1
|
Sengupta I. Insights into the Structure and Dynamics of Proteins from 19F Solution NMR Spectroscopy. Biochemistry 2024. [PMID: 39495741 DOI: 10.1021/acs.biochem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
4
|
Urquhart T, Daub E, Honek JF. Bioorthogonal Modification of the Major Sheath Protein of Bacteriophage M13: Extending the Versatility of Bionanomaterial Scaffolds. Bioconjug Chem 2016; 27:2276-2280. [PMID: 27626459 DOI: 10.1021/acs.bioconjchem.6b00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With a mass of ∼1.6 × 107 Daltons and composed of approximately 2700 proteins, bacteriophage M13 has been employed as a molecular scaffold in bionanomaterials fabrication. In order to extend the versatility of M13 in this area, residue-specific unnatural amino acid incorporation was employed to successfully display azide functionalities on specific solvent-exposed positions of the pVIII major sheath protein of this bacteriophage. Employing a combination of engineered mutants of the gene coding for the pVIII protein, the methionine (Met) analog, l-azidohomoalanine (Aha), and a suitable Escherichia coli Met auxotroph for phage production, conditions were developed to produce M13 bacteriophage labeled with over 350 active azides (estimated by fluorescent dye labeling utilizing a strain-promoted azide-alkyne cycloaddition) and capable of azide-selective attachment to 5 nm gold nanoparticles as visualized by transmission electron microscopy. The capability of this system to undergo dual labeling utilizing both chemical acylation and bioorthogonal cycloaddition reactions was also verified. The above stratagem should prove particularly advantageous in the preparation of assemblies of larger and more complex molecular architectures based on the M13 building block.
Collapse
Affiliation(s)
- Taylor Urquhart
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1
| | - Elisabeth Daub
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1
| | - John Frank Honek
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
5
|
Abstract
Carbon–sulfur biological chemistry encompasses a fascinating area of biochemistry and medicinal chemistry and includes the roles that methionine and S-adenosyl-l-methionine play in cells as well as the chemistry of intracellular thiols such as glutathione. This article, based on the 2014 Bernard Belleau Award lecture, provides an overview of some of the key investigations that were undertaken in this area from a bioorganic perspective. The research has ameliorated our fundamental knowledge of several of the enzymes utilizing these sulfur-containing molecules, has led to the development of several novel 19F biophysical probes, and has explored some of the medicinal chemistry associated with these processes.
Collapse
Affiliation(s)
- John F. Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Ravikumar Y, Nadarajan SP, Yoo TH, Lee CS, Yun H. Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol 2015; 33:462-70. [PMID: 26088007 DOI: 10.1016/j.tibtech.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 02/09/2023]
Abstract
Traditional enzyme engineering relies on substituting one amino acid by one of the other 19 natural amino acids to change the functional properties of an enzyme. However, incorporation of unnatural amino acids (UAAs) has been harnessed to engineer efficient enzymes for biocatalysis. Residue-specific and site-specific in vivo incorporation methods are becoming the preferred approach for producing enzymes with altered or improved functions. We describe the contribution of in vivo UAA incorporation methodologies to enzyme engineering as well as the future prospects for the field, including the integration of UAAs with other new advances in enzyme engineering.
Collapse
Affiliation(s)
- Yuvaraj Ravikumar
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | | | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Chong-soon Lee
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
7
|
Salwiczek M, Nyakatura EK, Gerling UIM, Ye S, Koksch B. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem Soc Rev 2011; 41:2135-71. [PMID: 22130572 DOI: 10.1039/c1cs15241f] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references).
Collapse
Affiliation(s)
- Mario Salwiczek
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
8
|
Bardoel BW, van der Ent S, Pel MJC, Tommassen J, Pieterse CMJ, van Kessel KPM, van Strijp JAG. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog 2011; 7:e1002206. [PMID: 21901099 PMCID: PMC3161968 DOI: 10.1371/journal.ppat.1002206] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/27/2011] [Indexed: 01/08/2023] Open
Abstract
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.
Collapse
Affiliation(s)
- Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Tallant C, García-Castellanos R, Baumann U, Gomis-Rüth FX. On the relevance of the Met-turn methionine in metzincins. J Biol Chem 2010; 285:13951-7. [PMID: 20202937 DOI: 10.1074/jbc.m109.083378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metzincins are a clan of metallopeptidases consisting of families that share a series of structural elements. Among them is the Met-turn, a tight 1,4-turn found directly below the zinc-binding site, which is structurally and spatially conserved and invariantly shows a methionine at position 3 in all metzincins identified. The reason for this conservation has been a matter of debate since its discovery. We have studied this structural element in Methanosarcina acetivorans ulilysin, the structural prototype of the pappalysin family, by generating 10 mutants that replaced methionine with proteogenic amino acids. We compared recombinant overexpression yields, autolytic and tryptic activation, proteolytic activity, thermal stability, and three-dimensional structure with those of the wild type. All forms were soluble and could be purified, although with varying yields, and three variants underwent autolysis, could be activated by trypsin, and displayed significant proteolytic activity. All variants were analyzed for the thermal stability of their zymogens. None of the mutants analyzed proved more stable or active than the wild type. Both bulky and small side chains, as well as hydrophilic ones, showed diminished thermal stability. Two mutants, leucine and cysteine, crystallized and showed three-dimensional structures that were indistinguishable from the wild type. These studies reveal that the Met-turn acts as a plug that snugly inserts laterally into a core structure created by the protein segment engaged in zinc binding and thus contributes to its structural integrity, which is indispensable for function. Replacement of the methionine with residues that deviate in size, side-chain conformation, and chemical properties impairs the plug-core interaction and prejudices molecular stability and activity.
