1
|
Tomescu AMF, McQueen CR. A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte Leptocentroxyla. ANNALS OF BOTANY 2022; 130:785-798. [PMID: 35724420 PMCID: PMC9758301 DOI: 10.1093/aob/mcac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS The Early Devonian (Emsian, 400-395 Ma) tracheophyte Leptocentroxyla tetrarcha Bickner et Tomescu emend. Tomescu et McQueen combines plesiomorphic Psilophyton-type tracheid thickenings with xylem architecture intermediate between the plesiomorphic basal euphyllophyte haplosteles and the complex actinosteles of Middle Devonian euphyllophytes. We document xylem development in Leptocentroxyla based on anatomy and explore its implications, which may provide a window into the evolution of pith. METHODS Leptocentroxyla is preserved by permineralization in the Battery Point Formation (Quebec, Canada). Serial sections obtained using the cellulose acetate peel technique document branching pattern, anatomy of trace divergence to appendages, protoxylem architecture, and variations in tracheid size and wall thickening patterns. KEY RESULTS Leptocentroxyla has opposite decussate pseudo-whorled branching and mesarch protoxylem, and represents the earliest instance of central histological differentiation in a euphyllophyte actinostele. Tracheids at the centre of xylem exhibit simplified Psilophyton-type wall thickenings and are similar in size (at the axis centre) or smaller than the surrounding metaxylem tracheids (at the centre of appendage traces). CONCLUSIONS The position and developmental attributes of the simplified Psilophyton-type tracheids suggest they may have been generated by the protoxylem developmental pathway. This supports the delayed and shortened protoxylem differentiation hypothesis, which explains the evolution of pith by (1) delay in the onset of differentiation and lengthening of cell growth duration in a central protoxylem strand; and (2) shortening of the interval of differentiation of those tracheids, leading to progressive simplification (and eventual loss) of secondary wall thickenings, and replacement of tracheids with a central parenchymatous area. NAC domain transcription factors and their interactions with abscisic acid may have provided the regulatory substrate for the developmental changes that led to the evolution of pith. These could have been orchestrated by selective pressures associated with the expansion of early vascular plants into water-stresses upland environments.
Collapse
Affiliation(s)
| | - Camryn R McQueen
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, California 95521, USA
| |
Collapse
|
2
|
Ma J, Sun P, Wang D, Wang Z, Yang J, Li Y, Mu W, Xu R, Wu Y, Dong C, Shrestha N, Liu J, Yang Y. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat Commun 2021; 12:6929. [PMID: 34836967 PMCID: PMC8626421 DOI: 10.1038/s41467-021-26931-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Most extant angiosperms belong to Mesangiospermae, which comprises eudicots, monocots, magnoliids, Chloranthales and Ceratophyllales. However, phylogenetic relationships between these five lineages remain unclear. Here, we report the high-quality genome of a member of the Chloranthales lineage (Chloranthus sessilifolius). We detect only one whole genome duplication within this species and find that polyploidization events in different Mesangiospermae lineage are mutually independent. We also find that the members of all floral development-related gene lineages are present in C. sessilifolius despite its extremely simplified flower. The AP1 and PI genes, however, show a weak floral tissue-specialized expression. Our phylogenomic analyses suggest that Chloranthales and magnoliids are sister groups, and both are together sister to the clade comprising Ceratophyllales and eudicots, while the monocot lineage is sister to all other Mesangiospermae. Our findings suggest that in addition to hybridization, incomplete lineage sorting may largely account for phylogenetic inconsistencies between the observed gene trees.
