1
|
Collins KW, Copeland MM, Brysbaert G, Wodak SJ, Bonvin AMJJ, Kundrotas PJ, Vakser IA, Lensink MF. CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes. J Mol Biol 2024; 436:168540. [PMID: 39237205 PMCID: PMC11458157 DOI: 10.1016/j.jmb.2024.168540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 09/07/2024]
Abstract
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, The Netherlands
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biology, The University of Kansas, Lawrence, KS 66045, USA.
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
2
|
Shor B, Schneidman-Duhovny D. Integrative modeling meets deep learning: Recent advances in modeling protein assemblies. Curr Opin Struct Biol 2024; 87:102841. [PMID: 38795564 DOI: 10.1016/j.sbi.2024.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/28/2024]
Abstract
Recent progress in protein structure prediction based on deep learning revolutionized the field of Structural Biology. Beyond single proteins, it also enabled high-throughput prediction of structures of protein-protein interactions. Despite the success in predicting complex structures, large macromolecular assemblies still require specialized approaches. Here we describe recent advances in modeling macromolecular assemblies using integrative and hierarchical approaches. We highlight applications that predict protein-protein interactions and challenges in modeling complexes based on the interaction networks, including the prediction of complex stoichiometry and heterogeneity.
Collapse
Affiliation(s)
- Ben Shor
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel. https://twitter.com/ben_shor
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Shor B, Schneidman-Duhovny D. CombFold: predicting structures of large protein assemblies using a combinatorial assembly algorithm and AlphaFold2. Nat Methods 2024; 21:477-487. [PMID: 38326495 PMCID: PMC10927564 DOI: 10.1038/s41592-024-02174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score >0.7) 72% of the complexes among the top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding Protein Data Bank entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.
Collapse
Affiliation(s)
- Ben Shor
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Jarończyk M, Abagyan R, Totrov M. Software and Databases for Protein-Protein Docking. Methods Mol Biol 2024; 2780:129-138. [PMID: 38987467 DOI: 10.1007/978-1-0716-3985-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.
Collapse
Affiliation(s)
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Zięba A, Matosiuk D. Sampling and Scoring in Protein-Protein Docking. Methods Mol Biol 2024; 2780:15-26. [PMID: 38987461 DOI: 10.1007/978-1-0716-3985-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein docking is considered one of the most important techniques supporting experimental proteomics. Recent developments in the field of computer science helped to improve this computational technique so that it better handles the complexity of protein nature. Sampling algorithms are responsible for the generation of numerous protein-protein ensembles. Unfortunately, a primary docking output comprises a set of both near-native poses and decoys. Application of the efficient scoring function helps to differentiate poses with the most favorable properties from those that are very unlikely to represent a natural state of the complex. This chapter explains the importance of sampling and scoring in the process of protein-protein docking. Moreover, it summarizes advances in the field.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Schaduangrat N, Homdee N, Shoombuatong W. StackER: a novel SMILES-based stacked approach for the accelerated and efficient discovery of ERα and ERβ antagonists. Sci Rep 2023; 13:22994. [PMID: 38151513 PMCID: PMC10752908 DOI: 10.1038/s41598-023-50393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The role of estrogen receptors (ERs) in breast cancer is of great importance in both clinical practice and scientific exploration. However, around 15-30% of those affected do not see benefits from the usual treatments owing to the innate resistance mechanisms, while 30-40% will gain resistance through treatments. In order to address this problem and facilitate community-wide efforts, machine learning (ML)-based approaches are considered one of the most cost-effective and large-scale identification methods. Herein, we propose a new SMILES-based stacked approach, termed StackER, for the accelerated and efficient identification of ERα and ERβ inhibitors. In StackER, we first established an up-to-date dataset consisting of 1,996 and 1,207 compounds for ERα and ERβ, respectively. Using the up-to-date dataset, StackER explored a wide range of different SMILES-based feature descriptors and ML algorithms in order to generate probabilistic features (PFs). Finally, the selected PFs derived from the two-step feature selection strategy were used for the development of an efficient stacked model. Both cross-validation and independent tests showed that StackER surpassed several conventional ML classifiers and the existing method in precisely predicting ERα and ERβ inhibitors. Remarkably, StackER achieved MCC values of 0.829-0.847 and 0.712-0.786 in terms of the cross-validation and independent tests, respectively, which were 5.92-8.29 and 1.59-3.45% higher than the existing method. In addition, StackER was applied to determine useful features for being ERα and ERβ inhibitors and identify FDA-approved drugs as potential ERα inhibitors in efforts to facilitate drug repurposing. This innovative stacked method is anticipated to facilitate community-wide efforts in efficiently narrowing down ER inhibitor screening.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nutta Homdee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Guarra F, Colombo G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 2023; 19:5315-5333. [PMID: 37527403 PMCID: PMC10448727 DOI: 10.1021/acs.jctc.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/03/2023]
Abstract
The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Chen X, Morehead A, Liu J, Cheng J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 2023; 39:i308-i317. [PMID: 37387159 PMCID: PMC10311325 DOI: 10.1093/bioinformatics/btad203] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. RESULTS In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. AVAILABILITY AND IMPLEMENTATION The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Alex Morehead
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| |
Collapse
|
9
|
Shor B, Schneidman-Duhovny D. Predicting structures of large protein assemblies using combinatorial assembly algorithm and AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541003. [PMID: 37293053 PMCID: PMC10245790 DOI: 10.1101/2023.05.16.541003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score > 0.7) 72% of the complexes among the Top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding PDB entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.
Collapse
Affiliation(s)
- Ben Shor
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Cohen T, Halfon M, Carter L, Sharkey B, Jain T, Sivasubramanian A, Schneidman-Duhovny D. Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models. Methods Enzymol 2022; 678:237-262. [PMID: 36641210 DOI: 10.1016/bs.mie.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD<4Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.
