1
|
Recuero E, Etzler FE, Caterino MS. Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries. Curr Zool 2024; 70:637-646. [PMID: 39463700 PMCID: PMC11502157 DOI: 10.1093/cz/zoad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 10/29/2024] Open
Abstract
We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used 3 reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identification rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.
Collapse
Affiliation(s)
- Ernesto Recuero
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
| | - Frank E Etzler
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
- Natural Resource Section, Montana Department of Agriculture, 302 N Roberts St, Helena, MT 59601, USA
| | - Michael S Caterino
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Ali M, Dey R, Das M, Kumar V, Chandra K, Uniyal VP, Gupta SK. Unique among high passes: Insights into the genetic uniqueness among butterflies of Ladakh Trans-Himalaya through DNA barcoding. Mol Biol Rep 2024; 51:1033. [PMID: 39354174 DOI: 10.1007/s11033-024-09916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a COI barcode reference library of 60 specimens representing 23 species. METHODS AND RESULTS Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. CONCLUSIONS Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.
Collapse
Affiliation(s)
- Mohd Ali
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Rushati Dey
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Moumita Das
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Vikas Kumar
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Kailash Chandra
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India.
| | - Virendra Prasad Uniyal
- Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
- Graphic Era (Deemed to Be) University, Clement Town, Dehradun, India
| | - Sandeep Kumar Gupta
- Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Chandrabani, Dehradun, 248001, India.
| |
Collapse
|
3
|
Landers E, Claridge B, Kuhn W, Seymour V, Peek H, Fluet S, Ramgren J, Phelps J, Paulk B, Cordner L, Blaschke J. Using DNA barcoding to identify high-priority taxa (Hymenoptera: Ichneumonidae) from Great Smoky Mountains National Park. ENVIRONMENTAL ENTOMOLOGY 2024; 53:730-739. [PMID: 38853372 DOI: 10.1093/ee/nvae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
The All Taxa Biodiversity Inventory (ATBI) in Great Smoky Mountains National Park (GSMNP) seeks to document every species of living thing in the park. The ATBI is decades in progress, yet some taxa remain virtually untouched by taxonomists. Such "high priority" taxa include the hyper-diverse parasitoid wasp family Ichneumonidae. Despite the positive and multifaceted effects ichneumonids have on their environment, only a small percentage of those collected in the park have been identified as species, mostly to their complex morphology and overwhelming diversity. Recently, DNA barcoding has transformed biodiversity inventories, streamlining the process to be more rapid and efficient. To test the effectiveness of barcoding 20 + year-old specimens of Ichneumonidae and catalog new records for GSMNP, COI was amplified from 95 ichneumonid morphospecies collected from Andrew's Bald, NC. Species identifications were confirmed morphologically. Eighty-one ichneumonids generated sequence data, representing 16 subfamilies and 44 genera. The subfamily Oxytorinae is newly recorded from GSMNP, along with 10 newly recorded genera and 23 newly recorded species across Ichneumonidae. These results contribute significantly to the ATBI by adding new park records for a high-priority taxon and demonstrate the effectiveness of applying DNA barcoding to samples in long-term storage or those lacking immediate taxonomic expertise.
Collapse
Affiliation(s)
- Emerie Landers
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Brandon Claridge
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - Will Kuhn
- Discover Life in America, 1316 Cherokee Orchard Road, Gatlinburg, TN, 37738, USA
| | - Victoria Seymour
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Hettie Peek
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Scout Fluet
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jake Ramgren
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jake Phelps
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Brayden Paulk
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Lydia Cordner
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jeremy Blaschke
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| |
Collapse
|
4
|
Eini O, Pfitzer R, Varrelmann M. Rapid and specific detection of Pentastiridius leporinus by recombinase polymerase amplification assay. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:309-316. [PMID: 38708571 DOI: 10.1017/s0007485324000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Pentastiridius leporinus (Hemiptera: Cixiidae) is the main vector of an emerging and fast spreading sugar beet disease, the syndrome 'basses richesses' (SBR), in different European countries. The disease is caused by the γ-3-proteobacterium 'Candidatus Arsenophonus phytopathogenicus' and the phytoplasma 'Candidatus Phytoplasma solani' which are exclusively transmitted by planthoppers and can lead to a significant loss of sugar content and yield. Monitoring of this insect vector is important for disease management. However, the morphological identification is time consuming and challenging as two additional cixiid species Reptalus quinquecostatus and Hyalesthes obsoletus with a very close morphology have been reported in sugar beet fields. Further, identification of females and nymphs of P. leporinus at species level based on taxonomic key is not possible. In this study, an isothermal nucleic acid amplification based on recombinase polymerase amplification (RPA) was developed to specifically detect P. leporinus. In addition, real-time RPA was developed to detect both adults (male and female) and nymph stages using pure or crude nucleic acid extracts. The sensitivity of the real-time RPA for detection of P. leporinus was comparable to real-time PCR, but a shorter time (< 7 min) was required. This is a first report for real-time RPA application for P. leporinus detection using crude nucleic acid templates which can be applied for fast and specific detection of this vector in the field.
Collapse
Affiliation(s)
- Omid Eini
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - René Pfitzer
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| |
Collapse
|
5
|
Samreen KB, Manzoor F. Assessing arthropod biodiversity with DNA barcoding in Jinnah Garden, Lahore, Pakistan. PeerJ 2024; 12:e17420. [PMID: 38832046 PMCID: PMC11146329 DOI: 10.7717/peerj.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Previous difficulties in arthropod taxonomy (such as limitations in conventional morphological approaches, the possibility of cryptic species and a shortage of knowledgeable taxonomists) has been overcome by the powerful tool of DNA barcoding. This study presents a thorough analysis of DNA barcoding in regards to Pakistani arthropods, which were collected from Lahore's Jinnah Garden. The 88 % (9,451) of the 10,792 specimens that were examined were able to generate DNA barcodes and 83% (8,974) of specimens were assigned 1,361 barcode index numbers (BINs). However, the success rate differed significantly between the orders of arthropods, from 77% for Thysanoptera to an astounding 93% for Diptera. Through morphological exams, DNA barcoding, and cross-referencing with the Barcode of Life Data system (BOLD), the Barcode Index Numbers (BINs) were assigned with a high degree of accuracy, both at the order (100%) and family (98%) levels. Though, identifications at the genus (37%) and species (15%) levels showed room for improvement. This underscores the ongoing need for enhancing and expanding the DNA barcode reference library. This study identified 324 genera and 191 species, underscoring the advantages of DNA barcoding over traditional morphological identification methods. Among the 17 arthropod orders identified, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera from the class Insecta dominated, collectively constituting 94% of BINs. Expected malaise trap Arthropod fauna in Jinnah Garden could contain approximately 2,785 BINs according to Preston log-normal species distribution, yet the Chao-1 Index predicts 2,389.74 BINs. The Simpson Index of Diversity (1-D) is 0.989, signaling high species diversity, while the Shannon Index is 5.77, indicating significant species richness and evenness. These results demonstrated that in Pakistani arthropods, DNA barcoding and BOLD are an invaluable tool for improving taxonomic understanding and biodiversity assessment, opening the door for further eDNA and metabarcoding research.
Collapse
Affiliation(s)
- Khush Bakhat Samreen
- Department of Zoology, Lahore College for Women University, Lahore, Lahore, Pakistan
| | | |
Collapse
|
6
|
Ali M, Dey R, Das M, Kumar V, Chandra K, Uniyal VP, Gupta SK. Unique among high passes: Phylogenetic inferences from DNA barcoding of the butter fly fauna of Ladakh Trans-Himalaya, India. RESEARCH SQUARE 2024:rs.3.rs-4392854. [PMID: 38826425 PMCID: PMC11142357 DOI: 10.21203/rs.3.rs-4392854/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a barcode reference library of 60 specimens representing 23 species. Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.
Collapse
|
7
|
Sutton AO, Strickland D, Lachapelle J, Young RG, Hanner R, Brunton DF, Skevington JH, Freeman NE, Norris DR. Fecal DNA metabarcoding helps characterize the Canada jay's diet and confirms its reliance on stored food for winter survival and breeding. PLoS One 2024; 19:e0300583. [PMID: 38656932 PMCID: PMC11042713 DOI: 10.1371/journal.pone.0300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/01/2024] [Indexed: 04/26/2024] Open
Abstract
Accurately determining the diet of wild animals can be challenging if food items are small, visible only briefly, or rendered visually unidentifiable in the digestive system. In some food caching species, an additional challenge is determining whether consumed diet items have been previously stored or are fresh. The Canada jay (Perisoreus canadensis) is a generalist resident of North American boreal and subalpine forests with anatomical and behavioural adaptations allowing it to make thousands of arboreal food caches in summer and fall that are presumably responsible for its high winter survival and late winter/early spring breeding. We used DNA fecal metabarcoding to obtain novel information on nestling diets and compiled a dataset of 662 published and unpublished direct observations or stomach contents identifications of natural foods consumed by Canada jays throughout the year. We then used detailed natural history information to make informed decisions on whether each item identified to species in the diets of winter adults and nestlings was best characterized as 'likely cached', 'likely fresh' (i.e., was available as a non-cached item when it appeared in a jay's feces or stomach), or 'either possible'. Of the 87 food items consumed by adults in the winter, 39% were classified as 'likely cached' and 6% were deemed to be 'likely fresh'. For nestlings, 29% of 125 food items identified to species were 'likely cached' and 38% were 'likely fresh'. Our results support both the indispensability of cached food for Canada jay winter survival and previous suggestions that cached food is important for late winter/early spring breeding. Our work highlights the value of combining metabarcoding, stomach contents analysis, and direct observations to determine the cached vs. non-cached origins of consumed food items and the identity of food caches, some of which could be especially vulnerable to degradation through climate change.
