1
|
Larsson P, De Rosa MC, Righino B, Olsson M, Florea BI, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Integrated transcriptomics- and structure-based drug repositioning identifies drugs with proteasome inhibitor properties. Sci Rep 2024; 14:18772. [PMID: 39138277 PMCID: PMC11322189 DOI: 10.1038/s41598-024-69465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the β5 subunit, our in vitro study revealed that these compounds inhibited the β1, β2, and β5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Maxim Olsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bogdan Iulius Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, Leiden, The Netherlands
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
4
|
Sreekanth GP. Perspectives on the current antiviral developments towards RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) domains of dengue virus non-structural protein 5 (DENV-NS5). Eur J Med Chem 2023; 256:115416. [PMID: 37159959 DOI: 10.1016/j.ejmech.2023.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.
Collapse
Affiliation(s)
- Gopinathan Pillai Sreekanth
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, Telangana, India.
| |
Collapse
|
5
|
Delgado-Maldonado T, Moreno-Herrera A, Pujadas G, Vázquez-Jiménez LK, González-González A, Rivera G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur J Med Chem 2023; 252:115290. [PMID: 36958266 DOI: 10.1016/j.ejmech.2023.115290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico.
| |
Collapse
|
6
|
Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, Lai NS. Assessing the potential of NS2B/NS3 protease inhibitors biomarker in curbing dengue virus infections: In silico vs. In vitro approach. Front Cell Infect Microbiol 2023; 13:1061937. [PMID: 36864886 PMCID: PMC9971573 DOI: 10.3389/fcimb.2023.1061937] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | | | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ramachandran Vignesh
- Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| |
Collapse
|
7
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|
8
|
Rajagopal PL, Umapathy VR, P S, JH F, Govindan R, Palanisamy CP, Veeraraghavan VP, Jayaraman S. Molecular docking analysis of metformin analogues with GSK-3β. Bioinformation 2022; 18:269-272. [PMID: 36518134 PMCID: PMC9722410 DOI: 10.6026/97320630018269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2024] Open
Abstract
We report the molecular docking analysis of four analogues of metformin [1-Carbamimidoyl-1,2-dimethylguanidine hydrochloride, Metformin hydrochloride, N1,N1-Dimethyl-N5-methylbiguanide hydrochloride, and N1,N1,N5,N5-Tetrakis (methyl-biguanide hydrochloride] with GSK3.
Collapse
Affiliation(s)
- Ponnu lakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Sandhya P
- Department of Biochemistry, Allied Health science, Dr. M.G.R Educational and Research Institute, Chennai India
| | - Fathima JH
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, India
| | - Ramajayam Govindan
- Multi Disciplinary Research Unit, Madurai Medical College, TamilNadu, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Bio-based Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
9
|
García-Ariza LL, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Virtual Screening of Drug-Like Compounds as Potential Inhibitors of the Dengue Virus NS5 Protein. Front Chem 2022; 10:637266. [PMID: 35223766 PMCID: PMC8867075 DOI: 10.3389/fchem.2022.637266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue fever. Annually, there are about 400 million new cases of dengue worldwide, and so far there is no specific treatment against this disease. The NS5 protein is the largest and most conserved viral protein among flaviviruses and is considered a therapeutic target of great interest. This study aims to search drug-like compounds for possible inhibitors of the NS5 protein in the four serotypes of DENV. Using a virtual screening from a ∼642,759-compound database, we suggest 18 compounds with NS5 binding and highlight the best compound per region, in the methyltransferase and RNA-dependent RNA polymerase domains. These compounds interact mainly with the amino acids of the catalytic sites and/or are involved in processes of protein activity. The identified compounds presented physicochemical and pharmacological properties of interest for their use as possible drugs; furthermore, we found that some of these compounds do not affect cell viability in Huh-7; therefore, we suggest evaluating these compounds in vitro as candidates in future research.