Collapse
Affiliation(s)
- Tomer Cohen
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matan Halfon
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lester Carter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Beth Sharkey
- High-Throughput Expression, Adimab LLC, Lebanon, NH, United States
| | - Tushar Jain
- Computational Biology, Adimab LLC, Palo Alto, CA, United States
| | | | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Johansson-Åkhe I, Wallner B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. FRONTIERS IN BIOINFORMATICS 2022; 2:959160. [PMID: 36304330 PMCID: PMC9580857 DOI: 10.3389/fbinf.2022.959160] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Protein interactions are key in vital biological processes. In many cases, particularly in regulation, this interaction is between a protein and a shorter peptide fragment. Such peptides are often part of larger disordered regions in other proteins. The flexible nature of peptides enables the rapid yet specific regulation of important functions in cells, such as their life cycle. Consequently, knowledge of the molecular details of peptide-protein interactions is crucial for understanding and altering their function, and many specialized computational methods have been developed to study them. The recent release of AlphaFold and AlphaFold-Multimer has led to a leap in accuracy for the computational modeling of proteins. In this study, the ability of AlphaFold to predict which peptides and proteins interact, as well as its accuracy in modeling the resulting interaction complexes, are benchmarked against established methods. We find that AlphaFold-Multimer predicts the structure of peptide-protein complexes with acceptable or better quality (DockQ ≥0.23) for 66 of the 112 complexes investigated-25 of which were high quality (DockQ ≥0.8). This is a massive improvement on previous methods with 23 or 47 acceptable models and only four or eight high quality models, when using energy-based docking or interaction templates, respectively. In addition, AlphaFold-Multimer can be used to predict whether a peptide and a protein will interact. At 1% false positives, AlphaFold-Multimer found 26% of the possible interactions with a precision of 85%, the best among the methods benchmarked. However, the most interesting result is the possibility of improving AlphaFold by randomly perturbing the neural network weights to force the network to sample more of the conformational space. This increases the number of acceptable models from 66 to 75 and improves the median DockQ from 0.47 to 0.55 (17%) for first ranked models. The best possible DockQ improves from 0.58 to 0.72 (24%), indicating that selecting the best possible model is still a challenge. This scheme of generating more structures with AlphaFold should be generally useful for many applications involving multiple states, flexible regions, and disorder.
Collapse
Affiliation(s)
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Pozzati G, Kundrotas P, Elofsson A. Scoring of protein–protein docking models utilizing predicted interface residues. Proteins 2022; 90:1493-1505. [PMID: 35246997 PMCID: PMC9314140 DOI: 10.1002/prot.26330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today's best scoring functions can significantly increase the number of top‐ranked models but still fail for most targets. Here, we examine the possibility of utilizing predicted interface residues to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the regions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. This study systematically tests different interface prediction methods for scoring >300.000 low‐resolution rigid‐body template free docking decoys. Overall we find that contact‐based interface prediction by BIPSPI is the best method to score docking solutions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high‐importance metric when estimating interface prediction quality, focusing on docking constraints production. Finally, we discussed several limitations for adopting interface predictions as constraints in a docking protocol.
Collapse
Affiliation(s)
- Gabriele Pozzati
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| | - Petras Kundrotas
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
- Center for Bioinformatics and Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| |
Collapse
|
13
|
Barradas-Bautista D, Cao Z, Vangone A, Oliva R, Cavallo L. A random forest classifier for protein-protein docking models. BIOINFORMATICS ADVANCES 2021; 2:vbab042. [PMID: 36699405 PMCID: PMC9710594 DOI: 10.1093/bioadv/vbab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/28/2023]
Abstract
Herein, we present the results of a machine learning approach we developed to single out correct 3D docking models of protein-protein complexes obtained by popular docking software. To this aim, we generated 3 × 10 4 docking models for each of the 230 complexes in the protein-protein benchmark, version 5, using three different docking programs (HADDOCK, FTDock and ZDOCK), for a cumulative set of ≈ 7 × 10 6 docking models. Three different machine learning approaches (Random Forest, Supported Vector Machine and Perceptron) were used to train classifiers with 158 different scoring functions (features). The Random Forest algorithm outperformed the other two algorithms and was selected for further optimization. Using a features selection algorithm, and optimizing the random forest hyperparameters, allowed us to train and validate a random forest classifier, named COnservation Driven Expert System (CoDES). Testing of CoDES on independent datasets, as well as results of its comparative performance with machine learning methods recently developed in the field for the scoring of docking decoys, confirm its state-of-the-art ability to discriminate correct from incorrect decoys both in terms of global parameters and in terms of decoys ranked at the top positions. Supplementary information Supplementary data are available at Bioinformatics Advances online. Software and data availability statement The docking models are available at https://doi.org/10.5281/zenodo.4012018. The programs underlying this article will be shared on request to the corresponding authors.
Collapse
Affiliation(s)
- Didier Barradas-Bautista
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia,To whom correspondence should be addressed. or or
| | - Zhen Cao
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Anna Vangone
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich Large Molecule Research, 82377 Penzberg, Germany
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy,To whom correspondence should be addressed. or or
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia,To whom correspondence should be addressed. or or
| |
Collapse
|
14
|
Depetris RS, Lu D, Polonskaya Z, Zhang Z, Luna X, Tankard A, Kolahi P, Drummond M, Williams C, Ebert MCCJC, Patel JP, Poyurovsky MV. Functional antibody characterization via direct structural analysis and information-driven protein-protein docking. Proteins 2021; 90:919-935. [PMID: 34773424 PMCID: PMC9544432 DOI: 10.1002/prot.26280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/28/2021] [Accepted: 11/07/2021] [Indexed: 12/02/2022]
Abstract
Detailed description of the mechanism of action of the therapeutic antibodies is essential for the functional characterization and future optimization of potential clinical agents. We recently developed KD035, a fully human antibody targeting vascular endothelial growth factor receptor 2 (VEGFR2). KD035 blocked VEGF‐A, and VEGF‐C‐mediated VEGFR2 activation, as demonstrated by the in vitro binding and competition assays and functional cellular assays. Here, we report a computational model of the complex between the variable fragment of KD035 (KD035(Fv)) and the domains 2 and 3 of the extracellular portion of VEGFR2 (VEGFR2(D2‐3)). Our modeling was guided by a priori experimental information including the X‐ray structures of KD035 and related antibodies, binding assays, target domain mapping and comparison of KD035 affinity for VEGFR2 from different species. The accuracy of the model was assessed by molecular dynamics simulations, and subsequently validated by mutagenesis and binding analysis. Importantly, the steps followed during the generation of this model can set a precedent for future in silico efforts aimed at the accurate description of the antibody–antigen and more broadly protein–protein complexes.