Collapse
Affiliation(s)
- Alex O. Sutton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Jacob Lachapelle
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert G. Young
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert Hanner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Daniel F. Brunton
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Nikole E. Freeman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - D. Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Kock LS, Körs E, Husemann M, Davaa L, Dey LS. Barcoding Fails to Delimit Species in Mongolian Oedipodinae (Orthoptera, Acrididae). INSECTS 2024; 15:128. [PMID: 38392547 PMCID: PMC10888654 DOI: 10.3390/insects15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Mongolia, a country in central Asia, with its vast grassland areas represents a hotspot for Orthoptera diversity, especially for the Acrididae. For Mongolia, 128 Acrididae species have been documented so far, of which 41 belong to the subfamily Oedipodinae (band-winged grasshoppers). Yet, few studies concerning the distribution and diversity of Oedipodinae have been conducted in this country. Molecular genetic data is almost completely absent, despite its value for species identification and discovery. Even, the simplest and most used data, DNA barcodes, so far have not been generated for the local fauna. Therefore, we generated the first DNA barcode data for Mongolian band-winged grasshoppers and investigated the resolution of this marker for species delimitation. We were able to assemble 105 DNA barcode (COI) sequences of 35 Oedipodinae species from Mongolia and adjacent countries. Based on this data, we reconstructed maximum likelihood and Bayesian inference phylogenies. We, furthermore, conducted automatic barcode gap discovery and used the Poisson tree process (PTP) for species delimitation. Some resolution was achieved at the tribe and genus level, but all delimitation methods failed to differentiate species by using the COI region. This lack of resolution may have multiple possible reasons, which likely differ between taxa: the lack of resolution in the Bryodemini may be partially explained by their massive genomes, implying the potential presence of large numbers of pseudogenes, while within the Sphingonotini incomplete lineage sorting and incorrect taxonomy are more likely explanations for the lack of signal. Further studies based on a larger number of gene fragments, including nuclear DNA, are needed to distinguish the species also at the molecular level.
Collapse
Affiliation(s)
- Lea-Sophie Kock
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Elisabeth Körs
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Martin Husemann
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Staatliches Museum für Naturkunde Karlsruhe (SMNK), Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - Lkhagvasuren Davaa
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O. Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Lara-Sophie Dey
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Senckenberg German Entomological Institute, Eberswalder Straße 90, 15374 Müncheberg, Germany
| |
Collapse
|
9
|
El Alami M, Vuataz L, El Yaagoubi S, Sartori M. Another new species of the genus Habrophlebia Eaton, 1881 (Ephemeroptera, Leptophlebiidae) from the Maghreb. Zookeys 2023; 1186:47-70. [PMID: 38115829 PMCID: PMC10729008 DOI: 10.3897/zookeys.1186.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
A new species belonging to the genus Habrophlebia Eaton, 1881 is described at the nymphal stage from the Rif Mountains of Morocco. This species presents unique features, such as the chorionic arrangement of the egg and the ornamentation of the posterior margin of abdominal tergites. It is compared to all west European Habrophlebia species and a table with discriminating characters is given. A phylogenetic reconstruction based on COI sequences fully supports the hypothesis of a new species in the Rif Mountains, with possible further distribution in southern Spain.
Collapse
Affiliation(s)
- Majida El Alami
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Laurent Vuataz
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| | - Sara El Yaagoubi
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Michel Sartori
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
10
|
Haas-Renninger M, Schwabe NLA, Moser M, Krogmann L. Black gold rush - Evaluating the efficiency of the Fractionator in separating Hymenoptera families in a meadow ecosystem over a two week period. Biodivers Data J 2023; 11:e107051. [PMID: 37915314 PMCID: PMC10616778 DOI: 10.3897/bdj.11.e107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
In the face of insect decline, monitoring projects are launched widely to assess trends of insect populations. Collecting over long time periods results in large numbers of samples with thousands of individuals that are often just stored in freezers waiting to be further processed. As the time-consuming process of sorting and identifying specimens prevents taxonomists from working on mass samples, important information on species composition remains unknown and taxonomically neglected species remain undiagnosed. Size fractioning of bulk samples can improve sample handling and, thus, can help to overcome the taxonomic impediment. In this paper, we evaluate the efficiency of the fractionator in separating Hymenoptera families from a Malaise trap sample of a meadow ecosystem over a two week interval to make them available for further morphological identification. The fractionator system by Buffington and Gates (2008) was used to separate the sample in two size classes - a large (macro) and a small (micro) fraction - and Hymenoptera specimens were then counted and identified on family level. In total, 2,449 Hymenoptera specimens were found in the macro fraction and 3,016 in the micro fraction (5,465 specimens in total). For 24 out of 34 Hymenoptera families (71%), separation was significant. This study illustrates the efficiency of the fractionator and its potential to improve workflows dealing with specimen-rich Malaise trap samples.
Collapse
Affiliation(s)
- Maura Haas-Renninger
- State Museum of Natural History Stuttgart, Stuttgart, GermanyState Museum of Natural History StuttgartStuttgartGermany
- University of Hohenheim, Stuttgart, GermanyUniversity of HohenheimStuttgartGermany
| | - Noa L. A. Schwabe
- University of Hohenheim, Stuttgart, GermanyUniversity of HohenheimStuttgartGermany
| | - Marina Moser
- State Museum of Natural History Stuttgart, Stuttgart, GermanyState Museum of Natural History StuttgartStuttgartGermany
- University of Hohenheim, Stuttgart, GermanyUniversity of HohenheimStuttgartGermany
| | - Lars Krogmann
- State Museum of Natural History Stuttgart, Stuttgart, GermanyState Museum of Natural History StuttgartStuttgartGermany
- University of Hohenheim, Stuttgart, GermanyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
11
|
Kerr M, Leavitt SD. A Custom Regional DNA Barcode Reference Library for Lichen-Forming Fungi of the Intermountain West, USA, Increases Successful Specimen Identification. J Fungi (Basel) 2023; 9:741. [PMID: 37504730 PMCID: PMC10381598 DOI: 10.3390/jof9070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
DNA barcoding approaches provide powerful tools for characterizing fungal diversity. However, DNA barcoding is limited by poor representation of species-level diversity in fungal sequence databases. Can the development of custom, regionally focused DNA reference libraries improve species-level identification rates for lichen-forming fungi? To explore this question, we created a regional ITS database for lichen-forming fungi (LFF) in the Intermountain West of the United States. The custom database comprised over 4800 sequences and represented over 600 formally described and provisional species. Lichen communities were sampled at 11 sites throughout the Intermountain West, and LFF diversity was characterized using high-throughput ITS2 amplicon sequencing. We compared the species-level identification success rates from our bulk community samples using our regional ITS database and the widely used UNITE database. The custom regional database resulted in significantly higher species-level assignments (72.3%) of candidate species than the UNITE database (28.3-34.2%). Within each site, identification of candidate species ranged from 72.3-82.1% using the custom database; and 31.5-55.4% using the UNITE database. These results highlight that developing regional databases may accelerate a wide range of LFF research by improving our ability to characterize species-level diversity using DNA barcoding.
Collapse
Affiliation(s)
- Michael Kerr
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Steven D Leavitt
- M.L. Bean Life Science Museum and Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
12
|
Posada-López L, Rodrigues BL, Velez ID, Uribe S. Improving the COI DNA barcoding library for Neotropical phlebotomine sand flies (Diptera: Psychodidae). Parasit Vectors 2023; 16:198. [PMID: 37308979 DOI: 10.1186/s13071-023-05807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Sand fly species are traditionally identified using morphological traits, though this method is hampered by the presence of cryptic species. DNA barcoding is a widely used tool in the case of insects of medical importance, where it is necessary to know quickly which species are present in a transmission area. Here, we assess the usefulness of mitochondrial cytochrome c oxidase subunit I (COI) DNA barcoding as a practical tool for species identification, correct assignment of isomorphic females, and to evaluate the detection of cryptic diversity that occurs in the same species. A fragment of the COI gene was used to generate 156 new barcode sequences for sand flies from different countries of the Neotropical region, mainly Colombia, which had been identified morphologically as 43 species. The sequencing of the COI gene allowed the detection of cryptic diversity within species and correctly associated isomorphic females with males identified by morphology. The maximum intraspecific genetic distances ranged from 0 to 8.32% and 0 to 8.92% using uncorrected p distances and the Kimura 2-parameter (K2P) model, respectively. The minimum interspecific distance (nearest neighbor) for each species ranged from 1.5 to 14.14% and 1.51 to 15.7% using p and K2P distances, respectively. Three species had more than 3% maximum intraspecific distance: Psychodopygus panamensis, Micropygomyia cayennensis cayennensis, and Pintomyia evansi. They also were split into at least two molecular operational taxonomic units (MOTUs) each, using different species delimitation algorithms. Regarding interspecific genetic distances, the species of the genera Nyssomyia and Trichophoromyia generated values lower than 3% (except Nyssomyia ylephiletor and Ny. trapidoi). However, the maximum intraspecific distances did not exceed these values, indicating the presence of a barcode gap despite their proximity. Also, nine sand fly species were DNA barcoded for the first time: Evandromyia georgii, Lutzomyia sherlocki, Ny. ylephiletor, Ny. yuilli pajoti, Psathyromyia punctigeniculata, Sciopemyia preclara, Trichopygomyia triramula, Trichophoromyia howardi, and Th. velezbernali. The COI DNA barcode analysis enabled the correct delimitation of several Neotropical sand fly species from South and Central America and raised questions about the presence of cryptic species for some taxa, which should be further assessed.
Collapse
Affiliation(s)
- Laura Posada-López
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia.