Collapse
Affiliation(s)
- Leidy L. García-Ariza
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- *Correspondence: Leidy L. García-Ariza,
| | - Cristian Rocha-Roa
- Grupo de Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- Biophysics of Tropical Diseases, Max Planck Tandem Group, Universidad de Antioquia, Medellín, Colombia
| | - Leonardo Padilla-Sanabria
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Jhon C. Castaño-Osorio
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
10
|
Zheng Y, Sun X, Miao Y, Qin S, Jiang Y, Zhang X, Huang L. A systematic study on the chemical diversity and efficacy of the inflorescence and succulent stem of Cynomorium songaricum. Food Funct 2021; 12:7501-7513. [PMID: 34223597 DOI: 10.1039/d1fo01275d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cynomorium songaricum is a medicinal, edible, and endangered plant species. Since inflorescences are not considered medicinal parts, their discard causes a waste of resources. To expand the medicinal uses of C. songaricum, we evaluated their chemistry and pharmacology by applying widely targeted metabolomics, network pharmacology, and molecular docking. Widely targeted metabolomics results indicated chemical diversity in C. songaricum with 599 compounds. Among them, 280 compounds were different between the succulent stem and inflorescence. With 218 upregulated compounds, inflorescence has more abundant compounds than the succulent stem, especially pigment compounds such as flavonols, flavones, and flavanones. Moreover, anthocyanin and proanthocyanidin were unique compounds in the inflorescence and succulent stem, respectively. Sixty-five compounds in inflorescence and 18 compounds in succulent stems were found to be associated with atherosclerosis in the network pharmacology analysis. Tests revealed that inflorescence had a stronger anti-atherosclerotic effect than succulent stems. Molecular docking analysis revealed that 30 compounds (29 pigment compounds) in inflorescence and 6 compounds (4 pigment compounds) in succulent stem showed strong binding affinities with three target proteins, namely ALB, MPO, and NOS2, especially amentoflavone, quercetin 7-O-rutinoside, and luteolin 7-O-glucoside (cynaroside). Results demonstrated that the inflorescence is rich in pigment compounds and has a potential anti-atherosclerosis effect. This study provides novel methods and ideas for the sustainable development of endangered medicinal plants.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Flavivirus: From Structure to Therapeutics Development. Life (Basel) 2021; 11:life11070615. [PMID: 34202239 PMCID: PMC8303334 DOI: 10.3390/life11070615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology. However, currently, there are no fully effective antiviral drugs or vaccines for most flaviviruses. We hope that this review may provide useful information for future development of anti-flavivirus drugs and vaccines.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| |
Collapse
|
12
|
Bhowmik D, Sharma RD, Prakash A, Kumar D. "Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL pro and PL pro.". J Mol Struct 2021; 1233:130094. [PMID: 33612858 PMCID: PMC7884051 DOI: 10.1016/j.molstruc.2021.130094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
The sudden increase in the COVID-19 epidemic affected by novel coronavirus 2019 has jeopardized public health worldwide. Hence the necessities of a drug or therapeutic agent that heal SARS-CoV-2 infections are essential requirements. The viral genome encodes a large Polyprotein, further processed by the main protease/ 3C-like protease (3CLpro) and papain-like proteases (PLpro) into 16 nonstructural proteins to form a viral replication complex. These essential functions of 3CLpro and PLpro in virus duplication make these proteases a promising target for discovering potential therapeutic candidates and possible treatment for SARS-CoV-2 infection. This study aimed to screen a unique set of protease inhibitors library against 3CLpro and PLpro of the SARS-CoV-2. A molecular docking study was performed using PyRx to reveal the binding affinity of the selected ligands and molecular dynamic simulations were executed to assess the three-dimensional stability of protein-ligand complexes. The pharmacodynamics parameters of the inhibitors were predicted using admetSAR. The top two ligands (Nafamostat and VR23) based on docking scores were selected for further studies. Selected ligands showed excellent pharmacokinetic properties with proper absorption, bioavailability and minimal toxicity. Due to the emerging and efficiency of remdesivir and dexamethasone in healing COVID-19 patients, ADMET properties of the selected ligands were thus compared with it. MD Simulation studies up to 100 ns revealed the ligands' stability at the target proteins' binding site residues. Therefore, Nafamostat and VR23 may provide potential treatment options against SARS-CoV-2 infections by potentially inhibiting virus duplication though more research is warranted.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon-122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
13
|
Selvaraj J, Jh SF, Sivabalan V, Rekha UV, Ponnulakshmi R, Vishnupriya V, Kullappan M, Sreekandan RN, Mohan SK, Vijayalakshmi P. Molecular modeling of cornulin (CRNN) for docking with phytocompounds from Justicia adhatoda L. Bioinformation 2021; 17:200-205. [PMID: 34393437 PMCID: PMC8340691 DOI: 10.6026/97320630017200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cornulin (CRNN) is linked with tumour progression. Therefore, it is of interest to document data on the molecular modeling of cornulin (CRNN) for docking with phytocompounds (Pyrazinamide, Anisotine, Vasicinone, Vasicoline) from Justicia adhatoda L. Thus, we
document the optimal binding features of these compounds with the cornulin model for further consideration.
Collapse
Affiliation(s)
- Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Shazia Fathima Jh
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, India
| | - Venkatacalam Sivabalan
- Department of Biochemistry, KSR Institute of Dental Sciences and Research, Thiruchengodu-637215, India
| | - Umapathy Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Rajagopal Ponnulakshmi
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India
| | - Veeraraghavan Vishnupriya
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| | - Radhika Nalinakumari Sreekandan
- Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry and Department of Clinical Skills & Simulation, Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123
| | - Periyasamy Vijayalakshmi
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| |
Collapse
|
14
|
Selvaraj J, Rekha UV, JH SF, Sivabalan V, Ponnulakshmi R, Vishnupriya V, Kullappan M, Sreekandan RN, Mohan SK. Molecular docking analysis of SARS-CoV-2 linked RNA dependent RNA polymerase (RdRp) with compounds from Plectranthus amboinicus. Bioinformation 2021; 17:167-170. [PMID: 34393433 PMCID: PMC8340713 DOI: 10.6026/97320630017167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
It is of interest to document the moelcular docking analysis of SARS-CoV-2 linked RNA dependent RNA polymerase (RdRp) with compounds from Plectranthus amboinicus. Hence, we report the binding features of rutin, Luteolin, Salvianolic acid A, Rosmarinic acid and p-Coumaric acid with the target protein SARS-CoV-2 linked RNA dependent RNA polymerase (RdRp) for further consideration.