Collapse
Affiliation(s)
- Jianxiang Ma
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dandan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Yang K, Li L, Lou Y, Zhu C, Li X, Gao Z. A regulatory network driving shoot lignification in rapidly growing bamboo. PLANT PHYSIOLOGY 2021; 187:900-916. [PMID: 34608957 PMCID: PMC8491019 DOI: 10.1093/plphys/kiab289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 05/24/2023]
Abstract
Woody bamboo is environmentally friendly, abundant, and an alternative to conventional timber. Degree of lignification and lignin content and deposition affect timber properties. However, the lignification regulatory network in monocots is poorly understood. To elucidate the regulatory mechanism of lignification in moso bamboo (Phyllostachys edulis), we conducted integrated analyses using transcriptome, small RNA, and degradome sequencing followed by experimental verification. The lignification degree and lignin content increased with increased bamboo shoot height, whereas phenylalanine ammonia-lyase and Laccase activities first increased and then decreased with shoot growth. Moreover, we identified 11,504 differentially expressed genes (DEGs) in different portions of the 13th internodes of different height shoots; most DEGs associated with cell wall and lignin biosynthesis were upregulated, whereas some DEGs related to cell growth were downregulated. We identified a total of 1,502 miRNAs, of which 687 were differentially expressed. Additionally, in silico and degradome analyses indicated that 5,756 genes were targeted by 691 miRNAs. We constructed a regulatory network of lignification, including 11 miRNAs, 22 transcription factors, and 36 enzyme genes, in moso bamboo. Furthermore, PeLAC20 overexpression increased lignin content in transgenic Arabidopsis (Arabidopsis thaliana) plants. Finally, we proposed a reliable miRNA-mediated "MYB-PeLAC20" module for lignin monomer polymerization. Our findings provide definite insights into the genetic regulation of bamboo lignification. In addition to providing a platform for understanding related mechanisms in other monocots, these insights could be used to develop strategies to improve bamboo timber properties.
Collapse
Affiliation(s)
- Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lichao Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yongfeng Lou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
- Jiangxi Academy of Forestry, Jiangxi Provincial Key Laboratory of Plant Biotechnology, Nanchang 330013, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xueping Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
4
|
Xu N, Meng L, Song L, Li X, Du S, Hu F, Lv Y, Song W. Identification and Characterization of Secondary Wall-Associated NAC Genes and Their Involvement in Hormonal Responses in Tobacco ( Nicotiana tabacum). FRONTIERS IN PLANT SCIENCE 2021; 12:712254. [PMID: 34594349 PMCID: PMC8476963 DOI: 10.3389/fpls.2021.712254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Secondary wall-associated NAC (SWN) genes are a subgroup of NAC (NAM, ATAF, and CUC) transcription factors (TF) that play a key role in regulating secondary cell wall biosynthesis in plants. However, this gene family has not been systematically characterized, and their potential roles in response to hormones are unknown in Nicotiana tabacum. In this study, a total of 40 SWN genes, of which 12 from Nicotiana tomentosiformis, 13 from Nicotiana sylvestris, and 15 from Nicotiana tabacum, were successfully identified. The 15 SWNs from Nicotiana tabacum were further classified into three groups, namely, vascular-related NAC domain genes (NtVNDs), NAC secondary wall thickening promoting factor genes (NtNSTs), and secondary wall-associated NAC domain genes (NtSNDs). The protein characteristic, gene structure, and chromosomal location of 15 NtSWNs (also named Nt1 to Nt15) were also analyzed. The NtVND and NtNST group genes had five conserved subdomains in their N-terminal regions and a motif (LP[Q/x] L[E/x] S[P/A]) in their diverged C- terminal regions. Some hormones, dark and low-temperature related cis-acting elements, were significantly enriched in the promoters of NtSWN genes. A comprehensive expression profile analysis revealed that Nt4 and Nt12 might play a role in vein development. Others might be important for stem development. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that in the NtNST group, genes such as Nt7, Nt8, and Nt13 were more sensitive than the genes in NtVND and NtSND groups under abiotic stress conditions. A transactivation assay further suggested that Nt7, Nt8, and Nt13 showed a significant transactivation activity. Overall, SWN genes were finally identified and characterized in diploid and tetraploid tobacco, revealing new insights into their evolution, variation, and homology relationships. Transcriptome, cis-acting element, qRT-PCR, and transactivation assay analysis indicated the roles in hormonal and stress responses, which provided further resources in molecular mechanism and genetic improvement.