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil.
| | - Bruno Leite Rodrigues
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil
| | - Ivan Dario Velez
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia
| | - Sandra Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Campus, Medellín, Colombia
| |
Collapse
|
13
|
Csabai Z, Čiamporová-Zaťovičová Z, Boda P, Čiampor F. 50%, not great, not terrible: Pan-European gap-analysis shows the real status of the DNA barcode reference libraries in two aquatic invertebrate groups and points the way ahead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160922. [PMID: 36539085 DOI: 10.1016/j.scitotenv.2022.160922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The essential key to routine molecular species identification (DNA barcoding/metabarcoding) is the existence of an error-free DNA barcode reference library providing full coverage of all species. Published studies generally state the need to produce more barcodes, and control their quality, but unfortunately, the number of barcoded species is still low. However, to initiate real progress, we need to know where the gaps lie, how big they are and why they persist. Our aims were to draw and understand the current state of knowledge regarding species diversity, distribution, and barcode coverage, and offer solutions for improvement. In this study, we used two groups of aquatic insects, beetles and true bugs. We have compiled and critically evaluated an essentially complete and up-to-date European list, containing 1527 species. The list served as a basis for the barcode gap analyses in the Barcode-of-Life-Data-System (BOLD) conducted in three subsequent years (2020-2022). The overall barcode coverage of the pan-European fauna was around 50 % in both groups. The lowest coverage was in the Mediterranean, the Balkans and South-eastern Europe. The coverage in each country depended significantly on the local diversity, the number of rare, endemic species and the similarity of its fauna to that of the most active barcoding European countries. Gap analyses showed a very small increase in species coverage (<1 % in European aquatic beetles) despite an ~25 % increase in the number of barcodes. Hence, it is clear that future barcoding campaigns must prioritise quality over quantity. To visibly improve reference libraries, we need to increase the involvement of taxonomic experts and focus on targeted studies and underexplored but biodiversity-rich areas.
Collapse
Affiliation(s)
- Zoltán Csabai
- University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6, H7624 Pécs, Hungary; Masaryk University, Faculty of Sciences, Department of Zoology and Botany, Kotlářská 2, 62500 Brno, Czech Republic; Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, 8237 Tihany, Hungary.
| | - Zuzana Čiamporová-Zaťovičová
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Pál Boda
- Centre for Ecological Research, Institute of Aquatic Ecology, Bem tér 18/c, H4026 Debrecen, Hungary.
| | - Fedor Čiampor
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| |
Collapse
|
14
|
Han W, Tang H, Wei L, Zhang E. The first DNA barcode library of Chironomidae from the Tibetan Plateau with an evaluation of the status of the public databases. Ecol Evol 2023; 13:e9849. [PMID: 36861023 PMCID: PMC9969238 DOI: 10.1002/ece3.9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
The main aim of this study was to curate a COI barcode library of Chironomidae from the Tibetan Plateau (TP) as an essential supplement to the public database. Another aim is to evaluate the current status of the public database of Chironomidae in aspects of taxonomic coverage, geographic representation, barcode quality, and efficiency for molecular identification, the Tibetan Plateau, China. In this study, 512 individuals of Chironomidae from the TP were identified based on morphological taxonomy and barcode analysis. The metadata of public records of Chironomidae were downloaded from the BOLD, and the quality of the public barcodes was ranked using the BAGS program. The reliability of the public library for molecular identification was evaluated with the newly curated library using the BLAST method. The newly curated library comprised 159 barcode species of 54 genera, of which 58.4% of species were likely new to science. There were great gaps in the taxonomic coverage and geographic representation in the public database, and only 29.18% of barcodes were identified at the species level. The quality of the public database was of concern, with only 20% of species being determined as concordant between BINs and morphological species. The accuracy of molecular identification using the public database was poor, and about 50% of matched barcodes could be correctly identified at the species level at the identity threshold of 97%. Based on these data, some recommendations are included here for improving barcoding studies on Chironomidae. The species richness of Chironomidae from the TP is much higher than ever recorded. Barcodes from more taxonomic groups and geographic regions are urgently needed to fill the great gap in the current public database of Chironomidae. Users should take caution when public databases are adopted as reference libraries for the taxonomic assignment.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
- University of Chinese Academy of SciencesBeijing100039China
| | - Hongqu Tang
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Lili Wei
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
| |
Collapse
|
15
|
Massimino Cocuzza GE, Magoga G, Montagna M, Nieto Nafría JM, Barbagallo S. European and Mediterranean Myzocallidini Aphid Species: DNA Barcoding and Remarks on Ecology with Taxonomic Modifications in An Integrated Framework. INSECTS 2022; 13:1006. [PMID: 36354832 PMCID: PMC9693350 DOI: 10.3390/insects13111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The genus Myzocallis Passerini (Hemiptera, Aphididae, Calaphidinae, Myzocallidini) is a rather primitive group of aphids currently comprising 45 species and 3 subspecies, subdivided into ten subgenera, three of them having a West Palaearctic distribution. The majority of the species inhabit Fagales plants and some of them are considered pests. Despite their ecological interest and the presence of some taxonomic controversies, there are only a few molecular studies on the group. Here, the main aims were to develop a DNA barcodes library for the molecular identification of West Palaearctic Myzocallis species, to evaluate the congruence among their morphological, ecological and DNA-based delimitation, and verify the congruence of the subgeneric subdivision presently adopted by comparing the results with those obtained for other Panaphidini species. These study findings indicate that Myzocallis (Agrioaphis) leclanti, originally described as a subspecies of M. (A.) castanicola and M. (M.) schreiberi, considered as a subspecies of M. (M.) boerneri, should be regarded at a rank of full species, and the subgenera Agrioaphis, Lineomyzocallis, Neomyzocallis, Pasekia were elevated to the rank of genus, while Myzocallis remain as such.
Collapse
Affiliation(s)
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie ed Ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Matteo Montagna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | | | - Sebastiano Barbagallo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy
| |
Collapse
|
16
|
Pfitzer R, Varrelmann M, Hesse G, Eini O. Molecular Detection of Pentastiridius leporinus, the Main Vector of the Syndrome 'Basses Richesses' in Sugar Beet. INSECTS 2022; 13:992. [PMID: 36354816 PMCID: PMC9695866 DOI: 10.3390/insects13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Monitoring of Pentastiridius leporinus (Hemiptera: Auchenorrhyncha: Cixiidae), representing the main vector of the syndrome 'basses richesses' (SBR) disease in sugar beet is based on morphological identification. However, two other cixiid species, Reptalus quinquecostatus and Hyalesthes obsoletus with similar external characters are known to appear in sugar beet fields and are challenging to be distinguished from P. leporinus. We present a PCR-based method for species-specific detection of both male and female P. leporinus, directly after sweep net collection or after up to 18 months long term storage on sticky traps. Two methods of DNA template preparation, based on a commercial extraction kit or on simple grinding in phosphate-buffered saline (PBS) were compared. The latter method was also established for eggs and all five nymphal instars of P. leporinus from a rearing. Furthermore, in silico primer analysis showed that all Auchenorrhyncha species including far related species reported from sugar beet fields can be differentiated from P. leporinus. This was PCR-confirmed for the most common Auchenorrhyncha species from different German sugar beet fields. Sequence analysis of the P. leporinus mitochondrial cytochrome oxidase I gene (COI) amplicon showed a close relationship to COI from P. beieri but separated from the Reptalus and Hyalesthes species which are grouped into the same family Cixiidae. We present a sensitive, cost- and time-saving PCR-based method for reliable and specific detection of eggs and all nymphal instars, as well as male and female P. leporinus, after different methods of planthopper collection and template DNA template preparation that can be used in large scale monitoring assays.
Collapse
Affiliation(s)
- René Pfitzer
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Georgia Hesse
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Omid Eini
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| |
Collapse
|
17
|
Porter TM, Hajibabaei M. MetaWorks: A flexible, scalable bioinformatic pipeline for high-throughput multi-marker biodiversity assessments. PLoS One 2022; 17:e0274260. [PMID: 36174014 PMCID: PMC9521933 DOI: 10.1371/journal.pone.0274260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/24/2022] [Indexed: 01/04/2023] Open
Abstract
Multi-marker metabarcoding is increasingly being used to generate biodiversity information across different domains of life from microbes to fungi to animals such as for molecular ecology and biomonitoring applications in different sectors from academic research to regulatory agencies and industry. Current popular bioinformatic pipelines support microbial and fungal marker analysis, while ad hoc methods are often used to process animal metabarcode markers from the same study. MetaWorks provides a harmonized processing environment, pipeline, and taxonomic assignment approach for demultiplexed Illumina reads for all biota using a wide range of metabarcoding markers such as 16S, ITS, and COI. A Conda environment is provided to quickly gather most of the programs and dependencies for the pipeline. Several workflows are provided such as: taxonomically assigning exact sequence variants, provides an option to generate operational taxonomic units, and facilitates single-read processing. Pipelines are automated using Snakemake to minimize user intervention and facilitate scalability. All pipelines use the RDP classifier to provide taxonomic assignments with confidence measures. We extend the functionality of the RDP classifier for taxonomically assigning 16S (bacteria), ITS (fungi), and 28S (fungi), to also support COI (eukaryotes), rbcL (eukaryotes, land plants, diatoms), 12S (fish, vertebrates), 18S (eukaryotes, diatoms) and ITS (fungi, plants). MetaWorks properly handles ITS by trimming flanking conserved rRNA gene regions as well as protein coding genes by providing two options for removing obvious pseudogenes. MetaWorks can be downloaded from https://github.com/terrimporter/MetaWorks and quickstart instructions, pipeline details, and a tutorial for new users can be found at https://terrimporter.github.io/MetaWorksSite.
Collapse
Affiliation(s)
- Teresita M. Porter
- Centre for Biodiversity Genomics @ Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics @ Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Timm VF, Gonçalves LT, Valente V, Deprá M. The efficiency of the COI gene as a DNA barcode and an overview of Orthoptera (Caelifera and Ensifera) sequences in the BOLD System. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthoptera, among the oldest and most numerous insect lineages, is an excellent model for evolutionary studies but has numerous taxonomic problems. To mitigate these issues, the cytochrome c oxidase subunit I (COI), standardized with the DNA barcode for Metazoa, is increasingly used for specimen identification and species delimitation. We tested the performance of COI as a DNA barcode in Orthoptera, using two analyses based on intra- and interspecific distances, barcode gap and Probability of Correct Identification (PCI); and estimated species richness through Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP). We filtered all sequences of Orthoptera available in Barcode of Life Data System (BOLD) and used 11,605 COI sequences, covering 1,132 species, 226 genera, and 18 families. The overall average PCI was 73.86%. For 82.2% of genera the barcode gap boxplots were classified as good or intermediate, indicating that COI can be effective as a DNA barcode in Orthoptera, although with varying efficiency depending on the need for more information. ABGD and ASAP inferred species richness similar to labels informed by BOLD for the suborders Caelifera and Ensifera. The representation of Orthoptera in the BOLD database and the results of these analyses are discussed.