Collapse
Affiliation(s)
- Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Umapathy Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Shazia Fathima JH
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, India
| | - Venkatacalam Sivabalan
- Department of Biochemistry, KSR Institute of Dental Sciences and Research, Thiruchengodu-637215, India
| | - Rajagopal Ponnulakshmi
- Central Research Laboratory,Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| | - Radhika nalinakumari Sreekandan
- Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry and Department of Clinical Skills & Simulation, Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India
| |
Collapse
|
15
|
Virtual Screening for Potential Inhibitors of Human Hexokinase II for the Development of Anti-Dengue Therapeutics. BIOTECH 2020; 10:biotech10010001. [PMID: 35822774 PMCID: PMC9245486 DOI: 10.3390/biotech10010001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Dengue fever, which is a disease caused by the dengue virus (DENV), is a major unsolved issue in many tropical and sub-tropical regions of the world. The absence of treatment that effectively prevent further viral propagation inside the human’s body resulted in a high number of deaths globally each year. Thus, novel anti-dengue therapies are required for effective treatment. Human hexokinase II (HKII), which is the first enzyme in the glycolytic pathway, is an important drug target due to its significant impact on viral replication and survival in host cells. In this study, 23.1 million compounds were computationally-screened against HKII using the Ultrafast Shape Recognition with a CREDO Atom Types (USRCAT) algorithm. In total, 300 compounds with the highest similarity scores relative to three reference molecules, known as Alpha-D-glucose (GLC), Beta-D-glucose-6-phosphate (BG6), and 2-deoxyglucose (2DG), were aligned. Of these 300 compounds, 165 were chosen for further structure-based screening, based on their similarity scores, ADME analysis, the Lipinski’s Rule of Five, and virtual toxicity test results. The selected analogues were subsequently docked against each domain of the HKII structure (PDB ID: 2NZT) using AutoDock Vina programme. The three top-ranked compounds for each query were then selected from the docking results based on their binding energy, the number of hydrogen bonds formed, and the specific catalytic residues. The best docking results for each analogue were observed for the C-terminus of Chain B. The top-ranked analogues of GLC, compound 10, compound 26, and compound 58, showed predicted binding energies of −7.2, −7.0, and −6.10 kcal/mol and 7, 5, and 2 hydrogen bonds, respectively. The analogues of BG6, compound 30, compound 36, and compound 38, showed predicted binding energies of −7.8, −7.4, and −7.0 kcal/mol and 11, 9, and 5 hydrogen bonds, while the top three analogues of 2DG, known as compound 1, compound 4, and compound 31, showed predicted binding energies of −6.8, −6.3, and −6.3 kcal/mol and 4, 3, and 1 hydrogen bonds, sequentially. The highest-ranked compounds in the docking analysis were then selected for molecular dynamics simulation, where compound 10, compound 30, and compound 1, which are the analogues of GLC, BG6, and 2DG, have shown strong protein-ligand stability with an RMSD value of ±5.0 A° with a 5 H bond, ±4.0 A° with an 8 H bond, and ±0.5 A° with a 2 H bond, respectively, compared to the reference molecules throughout the 20 ns simulation time. Therefore, by using the computational studies, we proposed novel compounds, which may act as potential drugs against DENV by inhibiting HKII’s activity.
Collapse
|
16
|
Liu XH, Zhang X, Lu ZH, Zhu YS, Wang T. Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomed Pharmacother 2020; 133:111035. [PMID: 33254013 PMCID: PMC7671653 DOI: 10.1016/j.biopha.2020.111035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023] Open
Abstract
The pandemic of SARS-CoV-2 has posed significant threats to public health worldwide. Target-based drug development is a promising approach against SARS-CoV-2 infection. Nonstructural proteins may play critical roles from drug design perspectives. Insights into NSPs of different viruses could streamline novel drug development.
Outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have produced high pathogenicity and mortality rates in human populations. However, to meet the increasing demand for treatment of these pathogenic coronaviruses, accelerating novel antiviral drug development as much as possible has become a public concern. Target-based drug development may be a promising approach to achieve this goal. In this review, the relevant features of potential molecular targets in human coronaviruses (HCoVs) are highlighted, including the viral protease, RNA-dependent RNA polymerase, and methyltransferases. Additionally, recent advances in the development of antivirals based on these targets are summarized. This review is expected to provide new insights and potential strategies for the development of novel antiviral drugs to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
17
|
Rekha UV, Anita M, Bhuminathan S, Sadhana K. Molecular docking analysis of human JAK2 with compounds from tomatoes. Bioinformation 2020; 16:742-747. [PMID: 34675459 PMCID: PMC8503773 DOI: 10.6026/97320630016742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 10/04/2020] [Indexed: 11/27/2022] Open
Abstract
Janus kinase 2 (JAK2) is a tyrosine kinase receptor that belongs to the JAK family kinases is linked to oral cancer. We describe the molecular binding analysis of JAK2 with 23 compounds from tomotoes. Docking data shows five compounds (rutin, qucertin, narigenin, chlrogenia acid & kaempferol) with optimal binding features with JAK2 for further consideration.