Collapse
Affiliation(s)
| | - Dan Lu
- Kadmon Corporation, LLC, New York, New York, USA
| | | | - Zhikai Zhang
- Kadmon Corporation, LLC, New York, New York, USA
| | - Xenia Luna
- Kadmon Corporation, LLC, New York, New York, USA
| | | | - Pegah Kolahi
- Kadmon Corporation, LLC, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
15
|
Johansson-Åkhe I, Mirabello C, Wallner B. InterPepRank: Assessment of Docked Peptide Conformations by a Deep Graph Network. FRONTIERS IN BIOINFORMATICS 2021; 1:763102. [PMID: 36303778 PMCID: PMC9581042 DOI: 10.3389/fbinf.2021.763102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-protein interactions between a smaller or disordered peptide stretch and a folded receptor make up a large part of all protein-protein interactions. A common approach for modeling such interactions is to exhaustively sample the conformational space by fast-Fourier-transform docking, and then refine a top percentage of decoys. Commonly, methods capable of ranking the decoys for selection fast enough for larger scale studies rely on first-principle energy terms such as electrostatics, Van der Waals forces, or on pre-calculated statistical potentials. We present InterPepRank for peptide-protein complex scoring and ranking. InterPepRank is a machine learning-based method which encodes the structure of the complex as a graph; with physical pairwise interactions as edges and evolutionary and sequence features as nodes. The graph network is trained to predict the LRMSD of decoys by using edge-conditioned graph convolutions on a large set of peptide-protein complex decoys. InterPepRank is tested on a massive independent test set with no targets sharing CATH annotation nor 30% sequence identity with any target in training or validation data. On this set, InterPepRank has a median AUC of 0.86 for finding coarse peptide-protein complexes with LRMSD < 4Å. This is an improvement compared to other state-of-the-art ranking methods that have a median AUC between 0.65 and 0.79. When included as a selection-method for selecting decoys for refinement in a previously established peptide docking pipeline, InterPepRank improves the number of medium and high quality models produced by 80% and 40%, respectively. The InterPepRank program as well as all scripts for reproducing and retraining it are available from: http://wallnerlab.org/InterPepRank.
Collapse
|
16
|
Jandova Z, Vargiu AV, Bonvin AMJJ. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. J Chem Theory Comput 2021; 17:5944-5954. [PMID: 34342983 PMCID: PMC8444332 DOI: 10.1021/acs.jctc.1c00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular docking excels at creating a plethora of potential models of protein-protein complexes. To correctly distinguish the favorable, native-like models from the remaining ones remains, however, a challenge. We assessed here if a protocol based on molecular dynamics (MD) simulations would allow distinguishing native from non-native models to complement scoring functions used in docking. To this end, the first models for 25 protein-protein complexes were generated using HADDOCK. Next, MD simulations complemented with machine learning were used to discriminate between native and non-native complexes based on a combination of metrics reporting on the stability of the initial models. Native models showed higher stability in almost all measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI) competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes. Reasonably modest simulation lengths of the order of 50-100 ns are sufficient to reach this accuracy, which makes this approach applicable in practice.
Collapse
Affiliation(s)
- Zuzana Jandova
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Attilio Vittorio Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alexandre M. J. J. Bonvin
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
Wang X, Flannery ST, Kihara D. Protein Docking Model Evaluation by Graph Neural Networks. Front Mol Biosci 2021; 8:647915. [PMID: 34113650 PMCID: PMC8185212 DOI: 10.3389/fmolb.2021.647915] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning-based approach named Graph Neural Network-based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sean T. Flannery
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Quignot C, Granger P, Chacón P, Guerois R, Andreani J. Atomic-level evolutionary information improves protein-protein interface scoring. Bioinformatics 2021; 37:3175-3181. [PMID: 33901284 DOI: 10.1093/bioinformatics/btab254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION The crucial role of protein interactions and the difficulty in characterising them experimentally strongly motivates the development of computational approaches for structural prediction. Even when protein-protein docking samples correct models, current scoring functions struggle to discriminate them from incorrect decoys. The previous incorporation of conservation and coevolution information has shown promise for improving protein-protein scoring. Here, we present a novel strategy to integrate atomic-level evolutionary information into different types of scoring functions to improve their docking discrimination. RESULTS : We applied this general strategy to our residue-level statistical potential from InterEvScore and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including evolutionary information from as few as ten homologous sequences improves the top 10 success rates of individual atomic-level scores SOAP-PP and Rosetta ISC by respectively 6 and 13.5 percentage points, on a large benchmark of 752 docking cases. The best individual homology-enriched score reaches a top 10 success rate of 34.4%. A consensus approach based on the complementarity between different homology-enriched scores further increases the top 10 success rate to 40%. AVAILABILITY All data used for benchmarking and scoring results, as well as a Singularity container of the pipeline, are available at http://biodev.cea.fr/interevol/interevdata/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pablo Chacón
- Department of Biological Chemical Physics, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
20
|
Rosell M, Rodríguez-Lumbreras LA, Fernández-Recio J. Modeling of Protein Complexes and Molecular Assemblies with pyDock. Methods Mol Biol 2021; 2165:175-198. [PMID: 32621225 DOI: 10.1007/978-1-0716-0708-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of the 3D structural details of protein interactions is essential to understand biomolecular functions at the molecular level. In this context, the limited availability of experimental structures of protein-protein complexes at atomic resolution is propelling the development of computational docking methods that aim to complement the current structural coverage of protein interactions. One of these docking approaches is pyDock, which uses van der Waals, electrostatics, and desolvation energy to score docking poses generated by a variety of sampling methods, typically FTDock or ZDOCK. The method has shown a consistently good prediction performance in community-wide assessment experiments like CAPRI or CASP, and has provided biological insights and insightful interpretation of experiments by modeling many biomolecular interactions of biomedical and biotechnological interest. Here, we describe in detail how to perform structural modeling of protein assemblies with pyDock, and the application of its modules to different biomolecular recognition phenomena, such as modeling of binding mode, interface, and hot-spot prediction, use of restraints based on experimental data, inclusion of low-resolution structural data, binding affinity estimation, or modeling of homo- and hetero-oligomeric assemblies.
Collapse
Affiliation(s)
- Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Logroño, Spain
| | - Luis Angel Rodríguez-Lumbreras
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Logroño, Spain
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain. .,Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Logroño, Spain. .,Institut de Biologia Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
21
|
Aguirre-Plans J, Meseguer A, Molina-Fernandez R, Marín-López MA, Jumde G, Casanova K, Bonet J, Fornes O, Fernandez-Fuentes N, Oliva B. SPServer: split-statistical potentials for the analysis of protein structures and protein-protein interactions. BMC Bioinformatics 2021; 22:4. [PMID: 33407073 PMCID: PMC7788957 DOI: 10.1186/s12859-020-03770-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Statistical potentials, also named knowledge-based potentials, are scoring functions derived from empirical data that can be used to evaluate the quality of protein folds and protein-protein interaction (PPI) structures. In previous works we decomposed the statistical potentials in different terms, named Split-Statistical Potentials, accounting for the type of amino acid pairs, their hydrophobicity, solvent accessibility and type of secondary structure. These potentials have been successfully used to identify near-native structures in protein structure prediction, rank protein docking poses, and predict PPI binding affinities. RESULTS Here, we present the SPServer, a web server that applies the Split-Statistical Potentials to analyze protein folds and protein interfaces. SPServer provides global scores as well as residue/residue-pair profiles presented as score plots and maps. This level of detail allows users to: (1) identify potentially problematic regions on protein structures; (2) identify disrupting amino acid pairs in protein interfaces; and (3) compare and analyze the quality of tertiary and quaternary structural models. CONCLUSIONS While there are many web servers that provide scoring functions to assess the quality of either protein folds or PPI structures, SPServer integrates both aspects in a unique easy-to-use web server. Moreover, the server permits to locally assess the quality of the structures and interfaces at a residue level and provides tools to compare the local assessment between structures. SERVER ADDRESS: https://sbi.upf.edu/spserver/ .