Collapse
Affiliation(s)
- Vítor Falchi Timm
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil
| | | | - V.l.S. Valente
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil,
| | | |
Collapse
|
19
|
Tata A, Massaro A, Marzoli F, Miano B, Bragolusi M, Piro R, Belluco S. Authentication of Edible Insects’ Powders by the Combination of DART-HRMS Signatures: The First Application of Ambient Mass Spectrometry to Screening of Novel Food. Foods 2022; 11:foods11152264. [PMID: 35954032 PMCID: PMC9368114 DOI: 10.3390/foods11152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
This feasibility study reports the use of direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) in profiling the powders from edible insects, as well as the potential for the identification of different insect species by classification modeling. The basis of this study is the revolution that has occurred in the field of analytical chemistry, with the improved capability of ambient mass spectrometry to authenticate food matrices. In this study, we applied DART-HRMS, coupled with mid-level data fusion and a learning method, to discriminate between Acheta domesticus (house cricket), Tenebrio molitor (yellow mealworm), Locusta migratoria (migratory locust), and Bombyx mori (silk moth). A distinct metabolic fingerprint was observed for each edible insect species, while the Bombyx mori fingerprint was characterized by highly abundant linolenic acid and quinic acid; palmitic and oleic acids are the statistically predominant fatty acids in black soldier fly (Hermetia illucens). Our chemometrics also revealed that the amino acid proline is a discriminant molecule in Tenebrio molitor, whereas palmitic and linoleic acids are the most informative molecular features of the house cricket (Acheta domesticus). Good separation between the four different insect species was achieved, and cross-validation gave 100% correct identification for all training samples. The performance of the random forest classifier was examined on a test set and produced excellent results, in terms of overall accuracy, sensitivity, and specificity. These results demonstrate the reliability of the DART-HRMS as a screening method in a future quality control scenario to detect complete substitution of insect powders.
Collapse
Affiliation(s)
- Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (R.P.)
- Correspondence:
| | - Andrea Massaro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (R.P.)
| | - Filippo Marzoli
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (F.M.); (S.B.)
| | - Brunella Miano
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (R.P.)
| | - Marco Bragolusi
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (R.P.)
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (R.P.)
| | - Simone Belluco
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (F.M.); (S.B.)
| |
Collapse
|
20
|
Stein F, Wagner S, Bräsicke N, Gailing O, Moura CCM, Götz M. A Non-Destructive High-Speed Procedure to Obtain DNA Barcodes from Soft-Bodied Insect Samples with a Focus on the Dipteran Section of Schizophora. INSECTS 2022; 13:insects13080679. [PMID: 36005305 PMCID: PMC9409269 DOI: 10.3390/insects13080679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
While the need for biodiversity research is growing, paradoxically, global taxonomical expertise is decreasing as a result of the neglected funding for young academics in taxonomy. Non-destructive approaches for DNA barcoding are necessary for a more efficient use of this dwindling expertise to fill gaps, and identify incorrect entries in sequence databases like BOLD or GenBank. They are efficient because morphological re-examination of species vouchers is still possible post-DNA barcoding. Non-destructive approaches for Diptera with a comprehensive species representation or the consideration of diagnostic fragile morphological characters are missing. Additionally, most non-destructive approaches combine a time intensive and non-destructive digestion step with common DNA extraction methods, such as commercial kits or CTAB DNA isolation. We circumvented those approaches and combined a modified non-destructive TE buffer high-speed DNA extraction, with a PCR inhibitor-resistant PCR reaction system, to a non-destructive DNA barcoding procedure for fresh and frozen samples of the Schizophora (Diptera). This method avoids morphological impairment and the application of harmful chemicals, is cost and time effective, restricts the need for laboratory equipment to a minimum, and prevents cross-contamination risk during DNA isolation. Moreover, the study indicates that the presented non-destructive DNA barcoding procedure is transferable to other soft-bodied insects. We suggest that PCR inhibitor-resistant master mixes enable the development of new—and the modification of existing—non-destructive approaches with the avoidance of further DNA template cleaning.
Collapse
Affiliation(s)
- Frederik Stein
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn Institute, 38014 Braunschweig, Germany; (S.W.); (N.B.); (M.G.)
- Correspondence: ; Tel.: +49-(0)-3946-47-4010
| | - Stefan Wagner
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn Institute, 38014 Braunschweig, Germany; (S.W.); (N.B.); (M.G.)
| | - Nadine Bräsicke
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn Institute, 38014 Braunschweig, Germany; (S.W.); (N.B.); (M.G.)
| | - Oliver Gailing
- Büsgen Institute, Forest Genetics and Forest Tree Breeding, University of Göttingen, 37073 Göttingen, Germany; (O.G.); (C.C.M.M.)
| | - Carina C. M. Moura
- Büsgen Institute, Forest Genetics and Forest Tree Breeding, University of Göttingen, 37073 Göttingen, Germany; (O.G.); (C.C.M.M.)
| | - Monika Götz
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn Institute, 38014 Braunschweig, Germany; (S.W.); (N.B.); (M.G.)
| |
Collapse
|
21
|
Colour Response in Western Flower Thrips Varies Intraspecifically. INSECTS 2022; 13:insects13060538. [PMID: 35735875 PMCID: PMC9224597 DOI: 10.3390/insects13060538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Discrepancies in the published research as to the attraction of the economically important pest western flower thrips (WFT) to different colours confounds the optimisation of field traps for pest management purposes. We considered whether the different experimental conditions of independent studies could have contributed to this. Therefore, the behavioural response (i.e., landings) to different colour cues of two WFT laboratory populations from Germany (DE) and The Netherlands (NL), which had previously been independently shown to have different colour preferences, were tested in the same place, and under the same experimental conditions. Single-choice wind tunnel bioassays supported previous independent findings, with more of a NL population landing on the yellow LED lamp (588 nm) than the blue (470 nm) (p = 0.022), and a not-statistically significant trend observed in a DE population landing more on blue compared to yellow (p = 0.104). To account for potential original host rearing influences, both populations were subsequently established on bean for ~20 weeks, then yellow chrysanthemum for 4−8 and 12−14 weeks and tested in wind tunnel choice bioassays. Laboratory of origin, irrespective of the host plant rearing regime, remained a significant effect (p < 0.001), with 65% of the NL WFT landing on yellow compared to blue (35%), while 66% of the DE WFT landed on blue compared to yellow (34%). There was also a significant host plant effect (p < 0.001), with increased response to yellow independent of laboratory of origin after rearing on chrysanthemum for 12−14 weeks. Results suggest that differing responses of WFT populations to colour is, in this case, independent of the experimental situation. Long-term separate isolation from the wild cannot be excluded as a cause, and the implications of this for optimising the trap colour is discussed.
Collapse
|
22
|
Exploring Large-Scale Patterns of Genetic Variation in the COI Gene among Insecta: Implications for DNA Barcoding and Threshold-Based Species Delimitation Studies. INSECTS 2022; 13:insects13050425. [PMID: 35621761 PMCID: PMC9147995 DOI: 10.3390/insects13050425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
The genetic variation in the COI gene has had a great effect on the final results of species delimitation studies. However, little research has comprehensively investigated the genetic divergence in COI among Insecta. The fast-growing COI data in BOLD provide an opportunity for the comprehensive appraisal of the genetic variation in COI among Insecta. We calculated the K2P distance of 64,414 insect species downloaded from BOLD. The match ratios of the clustering analysis, based on different thresholds, were also compared among 4288 genera (35,068 species). The results indicate that approximately one-quarter of the species of Insecta showed high intraspecific genetic variation (>3%), and a conservative estimate of this proportion ranges from 12.05% to 22.58%. The application of empirical thresholds (e.g., 2% and 3%) in the clustering analysis may result in the overestimation of the species diversity. If the minimum interspecific genetic distance of the congeneric species is greater than or equal to 2%, it is possible to avoid overestimating the species diversity on the basis of the empirical thresholds. In comparison to the fixed thresholds, the “threshOpt” and “localMinima” algorithms are recommended for the provision of a reference threshold for threshold-based species delimitation studies.