Collapse
Affiliation(s)
- Umapathy Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - M Anita
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - S Bhuminathan
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER, Pallikaranai, Chennai 600 100, India
| | - K Sadhana
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| |
Collapse
|
18
|
Antiviral activity of astragaloside II, astragaloside III and astragaloside IV compounds against dengue virus: Computational docking and in vitro studies. Microb Pathog 2020; 152:104563. [PMID: 33098932 DOI: 10.1016/j.micpath.2020.104563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
This study was aimed to identify the phytocompounds possessing anti-dengue virus activity using in silico and in vitro approaches. A total of 7000 phytocompounds were virtually screened against protein targets (envelope, NS2b/NS3, and NS5) of dengue virus using iGEMDOCK and individually docked using Maestro 10.7 module of Schrödinger software. In vitro cytotoxicity and antiviral studies were performed using vero cell line. Finally, three phytocompounds namely astragaloside II, astragaloside III, and astragaloside IV were screened based on their highest binding energy values against protein targets. Astragaloside III exhibited the highest interaction energy value of -8.718 kcal/mol and -8.447 kcal/mol against envelope, and NS2b/NS3 targets, respectively. Astragaloside IV exhibited -7.244 kcal/mol against SAM site, and -9.179 kcal/mol against RNA cap site of NS5 targets. In silico ADMET analysis revealed that astragaloside II, III, and IV were non-mutagenic and non-carcinogenic in nature and these compounds were also non-toxic to vero cells upto 1000 μg/mL. Against dengue virus serotype 3, astragaloside II exhibited substantial antiviral activity at the concentration of 1.56 μg/mL followed by astragaloside III at 6.25 μg/mL and astragaloside IV at 12.5 μg/mL. Also, against dengue serotype 1, astragaloside II showed the maximum antiviral activity at 1.56 μg/mL followed by astragaloside III and IV at 3.125 μg/mL. This study concludes that astragaloside II, III, and IV compounds had potential in vitro anti-dengue virus activity.
Collapse
|
19
|
Duarte Y, Cáceres J, Sepúlveda RV, Arriagada D, Olivares P, Díaz-Franulic I, Stehberg J, González-Nilo F. Novel TRPV1 Channel Agonists With Faster and More Potent Analgesic Properties Than Capsaicin. Front Pharmacol 2020; 11:1040. [PMID: 32760273 PMCID: PMC7372189 DOI: 10.3389/fphar.2020.01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Javier Cáceres
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Romina V Sepúlveda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Diego Arriagada
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro Olivares
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
20
|
Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. INFECTION GENETICS AND EVOLUTION 2020; 84:104451. [PMID: 32640381 PMCID: PMC7335633 DOI: 10.1016/j.meegid.2020.104451] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai 600025, India
| | - Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
21
|
Kumar D, Singh P, Jayaraj A, Kumar V, Kumari K, Chandra R, Ramappa VK. Selective Docking of Pyranooxazoles Against nsP2 of CHIKV Eluted Through Isothermally and Non‐Isothermally MD simulations. ChemistrySelect 2020. [DOI: 10.1002/slct.202000768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry A.R.S.D. CollegeUniversity of Delhi Delhi India
- Department of ChemistryUniversity of Delhi Delhi India
| | - Prashant Singh
- Department of Chemistry A.R.S.D. CollegeUniversity of Delhi Delhi India
| | | | - Vinod Kumar
- Special Centre for Nano SciencesJawaharlal Nehru University Delhi 110067 India
| | - Kamlesh Kumari
- Department of Zoology DDU CollegeUniversity of Delhi Delhi India
| | | | - Venkatesh Kumar Ramappa
- Department of ZoologyBabasaheb Bhimrao Ambedkar University Lucknow 226025 Uttar Pradesh India
| |
Collapse
|
22
|
Kumar D, Kumari K, Jayaraj A, Singh P. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. J Biomol Struct Dyn 2019; 38:3018-3034. [PMID: 31366291 DOI: 10.1080/07391102.2019.1650830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chikungunya virus (CHIKV) causes Chikungunya fever (CHIKF) and till date no effective medicine for its cure is available in market. Different research groups find various possible interactions between small molecules and non-structural proteins, viz. nsP3, one of the most important viral elements in CHIKV. In this work, authors have studied the interactions of nsP3 protease of CHIKV with pyranooxazoles. Initially, a one-pot three-component reaction was designed using oxazolidine-2,4-dione, benzaldehyde and cyanoethylacetate to get a proposed biological active molecule, i.e. based on pyranooxazoles. The mechanism for the synthesis of the product based on pyranooxazole was studied through density functional theory (DFT) using Gaussian. Then, a library of the obtained pyranooxazole was created through computational tools by varying the substituents. Further, virtual screening of the designed library of pyranooxazoles (200 compounds) against nsP3 protease of CHIKV was performed. Herein, CMPD 104 showed strongest binding affinity toward the targeted nsP3 protease of CHIKV, based on the least binding energy obtained from docking. Based on docking results, the pharmacological, toxicity, biological score and Lipinski's filters were studied. Further, DFT studies of top five compounds were done using Gaussian. Molecular dynamics (MD) simulation of nsP3 protease of CHIKV with and without 104 was performed using AMBER18 utilizing ff14SB force field in three steps (minimization, equilibration and production). This work is emphasized to designing of one-pot three-component synthesis and to develop a theoretical model to inhibit the nsP3 protease of CHIKV. AbbreviationsCHIKFChikungunya feverCHIKVChikungunya virusDFTdensity functional theoryDSDiscovery StudioMDmolecular dynamicsMM-GBSAmolecular mechanics-generalized born surface areaMMVMolegro molecular viewerCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|