Collapse
Grants
- BIO2017-85329-R (FEDER,UE) Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO2017-83591-R(FEDER,UE Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RYC-2015-17519 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- MDM-2014-0370 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FI Agència de Gestió d'Ajuts Universitaris i de Recerca
- 2017 SGR 01020 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PT13/0001/0023 Instituto de Salud Carlos III
- Agència de Gestió d’Ajuts Universitaris i de Recerca
Collapse
Affiliation(s)
- Joaquim Aguirre-Plans
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Alberto Meseguer
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Ruben Molina-Fernandez
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Manuel Alejandro Marín-López
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Gaurav Jumde
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Kevin Casanova
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immuno-Enginneering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Vaud, Switzerland
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic 08500, Barcelona, Catalonia, Spain
- Institute of Biological, Environ-Mental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK
| | - Baldo Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Science, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Launay G, Ohue M, Prieto Santero J, Matsuzaki Y, Hilpert C, Uchikoga N, Hayashi T, Martin J. Evaluation of CONSRANK-Like Scoring Functions for Rescoring Ensembles of Protein–Protein Docking Poses. Front Mol Biosci 2020; 7:559005. [PMID: 33195406 PMCID: PMC7641601 DOI: 10.3389/fmolb.2020.559005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Scoring is a challenging step in protein–protein docking, where typically thousands of solutions are generated. In this study, we ought to investigate the contribution of consensus-rescoring, as introduced by Oliva et al. (2013) with the CONSRANK method, where the set of solutions is used to build statistics in order to identify recurrent solutions. We explore several ways to perform consensus-based rescoring on the ZDOCK decoy set for Benchmark 4. We show that the information of the interface size is critical for successful rescoring in this context, but that consensus rescoring in itself performs less well than traditional physics-based evaluation. The results of physics-based and consensus-based rescoring are partially overlapping, supporting the use of a combination of these approaches.
Collapse
Affiliation(s)
- Guillaume Launay
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, Lyon, France
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
- *Correspondence: Masahito Ohue,
| | - Julia Prieto Santero
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, Lyon, France
| | - Yuri Matsuzaki
- Tokyo Tech Academy for Leadership, Tokyo Institute of Technology, Tokyo, Japan
| | - Cécile Hilpert
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, Lyon, France
| | - Nobuyuki Uchikoga
- Department of Network Design, School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Takanori Hayashi
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
| | - Juliette Martin
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, Lyon, France
- Juliette Martin,
| |
Collapse
|
23
|
Wang X, Terashi G, Christoffer CW, Zhu M, Kihara D. Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics 2020; 36:2113-2118. [PMID: 31746961 DOI: 10.1093/bioinformatics/btz870] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/25/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Many important cellular processes involve physical interactions of proteins. Therefore, determining protein quaternary structures provide critical insights for understanding molecular mechanisms of functions of the complexes. To complement experimental methods, many computational methods have been developed to predict structures of protein complexes. One of the challenges in computational protein complex structure prediction is to identify near-native models from a large pool of generated models. RESULTS We developed a convolutional deep neural network-based approach named DOcking decoy selection with Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking models. To evaluate a protein docking model, DOVE scans the protein-protein interface of the model with a 3D voxel and considers atomic interaction types and their energetic contributions as input features applied to the neural network. The deep learning models were trained and validated on docking models available in the ZDock and DockGround databases. Among the different combinations of features tested, almost all outperformed existing scoring functions. AVAILABILITY AND IMPLEMENTATION Codes available at http://github.com/kiharalab/DOVE, http://kiharalab.org/dove/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Mengmeng Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Barradas-Bautista D, Cao Z, Cavallo L, Oliva R. The CASP13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering and interface analyses. BMC Bioinformatics 2020; 21:262. [PMID: 32938371 PMCID: PMC7493188 DOI: 10.1186/s12859-020-03600-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 08/27/2023] Open
Abstract
Background Properly scoring protein-protein docking models to single out the correct ones is an open challenge, also object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), a community-wide blind docking experiment. We introduced in the field CONSRANK (CONSensus RANKing), the first pure consensus method. Also available as a web server, CONSRANK ranks docking models in an ensemble based on their ability to match the most frequent inter-residue contacts in it. We have been blindly testing CONSRANK in all the latest CAPRI rounds, where we showed it to perform competitively with the state-of-the-art energy and knowledge-based scoring functions. More recently, we developed Clust-CONSRANK, an algorithm introducing a contact-based clustering of the models as a preliminary step of the CONSRANK scoring process. In the latest CASP13-CAPRI joint experiment, we participated as scorers with a novel pipeline, combining both our scoring tools, CONSRANK and Clust-CONSRANK, with our interface analysis tool COCOMAPS. Selection of the 10 models for submission was guided by the strength of the emerging consensus, and their final ranking was assisted by results of the interface analysis. Results As a result of the above approach, we were by far the first scorer in the CASP13-CAPRI top-1 ranking, having high/medium quality models ranked at the top-1 position for the majority of targets (11 out of the total 19). We were also the first scorer in the top-10 ranking, on a par with another group, and the second scorer in the top-5 ranking. Further, we topped the ranking relative to the prediction of binding interfaces, among all the scorers and predictors. Using the CASP13-CAPRI targets as case studies, we illustrate here in detail the approach we adopted. Conclusions Introducing some flexibility in the final model selection and ranking, as well as differentiating the adopted scoring approach depending on the targets were the key assets for our highly successful performance, as compared to previous CAPRI rounds. The approach we propose is entirely based on methods made available to the community and could thus be reproduced by any user.
Collapse
|
25
|
Abstract
Many of the biological functions of the cell are driven by protein-protein interactions. However, determining which proteins interact and exactly how they do so to enable their functions, remain major research questions. Functional interactions are dependent on a number of complicated factors; therefore, modeling the three-dimensional structure of protein-protein complexes is still considered a complex endeavor. Nevertheless, the rewards for modeling protein interactions to atomic level detail are substantial, and there are numerous examples of how models can provide useful information for drug design, protein engineering, systems biology, and understanding of the immune system. Here, we provide practical guidelines for docking proteins using the web-server, SwarmDock, a flexible protein-protein docking method. Moreover, we provide an overview of the factors that need to be considered when deciding whether docking is likely to be successful.