Collapse
|
23
|
Ashfaq M, Khan AM, Rasool A, Akhtar S, Nazir N, Ahmed N, Manzoor F, Sones J, Perez K, Sarwar G, Khan AA, Akhter M, Saeed S, Sultana R, Tahir HM, Rafi MA, Iftikhar R, Naseem MT, Masood M, Tufail M, Kumar S, Afzal S, McKeown J, Samejo AA, Khaliq I, D’Souza ML, Mansoor S, Hebert PDN. A DNA barcode survey of insect biodiversity in Pakistan. PeerJ 2022; 10:e13267. [PMID: 35497186 PMCID: PMC9048642 DOI: 10.7717/peerj.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 01/15/2023] Open
Abstract
Although Pakistan has rich biodiversity, many groups are poorly known, particularly insects. To address this gap, we employed DNA barcoding to survey its insect diversity. Specimens obtained through diverse collecting methods at 1,858 sites across Pakistan from 2010-2019 were examined for sequence variation in the 658 bp barcode region of the cytochrome c oxidase 1 (COI) gene. Sequences from nearly 49,000 specimens were assigned to 6,590 Barcode Index Numbers (BINs), a proxy for species, and most (88%) also possessed a representative image on the Barcode of Life Data System (BOLD). By coupling morphological inspections with barcode matches on BOLD, every BIN was assigned to an order (19) and most (99.8%) were placed to a family (362). However, just 40% of the BINs were assigned to a genus (1,375) and 21% to a species (1,364). Five orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) accounted for 92% of the specimens and BINs. More than half of the BINs (59%) are so far only known from Pakistan, but others have also been reported from Bangladesh (13%), India (12%), and China (8%). Representing the first DNA barcode survey of the insect fauna in any South Asian country, this study provides the foundation for a complete inventory of the insect fauna in Pakistan while also contributing to the global DNA barcode reference library.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Arif M. Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Akhtar Rasool
- Centre for Animal Sciences and Fisheries, University of Swat, Mingora, Pakistan
| | - Saleem Akhtar
- Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naila Nazir
- Department of Entomology, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Nazeer Ahmed
- Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Jayme Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Kate Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Azhar A. Khan
- College of Agriculture, Bahauddin Zakariya University Bahadur Campus, Layyah, Pakistan
| | - Muhammad Akhter
- Pulses Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shafqat Saeed
- Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Riffat Sultana
- Department of Zoology, University of Sindh, Jamshoro, Pakistan
| | | | - Muhammad A. Rafi
- National Insect Museum, National Agricultural Research Center, Islamabad, Pakistan
| | - Romana Iftikhar
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Mariyam Masood
- Government College Women University Faisalabad, Faisalabad, Pakistan
| | | | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Sabila Afzal
- Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Jaclyn McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | | | | | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
24
|
Totonchian N, Seiedy M, Katouzian AR, Husemann M. First DNA barcodes of Bembidion species (Coleoptera: Carabidae) from Iran. J NAT HIST 2022. [DOI: 10.1080/00222933.2021.2002454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Niloofar Totonchian
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Ahmad-Reza Katouzian
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Martin Husemann
- Leibniz Institut zur Analyse des Biodiversitätswandels, Standort Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Boza BR, Cruz VP, Stabile G, Rotundo MM, Foresti F, Oliveira C. Mini DNA barcodes reveal the details of the foraging ecology of the largehead hairtail, Trichiurus lepturus (Scombriformes: Trichiuridae), from São Paulo, Brazil. NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2021-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The largehead hairtail, Trichiurus lepturus, is an opportunistic, voracious, and piscivorous predator. Studies of fish feeding behavior based on the analysis of stomach contents are limited by the potential for the visual identification of the ingesta. However, molecular tools, in particular DNA barcoding, have been used successfully to identify stomach contents. When morphological analyses are not possible, molecular tools can precisely identify the components of the diet of a fish based on its stomach contents. This study used mini barcoding to identify food items ingested by T. lepturus off the northern coast of São Paulo State, Brazil. Forty-six sequences were obtained and were diagnosed as belonging to six different fish species: Pimelodus maculatus, Paralonchurus brasiliensis, Isopisthus parvipinnis, Opisthonema oglinum, Harengula clupeola, and Pellona harroweri or as belonging to the genera Lycengraulis and Sardinella. Trichiurus lepturus is an opportunistic predator that will exploit an available prey of an appropriate size. The results indicate that these fish migrate to warmer waters, such as those found in estuarine environments, at certain times of the year, where they exploit prey species that reproduce in this environment. One example was Pimelodus maculatus, which was the prey species most exploited based on the analysis of the material collected.
Collapse
Affiliation(s)
- Beatriz R. Boza
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | - Vanessa P. Cruz
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | | | - Fausto Foresti
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | |
Collapse
|
26
|
Surveillance along the Rio Grande during the 2020 Vesicular Stomatitis Outbreak Reveals Spatio-Temporal Dynamics of and Viral RNA Detection in Black Flies. Pathogens 2021; 10:pathogens10101264. [PMID: 34684213 PMCID: PMC8541391 DOI: 10.3390/pathogens10101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
Vesicular stomatitis virus (VSV) emerges periodically from its focus of endemic transmission in southern Mexico to cause epizootics in livestock in the US. The ecology of VSV involves a diverse, but largely undefined, repertoire of potential reservoir hosts and invertebrate vectors. As part of a larger program to decipher VSV transmission, we conducted a study of the spatiotemporal dynamics of Simulium black flies, a known vector of VSV, along the Rio Grande in southern New Mexico, USA from March to December 2020. Serendipitously, the index case of VSV-Indiana (VSIV) in the USA in 2020 occurred at a central point of our study. Black flies appeared soon after the release of the Rio Grande’s water from an upstream dam in March 2020. Two-month and one-year lagged precipitation, maximum temperature, and vegetation greenness, measured as Normalized Difference Vegetation Index (NDVI), were associated with increased black fly abundance. We detected VSIV RNA in 11 pools comprising five black fly species using rRT-PCR; five pools yielded a VSIV sequence. To our knowledge, this is the first detection of VSV in the western US from vectors that were not collected on premises with infected domestic animals.
Collapse
|
27
|
DNA Barcode is Efficient for Identifying Bat Species. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Meier R, Blaimer BB, Buenaventura E, Hartop E, von Rintelen T, Srivathsan A, Yeo D. A re-analysis of the data in Sharkey et al.'s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science. Cladistics 2021; 38:264-275. [PMID: 34487362 DOI: 10.1111/cla.12489] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Halting biodiversity decline is one of the most critical challenges for humanity, but monitoring biodiversity is hampered by taxonomic impediments. One impediment is the large number of undescribed species (here called "dark taxon impediment") whereas another is caused by the large number of superficial species descriptions, that can only be resolved by consulting type specimens ("superficial description impediment"). Recently, Sharkey et al. (2021) proposed to address the dark taxon impediment for Costa Rican braconid wasps by describing 403 species based on COI barcode clusters ("BINs") computed by BOLD Systems. More than 99% of the BINs (387 of 390) were converted into species by assigning binominal names (e.g. BIN "BOLD:ACM9419" becomes Bracon federicomatarritai) and adding a minimal diagnosis (consisting only of a consensus barcode for most species). We here show that many of Sharkey et al.'s species are unstable when the underlying data are analyzed using different species delimitation algorithms. Add the insufficiently informative diagnoses, and many of these species will become the next "superficial description impediment" for braconid taxonomy because they will have to be tested and redescribed after obtaining sufficient evidence for confidently delimiting species. We furthermore show that Sharkey et al.'s approach of using consensus barcodes as diagnoses is not functional because it cannot be applied consistently. Lastly, we reiterate that COI alone is not suitable for delimiting and describing species, and voice concerns over Sharkey et al.'s uncritical use of BINs because they are calculated by a proprietary algorithm (RESL) that uses a mixture of public and private data. We urge authors, reviewers and editors to maintain high standards in taxonomy by only publishing new species that are rigorously delimited with open-access tools and supported by publicly available evidence.
Collapse
Affiliation(s)
- Rudolf Meier
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
| | - Bonnie B Blaimer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
| | - Eliana Buenaventura
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
| | - Emily Hartop
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
| | - Amrita Srivathsan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Darren Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
29
|
Young MR, deWaard JR, Hebert PDN. DNA barcodes enable higher taxonomic assignments in the Acari. Sci Rep 2021; 11:15922. [PMID: 34354125 PMCID: PMC8342613 DOI: 10.1038/s41598-021-95147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
Although mites (Acari) are abundant in many terrestrial and freshwater ecosystems, their diversity is poorly understood. Since most mite species can be distinguished by variation in the DNA barcode region of cytochrome c oxidase I, the Barcode Index Number (BIN) system provides a reliable species proxy that facilitates large-scale surveys. Such analysis reveals many new BINs that can only be identified as Acari until they are examined by a taxonomic specialist. This study demonstrates that the Barcode of Life Datasystem's identification engine (BOLD ID) generally delivers correct ordinal and family assignments from both full-length DNA barcodes and their truncated versions gathered in metabarcoding studies. This result was demonstrated by examining BOLD ID's capacity to assign 7021 mite BINs to their correct order (4) and family (189). Identification success improved with sequence length and taxon coverage but varied among orders indicating the need for lineage-specific thresholds. A strict sequence similarity threshold (86.6%) prevented all ordinal misassignments and allowed the identification of 78.6% of the 7021 BINs. However, higher thresholds were required to eliminate family misassignments for Sarcoptiformes (89.9%), and Trombidiformes (91.4%), consequently reducing the proportion of BINs identified to 68.6%. Lineages with low barcode coverage in the reference library should be prioritized for barcode library expansion to improve assignment success.
Collapse
Affiliation(s)
- Monica R Young
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
30
|
Habib KA, Neogi AK, Rahman M, Oh J, Lee YH, Kim CG. DNA barcoding of brackish and marine water fishes and shellfishes of Sundarbans, the world's largest mangrove ecosystem. PLoS One 2021; 16:e0255110. [PMID: 34339426 PMCID: PMC8328341 DOI: 10.1371/journal.pone.0255110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aims to apply a DNA barcoding tool through amplifying two mitochondrial candidate genes i.e., COI and 16S rRNA for accurate identification of fish, aquatic molluscs and crustaceans of Sundarbans mangrove wetland, to build a reference library of fish and shellfishes of this unique ecosystems. A total of 185 mitochondrial COI barcode sequences and 59 partial sequences of the 16S rRNA gene were obtained from 120 genera, 65 families and 21 orders of fish, crustaceans and molluscs. The collected samples were first identified by examining morphometric characteristics and then assessed by DNA barcoding. The COI and 16S rRNA sequences of fishes and crustaceans were clearly discriminated among genera in their phylogenies. The average Kimura two-parameter (K2P) distances of COI barcode sequences within species, genera, and families of fishes are 1.57±0.06%, 15.16±0.23%, and 17.79±0.02%, respectively, and for 16S rRNA sequences, these values are 1.74±.8%, 0.97±.8%, and 4.29±1.3%, respectively. The minimum and maximum K2P distance based divergences in COI sequences of fishes are 0.19% and 36.27%, respectively. In crustaceans, the K2P distances within genera, families, and orders are 1.4±0.03%, 17.73±0.15%, and 22.81±0.02%, respectively and the minimum and maximum divergences are 0.2% and 33.93%, respectively. Additionally, the present study resolves the misidentification of the mud crab species of the Sundarbans as Scylla olivacea which was previously stated as Scylla serrata. In case of molluscs, values of interspecific divergence ranges from 17.43% to 66.3% in the barcoded species. The present study describes the development of a molecular and morphometric cross-referenced inventory of fish and shellfish of the Sundarbans. This inventory will be useful in future biodiversity studies and in forming future conservation plan.