Collapse
Affiliation(s)
- Na Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaoxu Li
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shasha Du
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
5
|
Li M, Yang Y, Xu R, Mu W, Li Y, Mao X, Zheng Z, Bi H, Hao G, Li X, Xu X, Xi Z, Shrestha N, Liu J. A chromosome-level genome assembly for the tertiary relict plant Tetracentron sinense oliv. (trochodendraceae). Mol Ecol Resour 2021; 21:1186-1199. [PMID: 33486895 DOI: 10.1111/1755-0998.13334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Tetracentron sinense and Trochodendron aralioides are two Tertiary relict species of large trees in the family Trochodendraceae with narrow distributions on the mainland and islands of eastern Asia. They belong to the order Trochodendrales, which is one of the four early-diverged eudicot lineages. These two relict species provide a good system in which to examine genomic changes that occurred as they survived during repeated climatic oscillations in the Quaternary. We sequenced the genome of Te. sinense and compared it with that of Tr. aralioides. We found that Te. sinense has a smaller genome size (986.3 Mb) than that of Tr. aralioides (1610 Mb). Repetitive elements made the major contribution to the contrasting genome sizes in the two species, with most bursts of repeats occurring within the past four million years when the climate oscillated greatly. These species share two rounds of whole-genome duplications. The mainland species Te. sinense had a larger effective population size than the island species Tr. aralioides after the largest glaciation during the Quaternary climatic oscillation. However, soon after this recovery stage, the effective population sizes of both species continued to decrease, although the current effective population size of Te. sinense is still larger than that of Tr. aralioides. We recovered three distinctly diverged clades through resequencing the genomes of 50 individuals across the distributional range of Te. sinense in China. Our results provide an important genomic resource with which to examine early trait evolution in the core eudicots and assist efforts to conserve this relict tree species.
Collapse
Affiliation(s)
- Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingxing Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Bi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoqian Hao
- Biodiversity Institute of Mount Emei, Mount Emei Scenic Area Management Committee, Leshan, China
| | - Xiaojie Li
- Emeishan Biological Resources Experimental Station, Emei, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Shan Z, Jiang Y, Li H, Guo J, Dong M, Zhang J, Liu G. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genomics 2020; 21:96. [PMID: 32000662 PMCID: PMC6993341 DOI: 10.1186/s12864-020-6479-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia, Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood. The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been systematically researched in broomcorn millet. RESULTS In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in expression in various tissues and under different drought stress durations. The expression of 10 selected genes under drought stress was analyzed using quantitative real-time PCR. CONCLUSION In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships, gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and responses to drought stress were studied. These results will be useful for the further study of the functional characteristics of PmNAC genes, particularly with regards to drought resistance.
Collapse
Affiliation(s)
- Zhongying Shan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jinjie Guo
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Ming Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jianan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
7
|
Olins JR, Lin L, Lee SJ, Trabucco GM, MacKinnon KJM, Hazen SP. Secondary Wall Regulating NACs Differentially Bind at the Promoter at a CELLULOSE SYNTHASE A4 Cis-eQTL. FRONTIERS IN PLANT SCIENCE 2018; 9:1895. [PMID: 30627134 PMCID: PMC6309453 DOI: 10.3389/fpls.2018.01895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.
Collapse
Affiliation(s)
- Jennifer R. Olins
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Li Lin
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Scott J. Lee
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
8
|
Zhang H, Kang H, Su C, Qi Y, Liu X, Pu J. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry. PLoS One 2018; 13:e0197892. [PMID: 29897926 PMCID: PMC5999216 DOI: 10.1371/journal.pone.0197892] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry.
Collapse
Affiliation(s)
- He Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Hao Kang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Chulian Su
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yanxiang Qi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Xiaomei Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinji Pu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| |
Collapse
|
9
|
Ployet R, Soler M, Carocha V, Ladouce N, Alves A, Rodrigues JC, Harvengt L, Marque C, Teulières C, Grima-Pettenati J, Mounet F. Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus. TREE PHYSIOLOGY 2018. [PMID: 28633295 DOI: 10.1093/treephys/tpx062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although eucalypts are the most planted hardwood trees worldwide, the majority of them are frost sensitive. The recent creation of frost-tolerant hybrids such as Eucalyptus gundal plants (E. gunnii × E. dalrympleana hybrids), now enables the development of industrial plantations in northern countries. Our objective was to evaluate the impact of cold on the wood structure and composition of these hybrids, and on the biosynthetic and regulatory processes controlling their secondary cell-wall (SCW) formation. We used an integrated approach combining histology, biochemical characterization and transcriptomic profiling as well as gene co-expression analyses to investigate xylem tissues from Eucalyptus hybrids exposed to cold conditions. Chilling temperatures triggered the deposition of thicker and more lignified xylem cell walls as well as regulation at the transcriptional level of SCW genes. Most genes involved in lignin biosynthesis, except those specifically dedicated to syringyl unit biosynthesis, were up-regulated. The construction of a co-expression network enabled the identification of both known and potential new SCW transcription factors, induced by cold stress. These regulators at the crossroads between cold signalling and SCW formation are promising candidates for functional studies since they may contribute to the tolerance of E. gunnii × E. dalrympleana hybrids to cold.