Collapse
Affiliation(s)
- Iain H Moal
- European Bioinformatics Institute, Hinxton, UK
| | | | | | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Abstract
There is a large gap between the numbers of known protein-protein interactions and the corresponding experimentally solved structures of protein complexes. Fortunately, this gap can be in part bridged by computational structure modeling methods. Currently, template-based modeling is the most accurate means to predict both individual protein structures and protein complexes. One of the major issues in template-based modeling is to identify homologous structures that could be utilized as templates. To simplify this task, we have developed the PPI3D web server. The server is not only able to search for homologous protein complexes, but also provides means to analyze identified interactions and to model protein complexes. In recent CASP and CAPRI experiments, PPI3D proved to be a useful tool for homology modeling of multimeric proteins. In this chapter, we provide a brief description of the PPI3D web server capabilities and how to use the server for modeling of protein complexes.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
27
|
Jankauskaite J, Jiménez-García B, Dapkunas J, Fernández-Recio J, Moal IH. SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 2019; 35:462-469. [PMID: 30020414 PMCID: PMC6361233 DOI: 10.1093/bioinformatics/bty635] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
Motivation Understanding the relationship between the sequence, structure, binding energy, binding kinetics and binding thermodynamics of protein–protein interactions is crucial to understanding cellular signaling, the assembly and regulation of molecular complexes, the mechanisms through which mutations lead to disease, and protein engineering. Results We present SKEMPI 2.0, a major update to our database of binding free energy changes upon mutation for structurally resolved protein–protein interactions. This version now contains manually curated binding data for 7085 mutations, an increase of 133%, including changes in kinetics for 1844 mutations, enthalpy and entropy changes for 443 mutations, and 440 mutations, which abolish detectable binding. Availability and implementation The database is available as supplementary data and at https://life.bsc.es/pid/skempi2/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justina Jankauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Brian Jiménez-García
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institut de Biologia Molecular de Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Iain H Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| |
Collapse
|
28
|
Choi Y, Furlon JM, Amos RB, Griswold KE, Bailey-Kellogg C. DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Bioinformatics 2019; 34:i245-i253. [PMID: 29949961 PMCID: PMC6022686 DOI: 10.1093/bioinformatics/bty274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Motivation Disruption of protein–protein interactions can mitigate antibody recognition of therapeutic proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among other applications. While designing affinity-enhancing mutations remains generally quite challenging, both statistically and physically based computational methods can precisely identify affinity-reducing mutations. In order to leverage this ability to design variants of a target protein with disrupted interactions, we developed the DisruPPI protein design method (DISRUpting Protein–Protein Interactions) to optimize combinations of mutations simultaneously for both disruption and stability, so that incorporated disruptive mutations do not inadvertently affect the target protein adversely. Results Two existing methods for predicting mutational effects on binding, FoldX and INT5, were demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind databases of experimentally determined changes in binding free energy. DisruPPI was implemented to use an INT5-based disruption score integrated with an AMBER-based stability assessment and was applied to disrupt protein interactions in a set of different targets representing diverse applications. In retrospective evaluation with three different case studies, comparison of DisruPPI-designed variants to published experimental data showed that DisruPPI was able to identify more diverse interaction-disrupting and stability-preserving variants more efficiently and effectively than previous approaches. In prospective application to an interaction between enhanced green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants, all of which were shown to have significantly reduced nanobody binding while maintaining function and thermostability. This demonstrates that DisruPPI may be readily utilized for effective removal of known epitopes of therapeutically relevant proteins. Availability and implementation DisruPPI is implemented in the EpiSweep package, freely available under an academic use license. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jacob M Furlon
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Ryan B Amos
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center at Dartmouth, Lebanon, NH, USA.,Department of Biological Sciences, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
29
|
Ochoa R, Laio A, Cossio P. Predicting the Affinity of Peptides to Major Histocompatibility Complex Class II by Scoring Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:3464-3473. [PMID: 31290667 DOI: 10.1021/acs.jcim.9b00403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Predicting the binding affinity of peptides able to interact with major histocompatibility complex (MHC) molecules is a priority for researchers working in the identification of novel vaccines candidates. Most available approaches are based on the analysis of the sequence of peptides of known experimental affinity. However, for MHC class II receptors, these approaches are not very accurate, due to the intrinsic flexibility of the complex. To overcome these limitations, we propose to estimate the binding affinity of peptides bound to an MHC class II by averaging the score of the configurations from finite-temperature molecular dynamics simulations. The score is estimated for 18 different scoring functions, and we explored the optimal manner for combining them. To test the predictions, we considered eight peptides of known binding affinity. We found that six scoring functions correlate with the experimental ranking of the peptides significantly better than the others. We then assessed a set of techniques for combining the scoring functions by linear regression and logistic regression. We obtained a maximum accuracy of 82% for the predicted sign of the binding affinity using a logistic regression with optimized weights. These results are potentially useful to improve the reliability of in silico protocols to design high-affinity binding peptides for MHC class II receptors.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , 050010 Medellin , Colombia
| | - Alessandro Laio
- International School for Advanced Studies (SISSA) , Via Bonomea 265 , 34136 Trieste , Italy.,The Abdus Salam International Centre for Theoretical Physics (ICTP) , Strada Costiera 11 , 34151 Trieste , Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , 050010 Medellin , Colombia.,Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany
| |
Collapse
|
30
|
Computational Modeling of Designed Ankyrin Repeat Protein Complexes with Their Targets. J Mol Biol 2019; 431:2852-2868. [DOI: 10.1016/j.jmb.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/24/2023]
|
31
|
Battisti A, Zamuner S, Sarti E, Laio A. Toward a unified scoring function for native state discrimination and drug-binding pocket recognition. Phys Chem Chem Phys 2019; 20:17148-17155. [PMID: 29900428 DOI: 10.1039/c7cp08170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein folding and receptor-ligand recognition are fundamental processes for any living organism. Although folding and ligand recognition are based on the same chemistry, the existing empirical scoring functions target just one problem: predicting the correct fold or the correct binding pose. We here introduce a statistical potential which considers moieties as fundamental units. The scoring function is able to deal with both folding and ligand pocket recognition problems with a performance comparable to the scoring functions specifically tailored for one of the two tasks. We foresee that the capability of the new scoring function to tackle both problems in a unified framework will be a key to deal with the induced fit phenomena, in which a target protein changes significantly its conformation upon binding. Moreover, the new scoring function might be useful in docking protocols towards intrinsically disordered proteins, whose flexibility cannot be handled with the available docking software.