Collapse
Affiliation(s)
- Kazi Ahsan Habib
- Faculty of Fisheries, Department of Fisheries Biology and Genetics, Aquaculture and Marine Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- Department of Fisheries Biology and Genetics, Aquatic Bioresource Research Lab, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- * E-mail: ,
| | - Amit Kumer Neogi
- Department of Fisheries Biology and Genetics, Aquatic Bioresource Research Lab, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Muntasir Rahman
- Department of Biological Science, Wayne State University, Detroit, Michigan, United States of America
| | - Jina Oh
- Marine Biology and Biological Oceanography Division, Korea Institute of Ocean Science and Technology (KIOST), Busan, Korea
| | - Youn-Ho Lee
- Marine Biology and Biological Oceanography Division, Korea Institute of Ocean Science and Technology (KIOST), Busan, Korea
| | - Choong-Gon Kim
- Marine Biology and Biological Oceanography Division, Korea Institute of Ocean Science and Technology (KIOST), Busan, Korea
| |
Collapse
|
31
|
Attiná N, Núñez Bustos EO, Lijtmaer DA, Hebert PDN, Tubaro PL, Lavinia PD. Genetic variation in neotropical butterflies is associated with sampling scale, species distributions, and historical forest dynamics. Mol Ecol Resour 2021; 21:2333-2349. [PMID: 34097821 DOI: 10.1111/1755-0998.13441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Previous studies of butterfly diversification in the Neotropics have focused on Amazonia and the tropical Andes, while southern regions of the continent have received little attention. To address the gap in knowledge about the Lepidoptera of temperate South America, we analysed over 3000 specimens representing nearly 500 species from Argentina for a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Representing 42% of the country's butterfly fauna, collections targeted species from the Atlantic and Andean forests, and biodiversity hotspots that were previously connected but are now isolated. We assessed COI effectiveness for species discrimination and identification and how its performance was affected by geographic distances and taxon coverage. COI data also allowed to study patterns of genetic variation across Argentina, particularly between populations in the Atlantic and Andean forests. Our results show that COI discriminates species well, but that identification success is reduced on average by ~20% as spatial and taxonomic coverage rises. We also found that levels of genetic variation are associated with species' spatial distribution type, a pattern which might reflect differences in their dispersal and colonization abilities. In particular, intraspecific distance between populations in the Atlantic and Andean forests was significantly higher in species with disjunct distributions than in those with a continuous range. All splits between lineages in these forests dated to the Pleistocene, but divergence dates varied considerably, suggesting that historical connections between the Atlantic and Andean forests have differentially affected their shared butterfly fauna. Our study supports the fact that large-scale assessments of mitochondrial DNA variation are a powerful tool for evolutionary studies.
Collapse
Affiliation(s)
- Natalí Attiná
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Ezequiel O Núñez Bustos
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A Lijtmaer
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Pablo L Tubaro
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Pablo D Lavinia
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina.,Universidad Nacional de Río Negro. CIT Río Negro (UNRN-CONICET). Sede Atlántica, Viedma, Río Negro, Viedma, Argentina
| |
Collapse
|
32
|
Yang C, Bohmann K, Wang X, Cai W, Wales N, Ding Z, Gopalakrishnan S, Yu DW. Biodiversity Soup II: A bulk‐sample metabarcoding pipeline emphasizing error reduction. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Kristine Bohmann
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Xiaoyang Wang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Wang Cai
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Nathan Wales
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Archaeology University of York York UK
| | - Zhaoli Ding
- Biodiversity Genomics Center Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
- School of Biological Sciences University of East AngliaNorwich Research Park Norwich UK
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
33
|
Hleap JS, Littlefair JE, Steinke D, Hebert PDN, Cristescu ME. Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Mol Ecol Resour 2021; 21:2190-2203. [PMID: 33905615 DOI: 10.1111/1755-0998.13407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023]
Abstract
The effective use of metabarcoding in biodiversity science has brought important analytical challenges due to the need to generate accurate taxonomic assignments. The assignment of sequences to genus or species level is critical for biodiversity surveys and biomonitoring, but it is particularly challenging as researchers must select the approach that best recovers information on species composition. This study evaluates the performance and accuracy of seven methods in recovering the species composition of mock communities by using COI barcode fragments. The mock communities varied in species number and specimen abundance, while upstream molecular and bioinformatic variables were held constant, and using a set of COI fragments. We evaluated the impact of parameter optimization on the quality of the predictions. Our results indicate that BLAST top hit competes well with more complex approaches if optimized for the mock community under study. For example, the two machine learning methods that were benchmarked proved more sensitive to reference database heterogeneity and completeness than methods based on sequence similarity. The accuracy of assignments was impacted by both species and specimen counts (query compositional heterogeneity) which ultimately influence the selection of appropriate software. We urge researchers to: (i) use realistic mock communities to allow optimization of parameters, regardless of the taxonomic assignment method employed; (ii) carefully choose and curate the reference databases including completeness; and (iii) use QIIME, BLAST or LCA methods, in conjunction with parameter tuning to better assign taxonomy to diverse communities, especially when information on species diversity is lacking for the area under study.
Collapse
Affiliation(s)
- Jose S Hleap
- Department of Biology, McGill University, Montreal, QC, Canada.,SHARCNET, University of Guelph, Guelph, ON, Canada.,Fundacion SQUALUS, Cali, Colombia
| | - Joanne E Littlefair
- Department of Biology, McGill University, Montreal, QC, Canada.,Queen Mary University of London, London, UK
| | - Dirk Steinke
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
34
|
Valdivia-Carrillo T, Rocha-Olivares A, Reyes-Bonilla H, Domínguez-Contreras JF, Munguia-Vega A. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Mol Ecol Resour 2021; 21:1558-1574. [PMID: 33683812 DOI: 10.1111/1755-0998.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/01/2022]
Abstract
Marine biodiversity can be surveyed using underwater visual censuses and recently with eDNA metabarcoding. Although a promising tool, eDNA studies have shown contrasting results related to its detection scale and the number of species identified compared to other survey methods. Also, its accuracy relies on complete reference databases used for taxonomic assignment and, as other survey methods, species detection may show false-negative and false-positive errors. Here, we compared results from underwater visual censuses and simultaneous eDNA metabarcoding fish surveys in terms of observed species and community composition. We also assess the effect of a custom reference database in the taxonomic assignment, and evaluate occupancy, capture and detection probabilities, as well as error rates of eDNA survey data. We amplified a 12S rRNA fish barcode from 24 sampling sites in the gulf of California. More species were detected with eDNA metabarcoding than with UVC. Because each survey method largely detected different sets of species, the combined approach doubled the number of species registered. Both survey methods recovered a known biodiversity gradient and a biogeographic break, but eDNA captured diversity over a broader geographic and bathymetric scale. Furthermore, the use of a modest-sized custom reference database significantly increased taxonomic assignment. In a subset of species, occupancy models revealed eDNA surveys provided similar or higher detection probabilities compared to UVC. The occupancy value of each species had a large influence on eDNA detectability, and in the false positive and negative error. Overall, these results highlight the potential of eDNA metabarcoding in complementing other established ecological methods for studies of marine fishes.
Collapse
Affiliation(s)
- Tania Valdivia-Carrillo
- Laboratorio de Ecología Molecular, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California Sur, México.,Lab Applied Genomics, La Paz, Baja California Sur, México
| | - Axayácatl Rocha-Olivares
- Laboratorio de Ecología Molecular, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California Sur, México
| | - Héctor Reyes-Bonilla
- Laboratorio de Sistemas Arrecifales, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, México
| | | | - Adrian Munguia-Vega
- Conservation Genetics Laboratory & Desert Laboratory on Tumamoc Hill, The University of Arizona, Tucson, AZ, USA.,Lab Applied Genomics, La Paz, Baja California Sur, México
| |
Collapse
|
35
|
Bernaola L, Darlington M, Britt K, Prade P, Roth M, Pekarcik A, Boone M, Ricke D, Tran A, King J, Carruthers K, Thompson M, Ternest JJ, Anderson SE, Gula SW, Hauri KC, Pecenka JR, Grover S, Puri H, Vakil SG. Technological Advances to Address Current Issues in Entomology: 2020 Student Debates. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:18. [PMID: 33908604 PMCID: PMC8080135 DOI: 10.1093/jisesa/ieab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The 2020 Student Debates of the Entomological Society of America (ESA) were live-streamed during the Virtual Annual Meeting to debate current, prominent entomological issues of interest to members. The Student Debates Subcommittee of the National ESA Student Affairs Committee coordinated the student efforts throughout the year and hosted the live event. This year, four unbiased introductory speakers provided background for each debate topic while four multi-university teams were each assigned a debate topic under the theme 'Technological Advances to Address Current Issues in Entomology'. The two debate topics selected were as follows: 1) What is the best taxonomic approach to identify and classify insects? and 2) What is the best current technology to address the locust swarms worldwide? Unbiased introduction speakers and debate teams began preparing approximately six months before the live event. During the live event, teams shared their critical thinking and practiced communication skills by defending their positions on either taxonomical identification and classification of insects or managing the damaging outbreaks of locusts in crops.
Collapse
Affiliation(s)
- Lina Bernaola
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Molly Darlington
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kadie Britt
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patricia Prade
- Department of Entomology and Nematology, University of Florida, Fort Pierce, FL 34945, USA
| | - Morgan Roth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Adrian Pekarcik
- Department of Entomology, The Ohio State University, Wooster, OH 44691, USA
| | - Michelle Boone
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Dylan Ricke
- Department of Entomology, The Ohio State University, Wooster, OH 44691, USA
| | - Anh Tran
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Joanie King
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Kelly Carruthers
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA
| | - Morgan Thompson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - John J Ternest
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA
| | - Sarah E Anderson
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA
| | - Scott W Gula
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jacob R Pecenka
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Surabhi Gupta Vakil
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
36
|
Leonard A, Khamis FM, Egonyu JP, Kyamanywa S, Ekesi S, Tanga CM, Copeland RS, Subramanian S. Identification of Edible Short- and Long-Horned Grasshoppers and Their Host Plants in East Africa. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2150-2162. [PMID: 33063829 DOI: 10.1093/jee/toaa166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information on the edible grasshoppers and their host plants in East Africa. This study adopted morphological and molecular analysis to identify edible grasshoppers in Kenya and Uganda. The associated host plants were identified through molecular analysis of the gut contents of the grasshoppers. The cytochrome b and 16s gene primers were used for grasshopper DNA analysis; while matK gene primers were used for plant DNA analysis. All long-horned grasshoppers sampled were identified as Ruspolia differens (Serville) (Orthoptera: Tettigonidae); whereas short-horned grasshoppers were identified as Acanthacris ruficornis (Fabricius) (Orthoptera: Acrididae) and Cyrtacanthacris tatarica (L.) (Orthoptera: Acrididae). Host plants of A. ruficornis were Achyranthes aspera (L.), Centella virgata L.f. Drude, Digitaria gayana (Kunth), Galinsoga quadriradiata Ruiz and Pavon, and Triumfetta pilosa Roth; whereas those of C. tatarica were Alysicarpus rugosus (Willd.) DC and Teramnus uncinatus (L.) SW. Host plants of R. differens were Ageratum conyzoides (L.), Citrus depressa Hayata, Cynodon dactylon (L.), D. gayana, Eragrostis mexicana Hornem, Eucalyptus saligna SM., Indigofera arrecta Hochst. ex A. Rich., Persicaria nepalensis (L.), and Sorghum halepense (L.). Information on the host plants of edible grasshoppers can help in the development of their mass rearing protocols.