23
|
Chatterjee D, Kaur G, Muradia S, Singh B, Agrewala JN. ImmtorLig_DB: repertoire of virtually screened small molecules against immune receptors to bolster host immunity. Sci Rep 2019; 9:3092. [PMID: 30816123 PMCID: PMC6395627 DOI: 10.1038/s41598-018-36179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/31/2022] Open
Abstract
Host directed therapies to boost immunity against infection are gaining considerable impetus following the observation that use of antibiotics has become a continuous source for the emergence of drug resistant strains of pathogens. Receptors expressed by the cells of immune system play a cardinal role in initiating sequence of events necessary to ameliorate many morbid conditions. Although, ligands for the immune receptors are available; but their use is limited due to complex structure, synthesis and cost-effectiveness. Virtual screening (VS) is an integral part of chemoinformatics and computer-aided drug design (CADD) and aims to streamline the process of drug discovery. ImmtorLig_DB is a repertoire of 5000 novel small molecules, screened from ZINC database and ranked using structure based virtual screening (SBVS) against 25 immune receptors which play a pivotal role in defending and initiating the activation of immune system. Consequently, in the current study, small molecules were screened by docking on the essential domains present on the receptors expressed by cells of immune system. The screened molecules exhibited efficacious binding to immune receptors, and indicated a possibility of discovering novel small molecules. Other features of ImmtorLig_DB include information about availability, clustering analysis, and estimation of absorption, distribution, metabolism, and excretion (ADME) properties of the screened small molecules. Structural comparisons indicate that predicted small molecules may be considered novel. Further, this repertoire is available via a searchable graphical user interface (GUI) through http://bioinfo.imtech.res.in/bvs/immtor/ .
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Shilpa Muradia
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Balvinder Singh
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.
| | | |
Collapse
|
24
|
Tahir Ul Qamar M, Maryam A, Muneer I, Xing F, Ashfaq UA, Khan FA, Anwar F, Geesi MH, Khalid RR, Rauf SA, Siddiqi AR. Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Sci Rep 2019; 9:1433. [PMID: 30723263 PMCID: PMC6363786 DOI: 10.1038/s41598-018-38450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Emergence of Dengue as one of the deadliest viral diseases prompts the need for development of effective therapeutic agents. Dengue virus (DV) exists in four different serotypes and infection caused by one serotype predisposes its host to another DV serotype heterotypic re-infection. We undertook virtual ligand screening (VLS) to filter compounds against DV that may inhibit inclusively all of its serotypes. Conserved non-structural DV protein targets such as NS1, NS3/NS2B and NS5, which play crucial role in viral replication, infection cycle and host interaction, were selected for screening of vital antiviral drug leads. A dataset of plant based natural antiviral derivatives was developed. Molecular docking was performed to estimate the spatial affinity of target compounds for the active sites of DV’s NS1, NS3/NS2B and NS5 proteins. The drug likeliness of the screened compounds was followed by ADMET analysis whereas the binding behaviors were further elucidated through molecular dynamics (MD) simulation experiments. VLS screened three potential compounds including Canthin-6-one 9-O-beta-glucopyranoside, Kushenol W and Kushenol K which exhibited optimal binding with all the three conserved DV proteins. This study brings forth novel scaffolds against DV serotypes to serve as lead molecules for further optimization and drug development against all DV serotypes with equal effect against multiple disease causing DV proteins. We therefore anticipate that the insights given in the current study could be regarded valuable towards exploration and development of a broad-spectrum natural anti-dengue therapy.
Collapse
Affiliation(s)
| | - Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Feng Xing
- College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, Huazhong Agricultural University, Wuhan, P.R. China
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Mohammed H Geesi
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rana Rehan Khalid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadaf Abdul Rauf
- Department of Computer Science, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
25
|
Afriza D, Suriyah WH, Ichwan SJA. In silicoanalysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1073/3/032001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Kumar A, Zhang KYJ. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front Chem 2018; 6:315. [PMID: 30090808 PMCID: PMC6068280 DOI: 10.3389/fchem.2018.00315] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted toward the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.
Collapse
Affiliation(s)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| |
Collapse
|
27
|
Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease 2018; 29:147-156. [PMID: 29911147 PMCID: PMC6003060 DOI: 10.1007/s13337-018-0446-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.