Collapse
Affiliation(s)
- Anna Battisti
- International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy.
| | | | | | | |
Collapse
|
32
|
Geng C, Xue LC, Roel‐Touris J, Bonvin AMJJ. Finding the ΔΔ
G
spot: Are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cunliang Geng
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Li C. Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Jorge Roel‐Touris
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| |
Collapse
|
33
|
Nadalin F, Carbone A. Protein-protein interaction specificity is captured by contact preferences and interface composition. Bioinformatics 2018; 34:459-468. [PMID: 29028884 PMCID: PMC5860360 DOI: 10.1093/bioinformatics/btx584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
Abstract
Motivation Large-scale computational docking will be increasingly used in future years to discriminate protein–protein interactions at the residue resolution. Complete cross-docking experiments make in silico reconstruction of protein–protein interaction networks a feasible goal. They ask for efficient and accurate screening of the millions structural conformations issued by the calculations. Results We propose CIPS (Combined Interface Propensity for decoy Scoring), a new pair potential combining interface composition with residue–residue contact preference. CIPS outperforms several other methods on screening docking solutions obtained either with all-atom or with coarse-grain rigid docking. Further testing on 28 CAPRI targets corroborates CIPS predictive power over existing methods. By combining CIPS with atomic potentials, discrimination of correct conformations in all-atom structures reaches optimal accuracy. The drastic reduction of candidate solutions produced by thousands of proteins docked against each other makes large-scale docking accessible to analysis. Availability and implementation CIPS source code is freely available at http://www.lcqb.upmc.fr/CIPS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Francesca Nadalin
- Sorbonne Universités, UPMC-Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative-UMR 7238, 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC-Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative-UMR 7238, 75005 Paris, France.,Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
34
|
Jiménez-García B, Roel-Touris J, Romero-Durana M, Vidal M, Jiménez-González D, Fernández-Recio J. LightDock: a new multi-scale approach to protein-protein docking. Bioinformatics 2018; 34:49-55. [PMID: 28968719 DOI: 10.1093/bioinformatics/btx555] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
Motivation Computational prediction of protein-protein complex structure by docking can provide structural and mechanistic insights for protein interactions of biomedical interest. However, current methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes or transient interactions. A major challenge is how to efficiently sample the structural and energetic landscape of the association at different resolution levels, given that each scoring function is often highly coupled to a specific type of search method. Thus, new methodologies capable of accommodating multi-scale conformational flexibility and scoring are strongly needed. Results We describe here a new multi-scale protein-protein docking methodology, LightDock, capable of accommodating conformational flexibility and a variety of scoring functions at different resolution levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, especially in flexible cases. Availability and implementation The source code of the software and installation instructions are available for download at https://life.bsc.es/pid/lightdock/. Contact juanf@bsc.es. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Brian Jiménez-García
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Jorge Roel-Touris
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Miguel Romero-Durana
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Miquel Vidal
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Daniel Jiménez-González
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Juan Fernández-Recio
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Structural Biology Unit, IBMB-CSIC, 08028 Barcelona, Spain
| |
Collapse
|
35
|
Anishchenko I, Kundrotas PJ, Vakser IA. Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model. Biophys J 2018; 115:809-821. [PMID: 30122295 DOI: 10.1016/j.bpj.2018.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
The energy function is the key component of protein modeling methodology. This work presents a semianalytical approach to the development of contact potentials for protein structure modeling. Residue-residue and atom-atom contact energies were derived by maximizing the probability of observing native sequences in a nonredundant set of protein structures. The optimization task was formulated as an inverse statistical mechanics problem applied to the Potts model. Its solution by pseudolikelihood maximization provides consistent estimates of coupling constants at atomic and residue levels. The best performance was achieved when interacting atoms were grouped according to their physicochemical properties. For individual protein structures, the performance of the contact potentials in distinguishing near-native structures from the decoys is similar to the top-performing scoring functions. The potentials also yielded significant improvement in the protein docking success rates. The potentials recapitulated experimentally determined protein stability changes upon point mutations and protein-protein binding affinities. The approach offers a different perspective on knowledge-based potentials and may serve as the basis for their further development.
Collapse
Affiliation(s)
- Ivan Anishchenko
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
36
|
Development of a new benchmark for assessing the scoring functions applicable to protein–protein interactions. Future Med Chem 2018; 10:1555-1574. [DOI: 10.4155/fmc-2017-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Scoring functions are important component of protein–protein docking methods. They need to be evaluated on high-quality benchmarks to reveal their strengths and weaknesses. Evaluation results obtained on such benchmarks can provide valuable guidance for developing more advanced scoring functions. Methodology & results: In our comparative assessment of scoring functions for protein–protein interactions benchmark, the performance of a scoring function was characterized by ‘docking power’ and ‘scoring power’. A high-quality dataset of 273 protein–protein complexes was compiled and employed in both tests. Four scoring functions, including FASTCONTACT, ZRANK, dDFIRE and ATTRACT were tested as demonstration. ZRANK and ATTRACT exhibited encouraging performance in the docking power test. However, all four scoring functions failed badly in the scoring power test. Conclusion: Our comparative assessment of scoring functions for protein–protein interaction benchmark is created especially for assessing the scoring functions applicable to protein–protein interactions. It is different from other benchmarks for assessing protein–protein docking methods. Our benchmark is available to the public at www.pdbbind-cn.org/download/CASF-PPI/ .
Collapse
|
37
|
Assessment of ab initio models of protein complexes by molecular dynamics. PLoS Comput Biol 2018; 14:e1006182. [PMID: 29864135 PMCID: PMC6002105 DOI: 10.1371/journal.pcbi.1006182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/14/2018] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Determining how proteins interact to form stable complexes is of crucial importance, for example in the development of novel therapeutics. Computational methods to determine the thermodynamically stable conformation of complexes from the structure of the binding partners, such as RosettaDock, might potentially emerge to become a promising alternative to traditional structure determination methods. However, while models virtually identical to the correct experimental structure can in some cases be generated, the main difficulty remains to discriminate correct or approximately correct models from decoys. This is due to the ruggedness of the free-energy landscape, the approximations intrinsic in the scoring functions, and the intrinsic flexibility of proteins. Here we show that molecular dynamics simulations performed starting from a number top-scoring models can not only discriminate decoys and identify the correct structure, but may also provide information on an initial map of the free energy landscape that elucidates the binding mechanism. Determining how proteins fold and form complexes is of crucial importance, for example in the development of novel therapeutics. Experimental determination of structures is costly and lengthy. Computational methods to determine the thermodynamically stable conformation of complexes from the structure of the binding partners are available and constantly improving. Such methods generate a large number of diverse conformations and rank them for their likelihood to be correct. Even a model very similar to the correct structure is rarely the top-scoring one, but, as in the examples presented here, only within the top ~10–100 (the exact number depends on the complexity of the structure, and could be much higher). Here we show through atomistic simulation that good models are kinetically stable and bad models most often are not. More surprisingly, we also see that some bad models spontaneously find the correct (i.e., experimentally determined) conformation. This is remarkable, and could become an additional tool to contribute to structure determination of protein complexes. Such a result can also be expected, because evolution sculpted the free energy landscape in a way that the biologically active state is not only the one of lowest free energy (i.e., the most likely state) but also robustly reachable and kinetically stable (i.e., at the bottom of a funnel on the free energy landscape).