Collapse
Affiliation(s)
- Alfonce Leonard
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Agricultural Production, Makerere University, Kampala, Uganda
- Tanzania Agricultural Research Institute (TARI)-Ukiriguru, Mwanza, Tanzania
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - James P Egonyu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Samuel Kyamanywa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Robert S Copeland
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- U.S. National Museum of Natural History, Smithsonian Institution, Washington, DC
| | | |
Collapse
|
37
|
Candia-Ramírez DT, Francke OF. Another stripe on the tiger makes no difference? Unexpected diversity in the widespread tiger tarantula Davus pentaloris (Araneae: Theraphosidae: Theraphosinae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Integrative taxonomy is relevant for the discovery and delimitation of cryptic species by incorporating different sources of evidence to construct rigorous species hypotheses. The genus Davus was recently revised and it was found that Davus pentaloris presents high morphological variation across its widespread distribution. However, tarantulas usually present low dispersal capabilities that occasionally result in local endemism. In order to evaluate species boundaries within this taxon, we examine the morphological variation and, additionally, employ four strategies based on mtDNA data (COI): two distance-based [automatic barcode gap discovery (ABGD) and Neighbor-Joining (NJ)] and two tree-based methods [general mixed Yule coalescent (GMYC) and Bayesian Poisson tree process (bPTP)]. Available morphological evidence recovers 13 putative morphospecies, but the different methods based on molecular data recover a variable number of candidate species (16–18). Based on the congruence across all analyses and the available morphological data, we recognize 13 clearly diagnosable species, 12 of them new to science. We conclude that the underestimation of the diversity in D. pentaloris was mainly caused by deficient practices in taxonomy, rather than by the presence of cryptic diversity. Although COI is a functional barcoding marker and it gives reliable results in our study, we recommend combining multiple sources of evidence and strategies to construct better species delimitation hypotheses.
Collapse
Affiliation(s)
- Daniela T Candia-Ramírez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510 Coyoacán, Mexico City, Mexico
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Oscar F Francke
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| |
Collapse
|
38
|
Gojković N, Francuski L, Ludoški J, Milankov V. DNA barcode assessment and population structure of aphidophagous hoverfly Sphaerophoria scripta: Implications for conservation biological control. Ecol Evol 2020; 10:9428-9443. [PMID: 32953072 PMCID: PMC7487226 DOI: 10.1002/ece3.6631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
With the advent of integrated pest management, the conservation of indigenous populations of natural enemies of pest species has become a relevant practice, necessitating the accurate identification of beneficial species and the inspection of evolutionary mechanisms affecting the long-time persistence of their populations. The long hoverfly, Sphaerophoria scripta, represents one of the most potent aphidophagous control agents due to a worldwide distribution and a favorable constellation of biological traits. Therefore, we assessed five European S. scripta populations by combining molecular (cytochrome c oxidase subunit I- COI, internal transcribed spacer 2- ITS2, and allozyme loci) and morphological (wing size and shape) characters. COI sequences retrieved in this study were conjointly analyzed with BOLD/GenBank sequences of the other Sphaerophoria species to evaluate whether COI possessed a sufficient diagnostic value as a DNA barcode marker to consistently delimit allospecific individuals. Additionally, the aforementioned characters were used to inspect the population structure of S. scripta in Europe using methods based on individual- and population-based genetic differences, as well as geometric morphometrics of wing traits. The results indicate numerous shared COI haplotypes among different Sphaerophoria species, thus disqualifying this marker from being an adequate barcoding region in this genus. Conversely, the analyses of population structuring revealed high population connectivity across Europe, therefore indicating strong tolerance of S. scripta to environmental heterogeneity. The results imply a multilocus approach as the next step in molecular identification of different Sphaerophoria species, while confirming the status of S. scripta as a powerful biocontrol agent of economically relevant aphid pests.
Collapse
Affiliation(s)
- Nemanja Gojković
- Faculty of SciencesDepartment of Biology and EcologyUniversity of Novi SadNovi SadSerbia
| | - Ljubinka Francuski
- Faculty of SciencesDepartment of Biology and EcologyUniversity of Novi SadNovi SadSerbia
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jasmina Ludoški
- Faculty of SciencesDepartment of Biology and EcologyUniversity of Novi SadNovi SadSerbia
| | - Vesna Milankov
- Faculty of SciencesDepartment of Biology and EcologyUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
39
|
Piemontese L, Giovannini I, Guidetti R, Pellegri G, Dioli P, Maistrello L, Rebecchi L, Cesari M. The species identification problem in mirids (Hemiptera: Heteroptera) highlighted by DNA barcoding and species delimitation studies. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1773948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- L. Piemontese
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - I. Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R. Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G. Pellegri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - P. Dioli
- Department of Entomology, Museo Civico di Storia Naturale di Milano, Milan, Italy
| | - L. Maistrello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - L. Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M. Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Schär S, Menchetti M, Schifani E, Hinojosa JC, Platania L, Dapporto L, Vila R. Integrative biodiversity inventory of ants from a Sicilian archipelago reveals high diversity on young volcanic islands (Hymenoptera: Formicidae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Buchner D, Leese F. BOLDigger – a Python package to identify and organise sequences with the Barcode of Life Data systems. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.53535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA metabarcoding workflows produce hundreds to ten-thousands of Operational Taxonomic Units (OTUs) or Exact Sequence Variants (ESVs) per analysis. In most workflows, a taxonomic assignment to these generated sequences is needed. This is typically done using publicly available databases. Especially, yet not exclusively, for Eumetazoan metabarcoding, the Barcode of Life Data system (BOLD) is the most comprehensive and curated reference barcode database and, therefore, typically the first choice for taxonomic assignment. While an application programme interface (API) exists to query data in large batches, no information on the many and important unpublished data are obtained through the API. The alternative approach using the BOLD identification engine on the website provides full access, yet it is restricted to 100 sequences at once. We developed a small platform-independent and graphical user interface (GUI) software package, BOLDigger, which aims to solve this problem by automating the process of sending successive requests of up to 100 sequences without surpassing the capacities of BOLD. BOLDigger can be used to download the results of the identification engine, as well as metadata for the obtained hits. For the selection of the best fitting hit, three different methods are implemented. A new approach, combining a threshold-based approach with the metadata information, was implemented to make use of the metadata.
Collapse
|
42
|
Salvi D, Berrilli E, D'Alessandro P, Biondi M. Sharpening the DNA barcoding tool through a posteriori taxonomic validation: The case of Longitarsus flea beetles (Coleoptera: Chrysomelidae). PLoS One 2020; 15:e0233573. [PMID: 32437469 PMCID: PMC7241800 DOI: 10.1371/journal.pone.0233573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
The accuracy of the DNA barcoding tool depends on the existence of a comprehensive archived library of sequences reliably determined at species level by expert taxonomists. However, misidentifications are not infrequent, especially following large-scale DNA barcoding campaigns on diverse and taxonomically complex groups. In this study we used the species-rich flea beetle genus Longitarsus, that requires a high level of expertise for morphological species identification, as a case study to assess the accuracy of the DNA barcoding tool following several optimization procedures. We built a cox1 reference database of 1502 sequences representing 78 Longitarsus species, among which 117 sequences (32 species) were newly generated using a non-invasive DNA extraction method that allows keeping reference voucher specimens. Within this dataset we identified 69 taxonomic inconsistencies using barcoding gap analysis and tree topology methods. Threshold optimisation and a posteriori taxonomic revision based on newly generated reference sequences and metadata allowed resolving 44 sequences with ambiguous and incorrect identification and provided a significant improvement of the DNA barcoding accuracy and identification efficacy. Unresolved taxonomic uncertainties, due to overlapping intra- and inter-specific levels of divergences, mainly regards the Longitarsus pratensis species complex and polyphyletic groups L. melanocephalus, L. nigrofasciatus and L. erro. Such type of errors indicates either poorly established taxonomy or any biological processes that make mtDNA groups poorly predictive of species boundaries (e.g. recent speciation or interspecific hybridisation), thus providing directions for further integrative taxonomic and evolutionary studies. Overall, this study underlines the importance of reference vouchers and high-quality metadata associated to sequences in reference databases and corroborates, once again, the key role of taxonomists in any step of the DNA barcoding pipeline in order to generate and maintain a correct and functional reference library.
Collapse
Affiliation(s)
- Daniele Salvi
- Department of Health, Life and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Emanuele Berrilli
- Department of Health, Life and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Paola D'Alessandro
- Department of Health, Life and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Maurizio Biondi
- Department of Health, Life and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| |
Collapse
|
43
|
Yang C, Zhu EJ, He QJ, Yi CH, Wang XB, Hu SJ, Wei SJ. Strong genetic differentiation among populations of Cheirotonus gestroi (Coleoptera: Euchiridae) in its native area sheds lights on species conservation. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:108-119. [PMID: 32202195 DOI: 10.1080/24701394.2020.1741565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-armed scarab (Cheirotonus gestroi) is an endangered large insect in southwestern China and neighboring countries; however, limited information is available regarding its population genetics, hindering conservation efforts. Therefore, we investigated the population genetic structure and evolutionary history of C. gestroi in southwestern China. Twenty-five haplotypes were obtained from 47 specimens across five populations. The Dawei Mountain (DWS) population differed from other populations by a high genetic distance. Population structure analysis generated three distinct clades, corresponding to Hengduan Mountains (HM), Ailao Mountains (AM), and Dawei Mountains (DM), and high-level genetic diversity was found in two HM populations. Collectively, the strong genetic differentiation among populations might be due to limited gene flow, geographical isolation, and habitat fragmentation. Therefore, while developing a conservation strategy, HM, AM, and DM groups should be defined as separate management units. Additionally, the DWS population should be given priority protection due to its uniqueness and low genetic diversity.