Collapse
Affiliation(s)
- Cynthia Tallant
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. ACTA ACUST UNITED AC 2010; 6:65-80. [DOI: 10.1039/b909200p] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Oberholzer AE, Bumann M, Hege T, Russo S, Baumann U. Metzincin's canonical methionine is responsible for the structural integrity of the zinc-binding site. Biol Chem 2009; 390:875-81. [DOI: 10.1515/bc.2009.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The metzincins constitute a subclan of metalloproteases possessing a HEXXHXXGXXH/D zinc-binding consensus sequence where the three histidines are zinc ligands and the glutamic acid is the catalytic base. A completely conserved methionine is located downstream of this motif. Families of the metzincin clan comprise, besides others, astacins, adamalysins proteases, matrix metallo-proteases, and serralysins. The latter are extracellular 50 kDa proteases secreted by Gram-negative bacteria via a type I secretion system. While there is a large body of structural and biochemical information available, the function of the conserved methionine has not been convincingly clarified yet. Here, we present the crystal structures of a number of mutants of the serralysin member protease C with the conserved methionine being replaced by Ile, Ala, and His. Together with our former report on the leucine and cysteine mutants, we demonstrate here that replacement of the methionine side chain results in an increasing distortion of the zinc-binding geometry, especially pronounced in the χ2 angles of the first and third histidine of the consensus sequence. This is correlated with an increasing loss of proteolytic activity and a sharp increase of flexibility of large segments of the polypeptide chain.
Collapse
|
12
|
Ayyadurai N, Neelamegam R, Nagasundarapandian S, Edwardraja S, Park HS, Lee SJ, Yoo TH, Yoon H, Lee SG. Importance of expression system in the production of unnatural recombinant proteins in Escherichia coli. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-009-0009-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Garner DK, Vaughan MD, Hwang HJ, Savelieff MG, Berry SM, Honek JF, Lu Y. Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids. J Am Chem Soc 2007; 128:15608-17. [PMID: 17147368 DOI: 10.1021/ja062732i] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved axial ligand methionine 121 from Pseudomonas aeruginosa azurin (Az) has been replaced by isostructural unnatural amino acid analogues, oxomethionine (OxM), difluoromethionine (DFM), trifluoromethionine (TFM), selenomethionine (SeM), and norleucine (Nle) using expressed protein ligation. The replacements resulted in < 6 nm shifts in the S(Cys)-Cu charge transfer (CT) band in the electronic absorption spectra and < 8 gauss changes in the copper hyperfine coupling constants (AII) in the X-band electron paramagnetic resonance spectra, suggesting that isostructural replacement of Met resulted in minimal structural perturbation of the copper center. The slight blue shifts of the CT band follow the trend of stronger electronegativity of the ligands. This trend is supported by 19F NMR studies of the fluorinated methionine analogues. However, the order of AII differs, suggesting additional factors influencing AII. In contrast to the small changes in the UV-vis and EPR spectra, a large variation of > 227 mV in reduction potential was observed for the series of variants reported here. Additionally, a linear correlation was established between the reduction potentials and hydrophobicity of the variants. Extension of this analysis to other type 1 copper-containing proteins reveals a linear correlation between change in hydrophobicity and change in reduction potential, independent of the protein scaffold, experimental conditions, measurement techniques, and steric modifications. This analysis has also revealed for the first time high and low potential states for type 1 centers, and the difference may be attributable to destabilization of the protein fold by disruption of hydrophobic or hydrogen bonding interactions that stabilize the type 1 center.
Collapse
Affiliation(s)
- Dewain K Garner
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Experimental and theoretical studies on inversion dynamics of dichloro(l-difluoromethionine-N,S)platinum(II) and dichloro(l-trifluoromethionine-N,S)platinum(II) complexes. J Fluor Chem 2007. [DOI: 10.1016/j.jfluchem.2006.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Matheson NR, Potempa J, Travis J. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8. Biol Chem 2006; 387:911-5. [PMID: 16913841 DOI: 10.1515/bc.2006.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pseudomonas aeruginosa secretes several proteases considered as important virulence factors. In this report we present data indicating that two key proinflammatory cytokines, interleukin-6 (IL-6) and IL-8, are substrates for pseudolysin (elastase) and aeruginolysin (alkaline protease). While IL-6 was totally digested by both proteases, a long form of IL-8 (IL-8-77) was first rapidly processed into a 72-residue form with enhanced chemokine activity, then very slowly degraded. Interestingly, aeruginolysin bearing two additional residues at the N-terminus (Leu-Lys-aeruginolysin) in the absence of calcium degraded both IL-6 and IL-8-72 far more efficiently than the shorter form of the enzyme.
Collapse
Affiliation(s)
- Nancy R Matheson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|