Collapse
|
38
|
Popov P, Grudinin S. Eurecon: Equidistant uniform rigid-body ensemble constructor. J Mol Graph Model 2018; 80:313-319. [PMID: 29427936 DOI: 10.1016/j.jmgm.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/07/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022]
Abstract
Conformational ensembles comprise one of the fundamental concepts in statistical bioinformatics and appear in a variety of applications, e.g. molecular docking, virtual screening, searching for pharmacophores, etc. High-throughput applications require billions of conformations to be considered, thus, one often uses the rigid-body representation of molecules or its fragments to cope with the computational cost. Of particular interest is generation of the near-native conformational ensembles, which consist of conformations structurally close to the biologically relevant ones. One possible way to compose such ensembles is to control the root mean square deviation (RMSD) between the original and the generated conformations. To the best of our knowledge there is no computational approach that guarantees that all the generated conformations have the desired RMSD with respect to the reference structure. In this study we presented a fast algorithm for the construction of rigid-body conformational ensembles, which possess two main properties: (i) each generated conformation has a fixed RMSD with respect to the original conformation, (ii) generated conformations are distributed uniformly over the sphere of axes corresponding to the rigid-body motions. The algorithm is very efficient, it does not require any standard RMSD computation between the conformations and has the O(N + M) complexity to generate the required rigid-body transforms, where N is the number of atoms in the system, and M is the size of the conformational ensemble. Eurecon is applicable to an arbitrary atomic system, thus, it could be used for molecular systems of various size and type. We demonstrated Eurecon application by generating near-native conformational ensembles for a ligand placed inside a binding site, a protein dimer embedded into a membrane, and a ribosomal complex. We implemented the developed algorithm in C++ and called it Eurecon, which stands for Equidistant Uniform Rigid-body Ensemble CONstructor. A user-friendly interface allows to define the desired RMSD value, the relative amplitudes for rotation and translation motions by means of the partition parameter, and the set of axes corresponding to the rigid-body motions. Eurecon is available as the SAMSON Element (https://samson-connect.net).
Collapse
Affiliation(s)
- P Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | |
Collapse
|
39
|
Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Properties that rank protein:protein docking poses with high accuracy. Phys Chem Chem Phys 2018; 20:20927-20942. [DOI: 10.1039/c8cp03888k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.
Collapse
Affiliation(s)
- Inês C. M. Simões
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - João T. S. Coimbra
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Rui P. P. Neves
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Inês P. D. Costa
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| |
Collapse
|
40
|
Abstract
The atomic structures of protein complexes can provide useful information for drug design, protein engineering, systems biology, and understanding pathology. Obtaining this information experimentally can be challenging. However, if the structures of the subunits are known, then it is often possible to model the complex computationally. This chapter provide practical guidelines for docking proteins using the SwarmDock flexible protein-protein docking method, providing an overview of the factors that need to be considered when deciding whether docking is likely to be successful, the preparation of structural input, generation of docked poses, analysis and ranking of docked poses, and the validation of models using external data.
Collapse
Affiliation(s)
- Iain H Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| | | | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
41
|
Basu S. CP dock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics. J Mol Model 2017; 24:8. [PMID: 29218430 DOI: 10.1007/s00894-017-3546-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (Sm, Em) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant Em values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CPdock, based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CPdock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CPdock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CPdock to be used in the initial screening phase of a protein-protein docking scoring pipeline.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Chemistry, University of Delhi, New Delhi, India.
| |
Collapse
|
42
|
Nealon JO, Philomina LS, McGuffin LJ. Predictive and Experimental Approaches for Elucidating Protein-Protein Interactions and Quaternary Structures. Int J Mol Sci 2017; 18:E2623. [PMID: 29206185 PMCID: PMC5751226 DOI: 10.3390/ijms18122623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022] Open
Abstract
The elucidation of protein-protein interactions is vital for determining the function and action of quaternary protein structures. Here, we discuss the difficulty and importance of establishing protein quaternary structure and review in vitro and in silico methods for doing so. Determining the interacting partner proteins of predicted protein structures is very time-consuming when using in vitro methods, this can be somewhat alleviated by use of predictive methods. However, developing reliably accurate predictive tools has proved to be difficult. We review the current state of the art in predictive protein interaction software and discuss the problem of scoring and therefore ranking predictions. Current community-based predictive exercises are discussed in relation to the growth of protein interaction prediction as an area within these exercises. We suggest a fusion of experimental and predictive methods that make use of sparse experimental data to determine higher resolution predicted protein interactions as being necessary to drive forward development.
Collapse
Affiliation(s)
- John Oliver Nealon
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK.
| | | | | |
Collapse
|
43
|
Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C. Computationally-driven identification of antibody epitopes. eLife 2017; 6:29023. [PMID: 29199956 PMCID: PMC5739537 DOI: 10.7554/elife.29023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding where antibodies recognize antigens can help define mechanisms of action and provide insights into progression of immune responses. We investigate the extent to which information about binding specificity implicitly encoded in amino acid sequence can be leveraged to identify antibody epitopes. In computationally-driven epitope localization, possible antibody–antigen binding modes are modeled, and targeted panels of antigen variants are designed to experimentally test these hypotheses. Prospective application of this approach to two antibodies enabled epitope localization using five or fewer variants per antibody, or alternatively, a six-variant panel for both simultaneously. Retrospective analysis of a variety of antibodies and antigens demonstrated an almost 90% success rate with an average of three antigen variants, further supporting the observation that the combination of computational modeling and protein design can reveal key determinants of antibody–antigen binding and enable efficient studies of collections of antibodies identified from polyclonal samples or engineered libraries.
