1
|
Vargas-Almendra A, Ruiz-Medrano R, Núñez-Muñoz LA, Ramírez-Pool JA, Calderón-Pérez B, Xoconostle-Cázares B. Advances in Soybean Genetic Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3073. [PMID: 39519991 PMCID: PMC11548167 DOI: 10.3390/plants13213073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic improvement by conducting an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses, improving nutritional profiles, and optimizing yield. We also describe the progress in breeding techniques, including traditional approaches, marker-assisted selection, and biotechnological innovations such as genetic engineering and genome editing. The development of transgenic soybean cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration, and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy contribute to expanding genetic diversity as well as the influence of epigenetic processes and microbiome on stress tolerance. These genetic innovations are crucial for addressing the increasing global demand for soybeans, while mitigating the effects of climate change and environmental stressors. The integration of molecular breeding strategies with sustainable agricultural practices offers a pathway for developing more resilient and productive soybean varieties, thereby contributing to global food security and agricultural sustainability.
Collapse
Affiliation(s)
- Adriana Vargas-Almendra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| |
Collapse
|
2
|
Sellamuthu G, Tarafdar A, Jasrotia RS, Chaudhary M, Vishwakarma H, Padaria JC. Introgression of Δ 1-pyrroline-5-carboxylate synthetase (PgP5CS) confers enhanced resistance to abiotic stresses in transgenic tobacco. Transgenic Res 2024; 33:131-147. [PMID: 38739244 DOI: 10.1007/s11248-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Avijit Tarafdar
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- International Crops Research Institute for Semi-Arid Tropics, Patancheruvu, India
| | - Rahul Singh Jasrotia
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Florida State University, Tallahassee, USA
| | - Minakshi Chaudhary
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Harinder Vishwakarma
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jasdeep C Padaria
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
3
|
Laksana C, Sophiphun O, Chanprame S. In vitro and in vivo screening for the identification of salt-tolerant sugarcane ( Saccharum officinarum L.) clones: molecular, biochemical, and physiological responses to salt stress. Saudi J Biol Sci 2023; 30:103655. [PMID: 37213693 PMCID: PMC10193298 DOI: 10.1016/j.sjbs.2023.103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/23/2023] Open
Abstract
Sugarcane is a glycophyte whose growth and yield can be negatively affected by salt stress. As the arable lands with potential saline soils expand annually, the increase of salt-tolerance in sugarcane cultivars is highly desired. We, herein, employed in vitro and in vivo conditions in order to screen sugarcane plants for salt tolerance at the cellular and at the whole plant levels. Calli of sugarcane cv. Khon Kaen 3 (KK3) were selected after culturing in selective media containing various NaCl concentrations, and regenerated plants were then reselected after culturing in selective media containing higher NaCl concentrations. The surviving plants were finally selected after an exposure to 254 mM NaCl under greenhouse conditions. A total of 11 sugarcane plants survived the selection process. Four plants that exhibited tolerance to the four different salt concentrations applied during the aforementioned screening process were then selected for the undertaking of further molecular, biochemical, and physiological studies. The construction of a dendrogram has revealed that the most salt-tolerant plant was characterized by the lowest genetic similarity to the original cultivar. The relative expression levels of six genes (i.e., SoDREB, SoNHX1, SoSOS1, SoHKT, SoBADH, and SoMIPS) were found to be significantly higher in the salt-tolerance clones than those measured in the original plant. The measured proline levels, the glycine betaine content, the relative water content, the SPAD unit, the contents of chlorophyll a and b, as well as the K+/Na+ ratios of the salt-tolerant clones were also found to be significantly higher than those of the original plant.When the salt-tolerant clones were grown in a low saline soil, they exhibited a higher Brix percentage than that of the original cultivar.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140,Thailand
- Corresponding author.