Collapse
Affiliation(s)
- Waqar Hussain
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Iqra Qaddir
- Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Sajid Mahmood
- Department of Informatics and System, University of Management and Technology, Lahore, Pakistan
| | - Nouman Rasool
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
28
|
Mishra V, Kashyap S, Hasija Y. Ligand based virtual screening for identifying potent inhibitors against viral neuraminidase: An in silico approach. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vinita Mishra
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Sangeeta Kashyap
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, N.H.-58, Baghpat Road, Bypass Crossing, Meerut 250005, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
29
|
Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:95. [PMID: 29548293 PMCID: PMC5857124 DOI: 10.1186/s12906-018-2163-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
Abstract
Background Urtica dioica, Taraxacum officinale, Calea integrifolia and Caesalpinia pulcherrima are widely used all over the world for treatment of different illnesses. In Mexico, these plants are traditionally used to alleviate or counteract rheumatism and inflammatory muscle diseases. In the present study we evaluated the activity of aqueous and methanolic extracts of these four plants, on the replication of dengue virus serotype 2 (DENV2). Methods Extraction process was carried out in a Soxtherm® system at 60, 85 and 120 °C; a chemical fractionation in silica gel chromatography was performed and compounds present in the active fractions were identified by HPLC-DAD-ESI/MSn. The cytotoxic concentration and the inhibitory effect of extracts or fractions on the DENV2 replication were analyzed in the BHK-21 cell line (plaque forming assay). The half maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated for the extracts and fractions. Results The methanolic extracts at 60 °C of T. officinale and U. dioica showed the higher inhibitory effects on DENV2 replication. After the chemical fractionation, the higher activity fraction was found for U. dioica and T. officinale, presenting IC50 values of 165.7 ± 3.85 and 126.1 ± 2.80 μg/ml, respectively; SI values were 5.59 and 6.01 for each fraction. The compounds present in T. officinale, were luteolin and caffeoylquinic acids derivatives and quercertin diclycosides. The compounds in the active fraction of U. dioica, were, chlorogenic acid, quercertin derivatives and flavonol glycosides (quercetin and kaempferol). Conclusions Two fractions from U. dioica and T. officinale methanolic extracts with anti-dengue activity were found. The compounds present in both fractions were identified, several recognized molecules have demonstrated activity against other viral species. Subsequent biological analysis of the molecules, alone or in combination, contained in the extracts will be carried out to develop therapeutics against DENV2.
Collapse
|
30
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
31
|
Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8:v8090251. [PMID: 27626440 PMCID: PMC5035965 DOI: 10.3390/v8090251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors.
Collapse
|
32
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
33
|
Berry M, Fielding BC, Gamieldien J. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study. Viruses 2015; 7:6642-60. [PMID: 26694449 PMCID: PMC4690886 DOI: 10.3390/v7122963] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 01/29/2023] Open
Abstract
Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.
Collapse
Affiliation(s)
- Michael Berry
- South African Medical Research Council Bioinformatics Capacity Development Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa.
- Molecular Biology and Virology Laboratory, Department of Medical BioSciences, Faculty of Natural Sciences, University of the Western Cape, Western Cape, Bellville 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Laboratory, Department of Medical BioSciences, Faculty of Natural Sciences, University of the Western Cape, Western Cape, Bellville 7535, South Africa.
| | - Junaid Gamieldien
- South African Medical Research Council Bioinformatics Capacity Development Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa.
| |
Collapse
|
34
|
Tambunan US, Zahroh H, Parikesit AA, Idrus S, Kerami D. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2. Drug Target Insights 2015; 9:33-49. [PMID: 26617459 PMCID: PMC4651419 DOI: 10.4137/dti.s31566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/26/2022] Open
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and transmitted between human hosts by mosquitoes. Recently, Indonesia was listed as a country with the highest cases of dengue by the Association of Southeast Asian Nations. The current treatment for dengue disease is supportive therapy; there is no antiviral drug available in the market against dengue. Therefore, a research on antiviral drug against dengue is very important, especially to prevent outbreak explosion. In this research, the development of dengue antiviral is performed through the inhibition of n-octyl-β-D-glucoside (β-OG) binding pocket on envelope protein of DENV by using analogs of β-OG pocket binder. There are 828 compounds used in this study, and all of them were screened based on the analysis of molecular docking, pharmacological character prediction of the compounds, and molecular dynamics simulation. The result of these analyses revealed that the compound that can be used as an antiviral candidate against DENV is 5-(3,4-dichlorophenyl)-N-[2-(p-tolyl) benzotriazol-5-yl]furan-2-carboxamide.
Collapse
Affiliation(s)
- Usman Sf Tambunan
- Bioinformatics Research Group, Faculty of Mathematics and Science, Department of Chemistry, University of Indonesia, Jawa Barat, Indonesia
| | - Hilyatuz Zahroh
- Bioinformatics Research Group, Faculty of Mathematics and Science, Department of Chemistry, University of Indonesia, Jawa Barat, Indonesia. ; Genetic Research Center, University of YARSI, Jakarta, Indonesia
| | - Arli A Parikesit
- Bioinformatics Research Group, Faculty of Mathematics and Science, Department of Chemistry, University of Indonesia, Jawa Barat, Indonesia
| | - Syarifuddin Idrus
- Industrial Standardization Laboratory, Ministry of Industrial Affair, Ambon, Indonesia
| | - Djati Kerami
- Mathematics Computation Research Group, Faculty of Mathematics and Science, Department of Mathematics, University of Indonesia, Jawa Barat, Indonesia
| |
Collapse
|
35
|
Byszewska M, Śmietański M, Purta E, Bujnicki JM. RNA methyltransferases involved in 5' cap biosynthesis. RNA Biol 2015; 11:1597-607. [PMID: 25626080 PMCID: PMC4615557 DOI: 10.1080/15476286.2015.1004955] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes and viruses that infect them, the 5′ end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5′ end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5′ end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m7Gpppm6,6AmpAmpCmpm3Um structure at the 5′ end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.