Collapse
Affiliation(s)
- Chen Yang
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - En-Jiao Zhu
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Qiu-Ju He
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China
| | - Chuan-Hui Yi
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Shao-Ji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, China.,Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
44
|
Huang ST, Wang HR, Yang WQ, Si YC, Wang YT, Sun ML, Qi X, Bai Y. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration. PeerJ 2020; 8:e8567. [PMID: 32095371 PMCID: PMC7025703 DOI: 10.7717/peerj.8567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background Establishing the species limits and resolving phylogenetic relationships are primary goals of taxonomists and evolutionary biologists. At present, a controversial question is about interspecific phylogenetic information in morphological features. Are the interspecific relationships established based on genetic information consistent with the traditional classification system? To address these problems, this study analyzed the wing shape structure of 10 species of Libellulidae, explored the relationship between wing shape and dragonfly behavior and living habits, and established an interspecific morphological relationship tree based on wing shape data. By analyzing the sequences of mitochondrial COI gene and the nuclear genes 18S, 28S rRNA and ITS in 10 species of dragonflies, the interspecific relationship was established. Method The wing shape information of the male forewings and hindwings was obtained by the geometric morphometrics method. The inter-species wing shape relationship was obtained by principal component analysis (PCA) in MorphoJ1.06 software. The inter-species wing shape relationship tree was obtained by cluster analysis (UPGMA) using Mesquite 3.2 software. The COI, 18S, ITS and 28S genes of 10 species dragonfly were blasted and processed by BioEdit v6 software. The Maximum Likelihood(ML) tree was established by raxmlGUI1.5b2 software. The Bayes inference (BI) tree was established by MrBayes 3.2.6 in Geneious software. Results The main difference in forewings among the 10 species of dragonfly was the apical, radial and discoidal regions dominated by the wing nodus. In contrast, the main difference among the hindwings was the apical and anal regions dominated by the wing nodus. The change in wing shape was closely related to the ability of dragonfly to migrate. The interspecific relationship based on molecular data showed that the species of Orthetrum genus branched independently of the other species. Compared to the molecular tree of 10 species, the wing shape clustering showed some phylogenetic information on the forewing shape (with large differences on the forewing shape tree vs. molecular tree), and there was no interspecific phylogenetic information of the hindwing shape tree vs. molecular tree. Conclusion The dragonfly wing shape characteristics are closely related to its migration ability. Species with strong ability to migrate have the forewing shape that is longer and narrower, and have larger anal region, whereas the species that prefer short-distance hovering or standing still for a long time have forewing that are wider and shorter, and the anal region is smaller. Integrating morphological and molecular data to evaluate the relationship among dragonfly species shows there is some interspecific phylogenetic information in the forewing shape and none in the hindwing shape. The forewing and hindwing of dragonflies exhibit an inconsistent pattern of morphological changes in different species.
Collapse
Affiliation(s)
- Shu-Ting Huang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Rui Wang
- Sports Science Institute, Taizhou University, Taizhou, Zhejiang, China
| | - Wan-Qin Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ya-Chu Si
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Tian Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Meng-Lian Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Xin Qi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yi Bai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
45
|
Li Q, Deng J, Chen C, Zeng L, Lin X, Cheng Z, Qiao G, Huang X. DNA Barcoding Subtropical Aphids and Implications for Population Differentiation. INSECTS 2019; 11:E11. [PMID: 31877643 PMCID: PMC7022676 DOI: 10.3390/insects11010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
DNA barcoding has proven its worth in species identification, discovering cryptic diversity, and inferring genetic divergence. However, reliable DNA barcode reference libraries that these applications depend on are not available for many taxonomic groups and geographical regions. Aphids are a group of plant sap sucking insects, including many notorious pests in agriculture and forestry. The aphid fauna of the subtropical region has been understudied. In this study, based on extensive sampling effort across main subtropical areas, we sequenced 1581 aphid specimens of 143 morphospecies, representing 75 genera, and 13 subfamilies, to build the first comprehensive DNA barcode library for subtropical aphids. We examined the utility of DNA barcodes in identifying aphid species and population differentiation and evaluated the ability of different species delimitation methods (automatic barcode gap discovery (ABGD), generalized mixed Yule-coalescent (GMYC), and Bayesian Poisson tree processes (bPTP)). We found that most aphid species demonstrated barcode gaps and that a threshold value of 2% genetic distance is suitable for distinguishing most species. Our results indicated that ten morphospecies may have species divergence related to factors such as host plant or geography. By using two pest species Aphis spiraecola and A. gossypii as examples, we also discussed the effect of the sampling scale of host plants on the results and reliability of DNA barcoding of phytophagous insects. This DNA barcode library will be valuable for future studies and applications.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Cui Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Linda Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Zhentao Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| |
Collapse
|
46
|
Naseem MT, Ashfaq M, Khan AM, Rasool A, Asif M, Hebert PDN. BIN overlap confirms transcontinental distribution of pest aphids (Hemiptera: Aphididae). PLoS One 2019; 14:e0220426. [PMID: 31821347 PMCID: PMC6903727 DOI: 10.1371/journal.pone.0220426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
DNA barcoding is highly effective for identifying specimens once a reference sequence library is available for the species assemblage targeted for analysis. Despite the great need for an improved capacity to identify the insect pests of crops, the use of DNA barcoding is constrained by the lack of a well-parameterized reference library. The current study begins to address this limitation by developing a DNA barcode reference library for the pest aphids of Pakistan. It also examines the affinities of these species with conspecific populations from other geographic regions based on both conventional taxonomy and Barcode Index Numbers (BINs). A total of 809 aphids were collected from a range of plant species at sites across Pakistan. Morphological study and DNA barcoding allowed 774 specimens to be identified to one of 42 species while the others were placed to a genus or subfamily. Sequences obtained from these specimens were assigned to 52 BINs whose monophyly were supported by neighbor-joining (NJ) clustering and Bayesian inference. The 42 species were assigned to 41 BINs with 38 showing BIN concordance. These species were represented on BOLD by 7,870 records from 69 countries. Combining these records with those from Pakistan produced 60 BINs with 12 species showing a BIN split and three a BIN merger. Geo-distance correlations showed that intraspecific divergence values for 49% of the species were not affected by the distance between populations. Forty four of the 52 BINs from Pakistan had counterparts in 73 countries across six continents, documenting the broad distributions of pest aphids.
Collapse
Affiliation(s)
- Muhammad Tayyib Naseem
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Arif Muhammad Khan
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Akhtar Rasool
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Zoology, University of Swat, Swat, Pakistan
| | - Muhammad Asif
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
47
|
Ip YCA, Tay YC, Gan SX, Ang HP, Tun K, Chou LM, Huang D, Meier R. From marine park to future genomic observatory? Enhancing marine biodiversity assessments using a biocode approach. Biodivers Data J 2019; 7:e46833. [PMID: 31866739 PMCID: PMC6917626 DOI: 10.3897/bdj.7.e46833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Few tropical marine sites have been thoroughly characterised for their animal species, even though they constitute the largest proportion of multicellular diversity. A number of focused biodiversity sampling programmes have amassed immense collections to address this shortfall, but obstacles remain due to the lack of identification tools and large proportion of undescribed species globally. These problems can be partially addressed with DNA barcodes ("biocodes"), which have the potential to facilitate the estimation of species diversity and identify animals to named species via barcode databases. Here, we present the first results of what is intended to be a sustained, systematic study of the marine fauna of Singapore's first marine park, reporting more than 365 animal species, determined based on DNA barcodes and/or morphology represented by 931 specimens (367 zooplankton, 564 macrofauna including 36 fish). Due to the lack of morphological and molecular identification tools, only a small proportion could be identified to species solely based on either morphology (24.5%) or barcodes (24.6%). Estimation of species numbers for some taxa was difficult because of the lack of sufficiently clear barcoding gaps. The specimens were imaged and added to "Biodiversity of Singapore" (http://singapore.biodiversity.online), which now contains images for > 13,000 species occurring in the country.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Ywee Chieh Tay
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
- Temasek Life Sciences Laboratory, Singapore, SingaporeTemasek Life Sciences LaboratorySingaporeSingapore
| | - Su Xuan Gan
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Hui Ping Ang
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Karenne Tun
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
48
|
Nie R, Wei J, Zhang S, Vogler AP, Wu L, Konstantinov AS, Li W, Yang X, Xue H. Diversification of mitogenomes in three sympatric
Altica
flea beetles (Insecta, Chrysomelidae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui‐E Nie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jing Wei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shou‐Ke Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Alfried P. Vogler
- Department of Life Sciences Natural History Museum London UK
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
| | - Ling Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences Hebei University Baoding China
| | | | - Wen‐Zhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Xing‐Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Huai‐Jun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
49
|
Piper AM, Batovska J, Cogan NOI, Weiss J, Cunningham JP, Rodoni BC, Blacket MJ. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 2019; 8:giz092. [PMID: 31363753 PMCID: PMC6667344 DOI: 10.1093/gigascience/giz092] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish populations. DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a surveillance context and highlight the unique technical and regulatory challenges that must be considered when implementing high-throughput sequencing technologies into sensitive diagnostic applications.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Jana Batovska
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - John Weiss
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Mark J Blacket
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| |
Collapse
|
50
|
Krol L, Van der Hoorn B, Gorsich EE, Trimbos K, Bodegom PMV, Schrama M. How Does eDNA Compare to Traditional Trapping? Detecting Mosquito Communities in South-African Freshwater Ponds. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|