| |
Collapse
|
4
|
Perlikowski D, Skirycz A, Marczak Ł, Lechowicz K, Augustyniak A, Michaelis Ä, Kosmala A. Metabolism of crown tissue is crucial for drought tolerance and recovery after stress cessation in Lolium/Festuca forage grasses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:396-414. [PMID: 36214776 DOI: 10.1093/jxb/erac398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Katarzyna Lechowicz
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Adam Augustyniak
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Arkadiusz Kosmala
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| |
Collapse
|
5
|
Choukri H, El Haddad N, Aloui K, Hejjaoui K, El-Baouchi A, Smouni A, Thavarajah D, Maalouf F, Kumar S. Effect of High Temperature Stress During the Reproductive Stage on Grain Yield and Nutritional Quality of Lentil (Lens culinaris Medikus). Front Nutr 2022; 9:857469. [PMID: 35495922 PMCID: PMC9051399 DOI: 10.3389/fnut.2022.857469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
High temperature during the reproductive stage limits the growth and development of lentil (Lens culinaris Medikus). The reproductive and seed filling periods are the most sensitive to heat stress, resulting in limited yield and nutritional quality. Climate change causes frequent incidents of heat stress for global food crop production. This study aimed to assess the impact of high temperature during the reproductive stage of lentil on grain yield, nutritional value, and cooking quality. Thirty-six lentil genotypes were evaluated under controlled conditions for their high temperature response. Genotypic variation was significant (p < 0.001) for all the traits under study. High temperature-induced conditions reduced protein, iron (Fe) and zinc (Zn) concentrations in lentils. Under heat stress conditions, mineral concentrations among lentil genotypes varied from 6.0 to 8.8 mg/100 g for Fe and from 4.9 to 6.6 mg/100 g for Zn. Protein ranged from 21.9 to 24.3 g/100 g. Cooking time was significantly reduced due to high temperature treatment; the range was 3–11 min, while under no stress conditions, cooking time variation was from 5 to 14 min. Phytic acid variation was 0.5–1.2 g/100 g under no stress conditions, while under heat stress conditions, phytic acid ranged from 0.4 to 1.4 g/100 g. All genotypes had highly significant bioavailable Fe and moderately bioavailable Zn under no stress conditions. Whereas under heat stress conditions, Fe and Zn bioavailability was reduced due to increased phytic acid levels. Our results will greatly benefit the development of biofortified lentil cultivars for global breeding programs to generate promising genotypes with low phytic acid and phytic acid/micronutrient ratio to combat micronutrient malnutrition.
Collapse
Affiliation(s)
- Hasnae Choukri
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V, Rabat, Morocco
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Hasnae Choukri
| | - Noureddine El Haddad
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V, Rabat, Morocco
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Khawla Aloui
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Laboratory of Ecology and Environment, Ben M'Ski Faculty of Sciences, University Hassan II, Casablanca, Morocco
| | - Kamal Hejjaoui
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V, Rabat, Morocco
- African Integrated Plant and Soil Research Group, AgroBioSciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Adil El-Baouchi
- African Integrated Plant and Soil Research Group, AgroBioSciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V, Rabat, Morocco
| | - Dil Thavarajah
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, SC, United States
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- *Correspondence: Shiv Kumar
| |
Collapse
|
6
|
Arya H, Singh MB, Bhalla PL. Towards Developing Drought-smart Soybeans. FRONTIERS IN PLANT SCIENCE 2021; 12:750664. [PMID: 34691128 PMCID: PMC8526797 DOI: 10.3389/fpls.2021.750664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Drought is one of the significant abiotic stresses threatening crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may require supplemental irrigation for drought-susceptible soybean varieties. The effects of drought stress on soybean including osmotic adjustments, growth morphology and yield loss have been well studied. In addition, drought-resistant soybean cultivars have been investigated for revealing the mechanisms of tolerance and survival. Advanced high-throughput technologies have yielded remarkable phenotypic and genetic information for producing drought-tolerant soybean cultivars, either through molecular breeding or transgenic approaches. Further, transcriptomics and functional genomics have led to the characterisation of new genes or gene families controlling drought response. Interestingly, genetically modified drought-smart soybeans are just beginning to be released for field applications cultivation. In this review, we focus on breeding and genetic engineering approaches that have successfully led to the development of drought-tolerant soybeans for commercial use.