Collapse
Affiliation(s)
- Casey K Hua
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | |
Collapse
|
44
|
Kundrotas PJ, Anishchenko I, Dauzhenka T, Kotthoff I, Mnevets D, Copeland MM, Vakser IA. Dockground: A comprehensive data resource for modeling of protein complexes. Protein Sci 2017; 27:172-181. [PMID: 28891124 DOI: 10.1002/pro.3295] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
Characterization of life processes at the molecular level requires structural details of protein interactions. The number of experimentally determined structures of protein-protein complexes accounts only for a fraction of known protein interactions. This gap in structural description of the interactome has to be bridged by modeling. An essential part of the development of structural modeling/docking techniques for protein interactions is databases of protein-protein complexes. They are necessary for studying protein interfaces, providing a knowledge base for docking algorithms, and developing intermolecular potentials, search procedures, and scoring functions. Development of protein-protein docking techniques requires thorough benchmarking of different parts of the docking protocols on carefully curated sets of protein-protein complexes. We present a comprehensive description of the Dockground resource (http://dockground.compbio.ku.edu) for structural modeling of protein interactions, including previously unpublished unbound docking benchmark set 4, and the X-ray docking decoy set 2. The resource offers a variety of interconnected datasets of protein-protein complexes and other data for the development and testing of different aspects of protein docking methodologies. Based on protein-protein complexes extracted from the PDB biounit files, Dockground offers sets of X-ray unbound, simulated unbound, model, and docking decoy structures. All datasets are freely available for download, as a whole or selecting specific structures, through a user-friendly interface on one integrated website.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ivan Anishchenko
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Taras Dauzhenka
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ian Kotthoff
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Daniil Mnevets
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Matthew M Copeland
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045
| | - Ilya A Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66045.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
45
|
Ahmed M, Barakat K. When theory meets experiment: the PD-1 challenge. J Mol Model 2017; 23:308. [PMID: 29019005 DOI: 10.1007/s00894-017-3482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022]
Abstract
Applying atomistic computational modeling to drug discovery has proven to be a hugely successful approach, allowing drug-receptor interactions to be predicted and drugs to be optimized for potency, selectivity, and safety. However, when it comes to predicting protein-protein interactions and to rationally designing regulators of these interactions, computational tools often fail. Here, we report one of the rare instances where state-of-the-art computer simulations, guided by experiment, were able to correctly predict one of the most sophisticated protein-protein interactions. We revisit our previous discovery of the complex of human PD-1 with the ligand PD-L1 and compare our earlier findings with the recently published crystal structure of the same complex. Side-by-side comparison of the model of the complex with its crystal structure reveals outstanding agreement and suggests that our protein-protein prediction workflow could be applied to similar problems.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada. .,Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
46
|
Dapkūnas J, Olechnovič K, Venclovas Č. Modeling of protein complexes in CAPRI Round 37 using template-based approach combined with model selection. Proteins 2017; 86 Suppl 1:292-301. [DOI: 10.1002/prot.25378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| |
Collapse
|
47
|
Abstract
Motivation: Protein–protein interactions are a key in virtually all biological processes. For a detailed understanding of the biological processes, the structure of the protein complex is essential. Given the current experimental techniques for structure determination, the vast majority of all protein complexes will never be solved by experimental techniques. In lack of experimental data, computational docking methods can be used to predict the structure of the protein complex. A common strategy is to generate many alternative docking solutions (atomic models) and then use a scoring function to select the best. The success of the computational docking technique is, to a large degree, dependent on the ability of the scoring function to accurately rank and score the many alternative docking models. Results: Here, we present ProQDock, a scoring function that predicts the absolute quality of docking model measured by a novel protein docking quality score (DockQ). ProQDock uses support vector machines trained to predict the quality of protein docking models using features that can be calculated from the docking model itself. By combining different types of features describing both the protein–protein interface and the overall physical chemistry, it was possible to improve the correlation with DockQ from 0.25 for the best individual feature (electrostatic complementarity) to 0.49 for the final version of ProQDock. ProQDock performed better than the state-of-the-art methods ZRANK and ZRANK2 in terms of correlations, ranking and finding correct models on an independent test set. Finally, we also demonstrate that it is possible to combine ProQDock with ZRANK and ZRANK2 to improve performance even further. Availability and implementation:http://bioinfo.ifm.liu.se/ProQDock Contact:bjornw@ifm.liu.se Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sankar Basu
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| |
Collapse
|
48
|
Moal IH, Barradas-Bautista D, Jiménez-García B, Torchala M, van der Velde A, Vreven T, Weng Z, Bates PA, Fernández-Recio J. IRaPPA: information retrieval based integration of biophysical models for protein assembly selection. Bioinformatics 2017; 33:1806-1813. [PMID: 28200016 PMCID: PMC5783285 DOI: 10.1093/bioinformatics/btx068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/26/2017] [Accepted: 02/12/2017] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION In order to function, proteins frequently bind to one another and form 3D assemblies. Knowledge of the atomic details of these structures helps our understanding of how proteins work together, how mutations can lead to disease, and facilitates the designing of drugs which prevent or mimic the interaction. RESULTS Atomic modeling of protein-protein interactions requires the selection of near-native structures from a set of docked poses based on their calculable properties. By considering this as an information retrieval problem, we have adapted methods developed for Internet search ranking and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach enhances the identification of near-native structures when applied to four docking methods, resulting in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up to 70% in the top 100. AVAILABILITY AND IMPLEMENTATION IRaPPA has been implemented in the SwarmDock server ( http://bmm.crick.ac.uk/∼SwarmDock/ ), pyDock server ( http://life.bsc.es/pid/pydockrescoring/ ) and ZDOCK server ( http://zdock.umassmed.edu/ ), with code available on request. CONTACT moal@ebi.ac.uk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Iain H Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Life Science Department, Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Didier Barradas-Bautista
- Life Science Department, Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Brian Jiménez-García
- Life Science Department, Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Arjan van der Velde
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Juan Fernández-Recio
- Life Science Department, Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
49
|
Barradas-Bautista D, Moal IH, Fernández-Recio J. A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining. Proteins 2017; 85:1287-1297. [DOI: 10.1002/prot.25289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Didier Barradas-Bautista
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology; Barcelona 08034 Spain
| | - Iain H. Moal
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology; Barcelona 08034 Spain
- European Molecular Biology Laboratory; European Bioinformatics Institute, Wellcome Trust Genome Campus; Hinxton Cambridge CB10 1SD United Kingdom
| | - Juan Fernández-Recio
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology; Barcelona 08034 Spain
| |
Collapse
|
50
|
Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes. Molecules 2017; 22:molecules22030362. [PMID: 28264446 PMCID: PMC6155311 DOI: 10.3390/molecules22030362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Disulfide-rich peptides isolated from the venom of arthropods and marine animals are a rich source of potent and selective modulators of ion channels. This makes these peptides valuable lead molecules for the development of new drugs to treat neurological disorders. Consequently, much effort goes into understanding their mechanism of action. This paper presents an overview of how molecular simulations have been used to study the interactions of disulfide-rich venom peptides with ion channels and membranes. The review is focused on the use of docking, molecular dynamics simulations, and free energy calculations to (i) predict the structure of peptide-channel complexes; (ii) calculate binding free energies including the effect of peptide modifications; and (iii) study the membrane-binding properties of disulfide-rich venom peptides. The review concludes with a summary and outlook.
Collapse
|