (COPD)/emphysema and idiopathic pulmonary fibrosis (IPF), can be related to an acceleration of the aging process. The individual genetic background, as well as exposure to a variety of toxic substances (cigarette smoke in primis) can contribute significantly to accelerating pulmonary senescence. Premature aging can impair lung function by different ways: by interfering specifically with tissue repair mechanisms after damage, thus perturbing the correct crosstalk between mesenchymal and epithelial components; by inducing systemic and/or local alteration of the immune system, thus impairing the complex mechanisms of lung defense against infections; and by stimulating a local and/or systemic inflammatory condition (inflammaging). According to recently proposed pathogenic models in COPD and IPF, premature cellular senescence likely affects distinct progenitors cells (mesenchymal stem cells in COPD, alveolar epithelial precursors in IPF), leading to stem cell exhaustion. In this review, the large amount of data supporting this pathogenic view are discussed, with emphasis on the possible molecular and cellular mechanisms leading to the severe parenchymal remodeling that characterizes, in different ways, these deadly diseases.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, University of Verona, Verona, Italy.
| | | | | | | |
Collapse
|
48
|
PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. J Transl Med 2013; 93:566-76. [PMID: 23439433 DOI: 10.1038/labinvest.2013.6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease whose molecular pathogenesis remains unclear. In a recent paper, we demonstrated a key role for the PI3K pathway in both proliferation and differentiation into myofibroblasts of normal human lung fibroblasts treated with TGF-β. In this research, we assessed the expression of class I PI3K p110 isoforms in IPF lung tissue as well as in tissue-derived fibroblast cell lines. Moreover, we investigated the in vitro effects of the selective inhibition of p110 isoforms on IPF fibroblast proliferation and fibrogenic activity. IHC was performed on normal and IPF lung tissue. Expression levels of PI3K p110 isoforms were evaluated by western blot and flow cytometry analysis. Fibroblast cell lines were established from both normal and IPF tissue and the effects of selective pharmacological inhibition as well as specific gene silencing by small interfering RNAs were studied in vitro. No significant differences between normal and IPF tissue/tissue-derived fibroblasts were observed for the expression of PI3K p110 α, β and δ isoforms whereas p110γ was more greatly expressed in both IPF lung homogenates and ex vivo fibroblast cell lines. Myofibroblasts and bronchiolar basal cells in IPF lungs exhibited strong immunoreactivity for p110γ. Positive staining for the markers of proliferation proliferating cell nuclear antigen and cyclin D1 was also shown in cells of fibrolastic foci. Furthermore, both p110γ pharmacological inhibition and gene silencing were able to significantly inhibit proliferation rate as well as α-SMA expression in IPF fibroblasts. Our data suggest that PI3K p110γ isoform may have an important role in the etio-pathology of IPF and can be a specific pharmacological target.
Collapse
|
49
|
The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium. PLoS One 2013; 8:e58658. [PMID: 23527003 PMCID: PMC3603941 DOI: 10.1371/journal.pone.0058658] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/06/2013] [Indexed: 12/19/2022] Open
Abstract
Background We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP. Methods Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC). Results MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC. Conclusions The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.
Collapse
|
50
|
Wettstein G, Bellaye PS, Kolb M, Hammann A, Crestani B, Soler P, Marchal-Somme J, Hazoume A, Gauldie J, Gunther A, Micheau O, Gleave M, Camus P, Garrido C, Bonniaud P. Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB J 2013; 27:1549-60. [PMID: 23288928 DOI: 10.1096/fj.12-220053] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation. Transition of epithelial/mesothelial cells into myofibroblasts [epithelial-to-mesenchymal transition (EMT)] occurs under the influence of transforming growth factor (TGF)-β1, with Snail being a major transcription factor. We study here the role of the heat-shock protein HSP27 in fibrogenesis and EMT. In vitro, we have up- and down-modulated HSP27 expression in mesothelial and epithelial cell lines and studied the expression of different EMT markers induced by TGF-β1. In vivo, we inhibited HSP27 with the antisense oligonucleotide OGX-427 (in phase II clinical trials as anticancer agent) in our rat subpleural/pulmonary fibrosis models. We demonstrate that HSP27 is strongly expressed during the fibrotic process in patients with IPF and in different in vivo models. We showed that HSP27 binds to and stabilizes Snail and consequently induces EMT. Conversely, HSP27 knockdown leads to Snail proteasomal degradation, thus inhibiting TGF-β1-induced EMT. Inhibition of HSP27 with OGX-427 efficiently blocks EMT and fibrosis development. Controls in vivo were an empty adenovirus that did not induce fibrosis and a control antisense oligonucleotide. The present work opens the possibility of a new therapeutic use for HSP27 inhibitors against IPF, for which there is no conclusively effective treatment.
Collapse
Affiliation(s)
- Guillaume Wettstein
- Institut National de Santé et de Recherche Médicale (INSERM) U866, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|