Collapse
|
7
|
Pardo J, Man Wai C, Chay H, Madden CF, Hilhorst HWM, Farrant JM, VanBuren R. Intertwined signatures of desiccation and drought tolerance in grasses. Proc Natl Acad Sci U S A 2020; 117:10079-10088. [PMID: 32327609 PMCID: PMC7211927 DOI: 10.1073/pnas.2001928117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and the related desiccation-sensitive cereal Eragrostis tef to identify changes underlying desiccation tolerance. These analyses were extended across C4 grasses and cereals to identify broader evolutionary conservation and divergence. Across diverse genomic datasets, we identified changes in chromatin architecture, methylation, gene duplications, and expression dynamics related to desiccation in E. nindensis It was previously hypothesized that transcriptional rewiring of seed desiccation pathways confers vegetative desiccation tolerance. Here, we demonstrate that the majority of seed-dehydration-related genes showed similar expression patterns in leaves of both desiccation-tolerant and -sensitive species. However, we identified a small set of seed-related orthologs with expression specific to desiccation-tolerant species. This supports a broad role for seed-related genes, where many are involved in typical drought responses, with only a small subset of crucial genes specifically induced in desiccation-tolerant plants.
Collapse
Affiliation(s)
- Jeremy Pardo
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Hannah Chay
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Christine F Madden
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824;
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
8
|
Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Purpose
The aim of this study was to identify salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains, isolated from Chinese traditional fermented food, by genomic analysis.
Methods
Tolerance of L. plantarum D31 and T9 strains was evaluated at different stress conditions (temperatures, acid, osmolality, and artificial gastrointestinal fluids). Draft genomes of the two strains were determined using the Illumina sequencing technique. Comparative genomic analysis and gene transcriptional analysis were performed to identify and validate the salt tolerance-related genes.
Results
Both L. plantarum D31 and T9 strains were able to withstand high osmotic pressure caused by 5.0% NaCl, and L. plantarum D31 even to tolerate 8.0% NaCl. L. plantarum D31 genome contained 3,315,786 bp (44.5% GC content) with 3106 predicted protein-encoding genes, while L. plantarum T9 contained 3,388,070 bp (44.1% GC content) with 3223 genes. Comparative genomic analysis revealed a number of genes involved in the maintenance of intracellular ion balance, absorption or synthesis of compatible solutes, stress response, and modulation of membrane composition in L. plantarum D31 and or T9 genomes. Gene transcriptional analysis validated that most of these genes were coupled with the stress-resistance phenotypes of the two strains.
Conclusions
L. plantarum D31 and T9 strains tolerated 5.0% NaCl, and D31 even tolerated 8.0% NaCl. The draft genomes of these two strains were determined, and comparative genomic analysis revealed multiple molecular coping strategies for the salt stress tolerance in L. plantarum D31 and T9 strains.
Collapse
|
9
|
Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019; 9:E285. [PMID: 31319576 PMCID: PMC6680914 DOI: 10.3390/biom9070285] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
Plants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars. These compounds stabilize the osmotic differences between surroundings of cell and the cytosol. Besides, they also protect the plant cells from oxidative stress by inhibiting the production of harmful ROS like hydroxyl ions, superoxide ions, hydrogen peroxide, and other free radicals. The accumulation of osmolytes is further modulated by phytohormones like abscisic acid, brassinosteroids, cytokinins, ethylene, jasmonates, and salicylic acid. It is thus important to understand the mechanisms regulating the phytohormone-mediated accumulation of osmolytes in plants during abiotic stresses. In this review, we have discussed the underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Vinod Kumar
- Department of Botany, DAV University, Sarmastpur, Jalandhar 144012, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Physiology Laboratory, Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India
| | | | - Neha Handa
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Dhriti Kapoor
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Hummel M, Hallahan BF, Brychkova G, Ramirez-Villegas J, Guwela V, Chataika B, Curley E, McKeown PC, Morrison L, Talsma EF, Beebe S, Jarvis A, Chirwa R, Spillane C. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci Rep 2018; 8:16187. [PMID: 30385766 DOI: 10.1038/s441598-018-33952-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/27/2018] [Indexed: 05/21/2023] Open
Abstract
Climate change impacts on food security will involve negative impacts on crop yields, and potentially on the nutritional quality of staple crops. Common bean is the most important grain legume staple crop for human diets and nutrition worldwide. We demonstrate by crop modeling that the majority of current common bean growing areas in southeastern Africa will become unsuitable for bean cultivation by the year 2050. We further demonstrate reductions in yields of available common bean varieties in a field trial that is a climate analogue site for future predicted drought conditions. Little is known regarding the impact of climate change induced abiotic stresses on the nutritional quality of common beans. Our analysis of nutritional and antinutritional compounds reveals that iron levels in common bean grains are reduced under future climate-scenario relevant drought stress conditions. In contrast, the levels of protein, zinc, lead and phytic acid increase in the beans under such drought stress conditions. This indicates that under climate-change induced drought scenarios, future bean servings by 2050 will likely have lower nutritional quality, posing challenges for ongoing climate-proofing of bean production for yields, nutritional quality, human health, and food security.