Collapse
Affiliation(s)
- Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Marçal Soler
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Victor Carocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
- Instituto de Tecnologia de Química Biológica (ITQB), Biotecnologia de Células Vegetais, Av. da Republica, 2781-157 Oeiras, Portugal
| | - Nathalie Ladouce
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Ana Alves
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José-Carlos Rodrigues
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Luc Harvengt
- FCBA, Biotechnology and Advanced Silviculture Department, Genetics and Biotechnology Team, F-33610 Cestas, France
| | - Christiane Marque
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Chantal Teulières
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| |
Collapse
|
10
|
Tao C, Jin X, Zhu L, Xie Q, Wang X, Li H. Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. Mol Genet Genomics 2018; 293:685-697. [PMID: 29307114 PMCID: PMC5948307 DOI: 10.1007/s00438-017-1413-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/23/2017] [Indexed: 12/19/2022]
Abstract
Ascorbate peroxidase (APX) is a member of heme-containing peroxidases which catalyze the H2O2-dependent oxidation of a wide range of substrates in plants and animals. As is known, H2O2 acts as a signaling molecule in the regulation of fiber development. Our previous work reported that ascorbate peroxidase 1 (GhAPX1) was important for cotton fiber elongation. However, knowledge about APX gene family members and their evolutionary and functional characteristics in cotton is limited. Here, we report 26 GhAPX genes by genome-wide investigation of tetraploid cotton Gossypium hirsutum. Phylogenetic and gene structure analyses classified these APX members into five clades and syntenic analysis suggested two duplication events. Expression profiling of the 26 APXs revealed that ten members are expressed in cotton fibers. Notably, GhAPX10A, GhAPX10D, GhAPX12A, and GhAPX12D showed high expression levels in 30-day fiber, while GhAPX1A/D, GhAPX3A/D, and GhAPX6A/D showed very low expression levels. The enzyme activity and H2O2 content assays revealed that cotton fiber kept high enzyme activity and the lowest H2O2 level in 30-day fibers, indicating that other than GhAPX1, the newly reported APX members are responsible for the reactive oxygen species homeostasis in the cotton fiber maturation stages. Expression profiling of ten fiber-expressed APXs after phytohormone treatments revealed their regulation patterns by different stimuli, suggesting that GhAPX1, GhAPX12A, and GhAPX12D are responsible to most phytohormone treatments. Our data provided evolutionary and functional information of GhAPX gene family members and revealed that different members are responsible to redox homeostasis during different cotton fiber development stages.