Collapse
|
36
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
37
|
Goldberg AA, Draz H, Montes-Grajales D, Olivero-Verbél J, Safe SH, Sanderson JT. 3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells. Genes Cancer 2015; 6:265-280. [PMID: 26124925 PMCID: PMC4482247 DOI: 10.18632/genesandcancer.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022] Open
Abstract
We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4'- and 7,7'-dichloroDIMs and 4,4'- and 7,7'-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells, but not that of immortalized normal human prostate epithelial (RWPE-1) cells. Ring-DIMs caused the early loss of mitochondrial membrane potential (MMP) and decreased mitochondrial ATP generation in prostate cancer cells. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore, inhibited ring-DIM-mediated cell death, and salubrinal, an inhibitor of ER stress, inhibited cell death mediated only by 4,4'-dihaloDIMs. We found that although salubrinal did not inhibit the onset of ER stress, it prevented 4,4'-dibromoDIM mediated loss of MMP. Salubrinal potentiated cell death in response to 7,7'-dihaloDIMs and DIM, and this effect concurred with increased loss of MMP. Using in silico 3-D docking affinity analysis, we identified Ca2+/calmodulin-dependent kinase II (CaMKII) as a potential direct target for the most toxic ring-DIM, 4,4'-dibromoDIM. An inhibitor of CaMKII, KN93, but not its inactive analog KN92, abrogated cell death mediated by 4,4'-dibromoDIM. The ring-DIMs induced ER stress and autophagy, but these processes were not necessary for ring-DIM-mediated cell death. Inhibition of autophagy with bafilomycin A1, 3-methyladenine or by LC3B gene silencing sensitized LNCaP and C42B, but not ATG5-deficient DU145 cells to ring-DIM- and DIM-mediated cell death. We propose that autophagy induced by the ring-DIMs and DIM has a cytoprotective function in prostate cancer cells.
Collapse
Affiliation(s)
- Alexander A. Goldberg
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
- Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Hossam Draz
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | - Jesus Olivero-Verbél
- Environmental and Computational Chemistry Group, University of Cartagena, Colombia
| | - Stephen H. Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
38
|
Practical Considerations in Virtual Screening and Molecular Docking. EMERGING TRENDS IN COMPUTATIONAL BIOLOGY, BIOINFORMATICS, AND SYSTEMS BIOLOGY 2015. [PMCID: PMC7173576 DOI: 10.1016/b978-0-12-802508-6.00027-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Molecular docking has become an important common component of the drug discovery toolbox, and its relative low-cost implications and perceived simplicity of use has stimulated an everincreasing popularity within academic communities. The inherent “garbage-in-garbage-out” defect of molecular docking, however, leads a lot of researchers to dedicate countless hours to the identification of hit compounds that later prove to be inactive. Several considerations that can greatly improve the success and enrichment of true bioactive hit compounds are commonly overlooked at the initial stages of a molecular docking study. This chapter will cover several of these considerations, including protonation states, active site waters, separating actives from decoys, consensus docking and molecular mechanics generalized-Born/surface area (MM-GBSA) rescoring, and incorporation of pharmacophoric constraints, in an attempt to clarify what is, in fact, very complicated and inherent difficulties of a structure-based drug design study.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Dengue is a rapidly spreading vector-borne disease estimated to infect 400 million people worldwide. To date, there are no licensed treatments or vaccines. The last few years have seen significant developments in dengue control strategies. In this review, we will address four key areas: vaccines, vector control, antivirals and immunotherapeutics. RECENT FINDINGS The first generation of dengue vaccines is able to induce good serological responses in test individuals. However, the recent Sanofi-Pasteur trial in Thailand found that a good serological response did not correlate with clinical protection. This trial did not demonstrate an increase in cases of severe disease following immunization, suggesting that concerns over vaccine-related immune enhancement may have been overcome. The bacterium Wolbachia appears to control dengue proliferation in Aedes mosquitoes, and field studies are underway. A large number of antivirals are in early-stage development and may prove useful in epidemics. Monoclonal antibodies have been postulated to have a clinical role. Whether their clinical application is feasible has yet to be seen. SUMMARY Marked improvements in our knowledge of dengue have been made over the recent years. Sadly, clinical application remains some years away.