Collapse
Affiliation(s)
- Marijke Hummel
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Brendan F Hallahan
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Julian Ramirez-Villegas
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Veronica Guwela
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Bartholomew Chataika
- Pan African Bean Research Alliance (PABRA), International Center for Tropical Agriculture (CIAT), P.O. Box 158, Lilongwe, Malawi
| | - Edna Curley
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Liam Morrison
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Elise F Talsma
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 17 6700 AA, Wageningen, The Netherlands
| | - Steve Beebe
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Andy Jarvis
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Rowland Chirwa
- Pan African Bean Research Alliance (PABRA), International Center for Tropical Agriculture (CIAT), P.O. Box 158, Lilongwe, Malawi
| | - Charles Spillane
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland.
| |
Collapse
|
11
|
Hummel M, Hallahan BF, Brychkova G, Ramirez-Villegas J, Guwela V, Chataika B, Curley E, McKeown PC, Morrison L, Talsma EF, Beebe S, Jarvis A, Chirwa R, Spillane C. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci Rep 2018; 8:16187. [PMID: 30385766 PMCID: PMC6212502 DOI: 10.1038/s41598-018-33952-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Climate change impacts on food security will involve negative impacts on crop yields, and potentially on the nutritional quality of staple crops. Common bean is the most important grain legume staple crop for human diets and nutrition worldwide. We demonstrate by crop modeling that the majority of current common bean growing areas in southeastern Africa will become unsuitable for bean cultivation by the year 2050. We further demonstrate reductions in yields of available common bean varieties in a field trial that is a climate analogue site for future predicted drought conditions. Little is known regarding the impact of climate change induced abiotic stresses on the nutritional quality of common beans. Our analysis of nutritional and antinutritional compounds reveals that iron levels in common bean grains are reduced under future climate-scenario relevant drought stress conditions. In contrast, the levels of protein, zinc, lead and phytic acid increase in the beans under such drought stress conditions. This indicates that under climate-change induced drought scenarios, future bean servings by 2050 will likely have lower nutritional quality, posing challenges for ongoing climate-proofing of bean production for yields, nutritional quality, human health, and food security.
Collapse
Affiliation(s)
- Marijke Hummel
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Brendan F Hallahan
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Julian Ramirez-Villegas
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Veronica Guwela
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Bartholomew Chataika
- Pan African Bean Research Alliance (PABRA), International Center for Tropical Agriculture (CIAT), P.O. Box 158, Lilongwe, Malawi
| | - Edna Curley
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Liam Morrison
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Elise F Talsma
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 17 6700 AA, Wageningen, The Netherlands
| | - Steve Beebe
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Andy Jarvis
- International Center for Tropical Agriculture (CIAT), Km. 17 Recta Cali-Palmira A. A., 6713, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Rowland Chirwa
- Pan African Bean Research Alliance (PABRA), International Center for Tropical Agriculture (CIAT), P.O. Box 158, Lilongwe, Malawi
| | - Charles Spillane
- Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland.
| |
Collapse
|
12
|
Shaw AK, Bhardwaj PK, Ghosh S, Azahar I, Adhikari S, Adhikari A, Sherpa AR, Saha SK, Hossain Z. Profiling of BABA-induced differentially expressed genes of Zea mays using suppression subtractive hybridization. RSC Adv 2017. [DOI: 10.1039/c7ra06220f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study aims to identify differentially expressed transcripts in BABA-primed maize leaves using suppression subtractive hybridization (SSH) strategy. Findings shed new light on the BABA potentiated defense mechanisms in plants.