Collapse
Affiliation(s)
- Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Liping Zhu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China. .,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
11
|
Rao X, Dixon RA. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. FRONTIERS IN PLANT SCIENCE 2018; 9:399. [PMID: 29670638 PMCID: PMC5893761 DOI: 10.3389/fpls.2018.00399] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/13/2018] [Indexed: 05/17/2023]
Abstract
Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140-150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN, United States
| |
Collapse
|
12
|
Tian H, Wang X, Guo H, Cheng Y, Hou C, Chen JG, Wang S. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1. PLANT PHYSIOLOGY 2017; 174:2363-2375. [PMID: 28649093 PMCID: PMC5543959 DOI: 10.1104/pp.17.00510] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/19/2017] [Indexed: 05/17/2023]
Abstract
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunjiang Hou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, Wu P, Hu Q, Sun D, Luo H. Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:433-446. [PMID: 27638479 PMCID: PMC5362689 DOI: 10.1111/pbi.12638] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 05/18/2023]
Abstract
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Haiyan Jia
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centreand National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Fangyuan Gao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Crop Research InstituteSichuan Academy of Agricultural SciencesChengduSichuanChina
| | - Man Zhou
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Peipei Wu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
14
|
He L, Shi X, Wang Y, Guo Y, Yang K, Wang Y. Arabidopsis ANAC069 binds to C[A/G]CG[T/G] sequences to negatively regulate salt and osmotic stress tolerance. PLANT MOLECULAR BIOLOGY 2017; 93:369-387. [PMID: 27975189 DOI: 10.1007/s11103-016-0567-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 11/24/2016] [Indexed: 05/04/2023]
Abstract
ANAC069 binds to the DNA sequence of C[A/G]CG[T/G] to regulate the expression of genes, resulting in decreased ROS scavenging capability and proline biosynthesis, which contribute to increased sensitivity to salt and osmotic stress. NAM-ATAF1/2 and CUC2 (NAC) proteins are plant-specific transcription factors that play important roles in abiotic stress responses. In the present study, we characterized the physiological and regulatory roles of Arabidopsis thaliana ANAC069 in response to abiotic stresses. Arabidopsis plants overexpressing ANAC069 displayed increased sensitivity to abscisic acid, salt, and osmotic stress. Conversely, ANAC069 knockdown plants showed enhanced tolerance to salt and osmotic stress, but no change in ABA sensitivity. Further studies showed that ANAC069 inhibits the expression of SOD, POD, GST, and P5CS genes. Consequently, the transcript level of ANAC069 correlated negatively with the reactive oxygen species (ROS) scavenging ability and the proline level. The genes regulated by ANAC069 were further studied using a gene chip on a genome-wide scale, and 339 and 226 genes up- and downregulated by ANAC069 were identified. Analysis of the promoters of the genes affected by ANAC069 suggested that ANAC069 regulates the expression of genes mainly through interacting with the DNA sequence C[A/G]CG[T/G] in response to abiotic stresses. Collectively, our data suggest that ANAC069 could recognize C[A/G]CG[T/G] sequences to regulate the expression of genes that negatively regulates salt and osmotic stress tolerance by decreasing ROS scavenging capability and proline biosynthesis.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
- Agricultural College, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Xinxin Shi
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Yanmin Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Yong Guo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Kejun Yang
- Agricultural College, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China.
| |
Collapse
|
15
|
Zhang R, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley PE, Waugh R, Fincher GB. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm. PLANT PHYSIOLOGY 2016; 170:1549-65. [PMID: 26754666 PMCID: PMC4775131 DOI: 10.1104/pp.15.01690] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/09/2016] [Indexed: 05/20/2023]
Abstract
Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development.
Collapse
Affiliation(s)
- Runxuan Zhang
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Matthew R Tucker
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Rachel A Burton
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Neil J Shirley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Alan Little
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Jenny Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Linda Milne
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Pete E Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| | - Geoffrey B Fincher
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom (R.Z., L.M., K.H., P.E.H., R.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia (M.R.T., R.A.B., N.J.S., A.L., G.B.F.); and Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 4HN, United Kingdom (R.W.)
| |
Collapse
|
16
|
Shang H, Wang Z, Zou C, Zhang Z, Li W, Li J, Shi Y, Gong W, Chen T, Liu A, Gong J, Ge Q, Yuan Y. Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. SCIENCE CHINA-LIFE SCIENCES 2016; 59:142-53. [PMID: 26803306 DOI: 10.1007/s11427-016-5001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
Determining how function evolves following gene duplication is necessary for understanding gene expansion. Transcription factors (TFs) are a class of proteins that regulate gene expression by binding to specific cis-acting elements in the promoters of target genes, subsequently activating or repressing their transcription. In the present study, we systematically examined the functional diversification of the NAC transcription factor (NAC-TFs) family by analyzing their chromosomal location, structure, phylogeny, and expression pattern in Gossypium raimondii (Gr) and G. arboreum (Ga). The 145 and 141 NAC genes identified in the Gr and Ga genomes, respectively, were annotated and divided into 18 subfamilies, which showed distinct divergence in gene structure and expression patterns during fiber development. In addition, when the functional parameters were examined, clear divergence was observed within tandem clusters, which suggested that subfunctionalization had occurred among duplicate genes. The expression patterns of homologous gene pairs also changed, suggestive of the diversification of gene function during the evolution of diploid cotton. These findings provide insights into the mechanisms underlying the functional differentiation of duplicated NAC-TFs genes in two diploid cotton species.