Collapse
|
40
|
Alvarez-Ginarte YM, Montero-Cabrera LA, García-de la Vega JM, Bencomo-Martínez A, Pupo A, Agramonte-Delgado A, Marrero-Ponce Y, Ruiz-García JA, Mikosch H. Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids. J Steroid Biochem Mol Biol 2013; 138:348-58. [PMID: 23872659 DOI: 10.1016/j.jsbmb.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Abstract
Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure-activity relationship (QSAR) model expressed by selected descriptors as the octanol-water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid-receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a "docking" procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom.
Collapse
Affiliation(s)
- Yoanna María Alvarez-Ginarte
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, University of Havana, 10400 La Habana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Computer-aided identification of novel protein targets of bisphenol A. Toxicol Lett 2013; 222:312-20. [PMID: 23973438 DOI: 10.1016/j.toxlet.2013.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/20/2022]
Abstract
The xenoestrogen bisphenol A (2,2-bis-(p-hydroxyphenyl)-2-propane, BPA) is a known endocrine-disrupting chemical used in the fabrication of plastics, resins and flame retardants, that can be found throughout the environment and in numerous every day products. Human exposure to this chemical is extensive and generally occurs via oral route because it leaches from the food and beverage containers that contain it. Although most of the effects related to BPA exposure have been linked to the activation of the estrogen receptor (ER), the mechanisms of the interaction of BPA with protein targets different from ER are still unknown. Therefore, the objective of this work was to use a bioinformatics approach to identify possible new targets for BPA. Docking studies were performed between the optimized structure of BPA and 271 proteins related to different biochemical processes, as selected by text-mining. Refinement docking experiments and conformational analyses were carried out using LigandScout 3.0 for the proteins selected through the affinity ranking (lower than -8.0kcal/mol). Several proteins including ERR gamma (-9.9kcal/mol), and dual specificity protein kinases CLK-4 (-9.5kcal/mol), CLK-1 (-9.1kcal/mol) and CLK-2 (-9.0kcal/mol) presented great in silico binding affinities for BPA. The interactions between those proteins and BPA were mostly hydrophobic with the presence of some hydrogen bonds formed by leucine and asparagine residues. Therefore, this study suggests that this endocrine disruptor may have other targets different from the ER.
Collapse
|
42
|
Tamilvanan T, Hopper W. Active site specific pharmacophore-based screening for methyltransferase inhibitors. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Teo CY, Shave S, Chor ALT, Salleh AB, Rahman MBBA, Walkinshaw MD, Tejo BA. Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening. BMC Bioinformatics 2012; 13 Suppl 17:S4. [PMID: 23282142 PMCID: PMC3521205 DOI: 10.1186/1471-2105-13-s17-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays. RESULTS Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment. CONCLUSION Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.
Collapse
Affiliation(s)
- Chian Ying Teo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | | | | | | | | | | | | |
Collapse
|
44
|
Schreyer AM, Blundell T. USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints. J Cheminform 2012; 4:27. [PMID: 23131020 PMCID: PMC3505738 DOI: 10.1186/1758-2946-4-27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Background Ligand-based virtual screening using molecular shape is an important tool for researchers who wish to find novel chemical scaffolds in compound libraries. The Ultrafast Shape Recognition (USR) algorithm is capable of screening millions of compounds and is therefore suitable for usage in a web service. The algorithm however is agnostic of atom types and cannot discriminate compounds with similar shape but distinct pharmacophoric features. To solve this problem, an extension of USR called USRCAT, has been developed that includes pharmacophoric information whilst retaining the performance benefits of the original method. Results The USRCAT extension is shown to outperform the traditional USR method in a retrospective virtual screening benchmark. Also, a relational database implementation is described that is capable of screening a million conformers in milliseconds and allows the inclusion of complex query parameters. Conclusions USRCAT provides a solution to the lack of atom type information in the USR algorithm. Researchers, particularly those with only limited resources, who wish to use ligand-based virtual screening in order to discover new hits, will benefit the most. Online chemical databases that offer a shape-based similarity method might also find advantage in using USRCAT due to its accuracy and performance. The source code is freely available and can easily be modified to fit specific needs.
Collapse
Affiliation(s)
- Adrian M Schreyer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, United Kingdom.
| | | |
Collapse
|
45
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
46
|
Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW. Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics 2011; 12 Suppl 13:S1. [PMID: 22372736 PMCID: PMC3278825 DOI: 10.1186/1471-2105-12-s13-s1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The 2011 International Conference on Bioinformatics (InCoB) conference, which is the annual scientific conference of the Asia-Pacific Bioinformatics Network (APBioNet), is hosted by Kuala Lumpur, Malaysia, is co-organized with the first ISCB-Asia conference of the International Society for Computational Biology (ISCB). InCoB and the sequencing of the human genome are both celebrating their tenth anniversaries and InCoB’s goalposts for the next decade, implementing standards in bioinformatics and globally distributed computational networks, will be discussed and adopted at this conference. Of the 49 manuscripts (selected from 104 submissions) accepted to BMC Genomics and BMC Bioinformatics conference supplements, 24 are featured in this issue, covering software tools, genome/proteome analysis, systems biology (networks, pathways, bioimaging) and drug discovery and design.
Collapse
Affiliation(s)
- Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney NSW 2109, Australia.
| | | | | | | | | | | |
Collapse
|