Collapse
Affiliation(s)
- Arun K. Shaw
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Pardeep K. Bhardwaj
- Plant Bioresources Division
- Institute of Bioresources and Sustainable Development
- Sikkim Centre
- India
| | - Supriya Ghosh
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ikbal Azahar
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | | | - Ayan Adhikari
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ang R. Sherpa
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Samir K. Saha
- Department of Zoology
- West Bengal State University
- Kolkata – 700126
- India
| | - Zahed Hossain
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| |
Collapse
|
13
|
Lee HG, Choi YR, Seo PJ. Increased STM expression is associated with drought tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:79-84. [PMID: 27448723 DOI: 10.1016/j.jplph.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/17/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
In higher plants, shoot apical meristem (SAM) maintains cell division activity in order to give rise to aerial plant organs. Several lines of evidence have suggested that plants ensure stem cell proliferation activity in response to various external stimuli, thereby contributing to plant adaptation and fitness. Here, we report that the abscisic acid (ABA)-inducible R2R3-type MYB96 transcription factor regulates transcript accumulation of SHOOT MERISTEMLESS (STM) possibly to contribute to plant adaptation to environmental stress. STM was up-regulated in MYB96-overexpressing activation-tagging myb96-ox plants, but down-regulated in MYB96-deficient myb96-1 mutant plants, even in the presence of ABA. Notably, the MYB96 transcription factor bound directly to the STM promoter. In addition, consistent with the role of MYB96 in drought tolerance, transgenic plants overexpressing STM (35S:STM-MYC) were more tolerant to drought stress. These observations suggest that the MYB96-STM module contributes to enhancing plant tolerance to drought stress.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yee-Ram Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
14
|
Perlikowski D, Czyżniejewski M, Marczak Ł, Augustyniak A, Kosmala A. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration. FRONTIERS IN PLANT SCIENCE 2016; 7:1063. [PMID: 27504113 PMCID: PMC4958636 DOI: 10.3389/fpls.2016.01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 05/26/2023]
Abstract
Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of SciencePoznań, Poland
| | | | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| | - Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of SciencePoznań, Poland
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of SciencePoznań, Poland
| |
Collapse
|
15
|
HanumanthaRao B, Nair RM, Nayyar H. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective. FRONTIERS IN PLANT SCIENCE 2016; 7:957. [PMID: 27446183 PMCID: PMC4925713 DOI: 10.3389/fpls.2016.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.
Collapse
Affiliation(s)
| | - Ramakrishnan M. Nair
- Vegetable Breeding – Legumes, World Vegetable Center, South AsiaHyderabad, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
16
|
Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
17
|
Cheng Z, Dong K, Ge P, Bian Y, Dong L, Deng X, Li X, Yan Y. Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. PLoS One 2015; 10:e0125302. [PMID: 25984726 PMCID: PMC4436182 DOI: 10.1371/journal.pone.0125302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022] Open
Abstract
The drought-tolerant ‘Ningchun 47’ (NC47) and drought-sensitive ‘Chinese Spring’ (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated and recognised using two-dimensional gel electrophoresis. In total, 101 DAP spots representing 77 unique proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These proteins were allocated to 10 groups according to putative functions, which were mainly involved in carbon metabolism (23.4%), photosynthesis/respiration (22.1%) and stress/defence/detoxification (18.2%). Some drought stress-related proteins in NC47, such as enolase, 6-phosphogluconate dehydrogenase, Oxygen-evolving enhancer protein 2, fibrillin-like protein, 2-Cys peroxiredoxin BAS1 and 70-kDa heat shock protein, were more upregulated than those in CS. Multivariate principal components analysis revealed obvious differences between the control and treatments in both NC47 and CS, while cluster analysis showed that the DAPs displayed five and six accumulation patterns in NC47 and CS, respectively. Protein–protein interaction network analysis showed that some key DAPs, such as 2-Cys peroxiredoxin BAS1, RuBisCO large subunit-binding protein, 50S ribosomal protein L1, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase isoenzyme and 70-kDa heat shock protein, with upregulated accumulation in NC47, had complex interactions with other proteins related to amino acid metabolism, carbon metabolism, energy pathway, signal transduction, stress/defence/detoxification, protein folding and nucleotide metabolism. These proteins could play important roles in drought-stress tolerance and contribute to the relatively stronger drought tolerance of NC47.