Collapse
Affiliation(s)
- Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongna Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Weijie Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Tingting Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
17
|
Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants. PLoS One 2015; 10:e0141866. [PMID: 26569117 PMCID: PMC4646352 DOI: 10.1371/journal.pone.0141866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.
Collapse
|
18
|
Hu W, Wei Y, Xia Z, Yan Y, Hou X, Zou M, Lu C, Wang W, Peng M. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava. PLoS One 2015; 10:e0136993. [PMID: 26317631 PMCID: PMC4552662 DOI: 10.1371/journal.pone.0136993] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific transcription factors and plays a crucial role in plant growth, development, and adaption to the environment. Currently, no information is known about the NAC family in cassava. In this study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be clustered into 16 subgroups. Gene structure analysis found that the number of introns of MeNAC genes varied from 0 to 5, with the majority of MeNAC genes containing two introns, indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM domain. Global expression analysis suggested that MeNAC genes exhibited different expression profiles in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different accessions. Transcriptome analysis demonstrated that MeNACs had a widely transcriptional response to drought stress and that they had differential expression profiles in different accessions, implying their contribution to drought stress resistance in cassava. Finally, the expression of twelve MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicating that cassava NACs may represent convergence points of different signaling pathways. Taken together, this work found some excellent tissue-specific and abiotic stress-responsive candidate MeNAC genes, which would provide a solid foundation for functional investigation of the NAC family, crop improvement and improved understanding of signal transduction in plants. These data bring new insight on the complexity of the transcriptional control of MeNAC genes and support the hypothesis that NACs play an important role in plant growth, development, and adaption of environment.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Zhiqiang Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Meiling Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Cheng Lu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| |
Collapse
|
19
|
Satheesh V, Jagannadham PTK, Chidambaranathan P, Jain PK, Srinivasan R. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.). Mol Biol Rep 2014; 41:7763-73. [PMID: 25108674 DOI: 10.1007/s11033-014-3669-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.
Collapse
|
20
|
Escamez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1313-21. [PMID: 24554761 DOI: 10.1093/jxb/eru057] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tracheary element (TE) differentiation represents a unique system to study plant developmental programmed cell death (PCD). TE PCD occurs after deposition of the secondary cell walls when an unknown signal induces tonoplast rupture and the arrest of cytoplasmic streaming. TE PCD is tightly followed by autolysis of the protoplast and partial hydrolysis of the primary cell walls. This review integrates TE differentiation, programmed cell death (PCD), and autolysis in a biological and evolutionary context. The collective evidence from the evolutionary and molecular studies suggests that TE differentiation consists primarily of a programme for cell death and autolysis under the direct control of the transcriptional master switches VASCULAR NAC DOMAIN 6 (VND6) and VND7. In this scenario, secondary cell walls represent a later innovation to improve the water transport capacity of TEs which necessitates transcriptional regulators downstream of VND6 and VND7. One of the most fascinating features of TEs is that they need to prepare their own corpse removal by expression and accumulation of hydrolases that are released from the vacuole after TE cell death. Therefore, TE differentiation involves, in addition to PCD, a programmed autolysis which is initiated before cell death and executed post-mortem. It has recently become clear that TE PCD and autolysis are separate processes with separate molecular regulation. Therefore, the importance of distinguishing between the cell death programme per se and autolysis in all plant PCD research and of careful description of the morphological, biochemical, and molecular sequences in each of these processes, is advocated.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
21
|
Wren JD, Dozmorov MG, Burian D, Kaundal R, Bridges S, Kupfer DM. Proceedings of the 2012 MidSouth computational biology and bioinformatics society (MCBIOS) conference. BMC Bioinformatics 2012; 13 Suppl 15:S1. [PMID: 23046182 PMCID: PMC3439718 DOI: 10.1186/1471-2105-13-s15-s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|