Collapse
Affiliation(s)
- Zhiwei Cheng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Kun Dong
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Pei Ge
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Liwei Dong
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), 434025 Jingzhou, China
- * E-mail:
| |
Collapse
|
18
|
Qin Y, Song W, Xiao S, Yin G, Zhu Y, Yan Y, Hu Y. Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries. J Proteomics 2014; 102:11-27. [PMID: 24607492 DOI: 10.1016/j.jprot.2014.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED In this study, a proteomic approach was utilized to identify differentially accumulated proteins in developing wheat ovaries before and after fertilization and in response to water deficit. Proteins were extracted, quantified, and resolved by 2-DE at pH4-7. Statistical analysis of spot intensity was performed by using principal component analysis and samples were clustered by using Euclidean distance. In total, 136 differentially accumulated protein spots representing 88 unique proteins were successfully identified by MALDI-TOF/TOF MS. Under normal conditions, stress-related proteins were abundant in unfertilized ovaries while proteins involved in the metabolism of energy and matter were enriched in fertilized ovaries just 48h after fertilization. Similar trends were observed in unfertilized and fertilized wheat ovaries under water deficit conditions, except for increased accumulation of stress-related proteins in fertilized ovaries. Some proteins required for normal development were not present in ovaries subjected to water deficit. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit. BIOLOGICAL SIGNIFICANCE Fertilization initiates the most dramatic changes that occur in the life cycle of higher plants; research into differences in gene expression before and after ovary pollination can make a substantial contribution to understanding the physiological and biochemical processes associated with fertilization. To date, a small number of studies have examined changes in transcriptional activity of the developing plant embryo sac before and after fertilization. However, comparative proteomic analysis of wheat ovary development before and after fertilization, and in response to water deficit, has not yet been reported. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit.
Collapse
Affiliation(s)
- Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shuyang Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Mishra S, Panda SK, Sahoo L. TRANSGENIC ASIATIC GRAIN LEGUMES FOR SALT TOLERANCE AND FUNCTIONAL GENOMICS. ACTA ACUST UNITED AC 2014. [DOI: 10.7831/ras.2.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sagarika Mishra
- Department of Biotechnology, Indian Institute of Technology Guwahati
| | - Sanjib K Panda
- Department of Life Sciences and Bioinformatics, Assam University
- Department of Biochemistry & Molecular Biology, Noble Research Centre, Oklahoma State University
| | - Lingaraj Sahoo
- Department of Biotechnology, Indian Institute of Technology Guwahati
- Faculty of Applied Biological Science, Gifu University
| |
Collapse
|
20
|
Kumar K, Kumar M, Kim SR, Ryu H, Cho YG. Insights into genomics of salt stress response in rice. RICE (NEW YORK, N.Y.) 2013; 6:27. [PMID: 24280112 PMCID: PMC4883734 DOI: 10.1186/1939-8433-6-27] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/29/2013] [Indexed: 05/18/2023]
Abstract
Plants, as sessile organisms experience various abiotic stresses, which pose serious threat to crop production. Plants adapt to environmental stress by modulating their growth and development along with the various physiological and biochemical changes. This phenotypic plasticity is driven by the activation of specific genes encoding signal transduction, transcriptional regulation, ion transporters and metabolic pathways. Rice is an important staple food crop of nearly half of the world population and is well known to be a salt sensitive crop. The completion and enhanced annotations of rice genome sequence has provided the opportunity to study functional genomics of rice. Functional genomics aids in understanding the molecular and physiological basis to improve the salinity tolerance for sustainable rice production. Salt tolerant transgenic rice plants have been produced by incorporating various genes into rice. In this review we present the findings and investigations in the field of rice functional genomics that includes supporting genes and networks (ABA dependent and independent), osmoprotectants (proline, glycine betaine, trehalose, myo-inositol, and fructans), signaling molecules (Ca2+, abscisic acid, jasmonic acid, brassinosteroids) and transporters, regulating salt stress response in rice.
Collapse
Affiliation(s)
- Kundan Kumar
- />Department of Biological Sciences, Birla Institute of Technology & Science, K. K. Birla Goa Campus, Goa 403726 India
| | - Manu Kumar
- />Department of Life Science, Sogang University, Seoul, 121-742 Korea
| | - Seong-Ryong Kim
- />Department of Life Science, Sogang University, Seoul, 121-742 Korea
| | - Hojin Ryu
- />Department of Life Science, Pohang University of Science & Technology, Pohang, Korea
| | - Yong-Gu Cho
- />Department of Crop Science, Chungbuk National University, Cheongju, 361-763 Korea
| |
Collapse
|