1
|
Töpf A, Cox D, Zaharieva IT, Di Leo V, Sarparanta J, Jonson PH, Sealy IM, Smolnikov A, White RJ, Vihola A, Savarese M, Merteroglu M, Wali N, Laricchia KM, Venturini C, Vroling B, Stenton SL, Cummings BB, Harris E, Marini-Bettolo C, Diaz-Manera J, Henderson M, Barresi R, Duff J, England EM, Patrick J, Al-Husayni S, Biancalana V, Beggs AH, Bodi I, Bommireddipalli S, Bönnemann CG, Cairns A, Chiew MT, Claeys KG, Cooper ST, Davis MR, Donkervoort S, Erasmus CE, Fassad MR, Genetti CA, Grosmann C, Jungbluth H, Kamsteeg EJ, Lornage X, Löscher WN, Malfatti E, Manzur A, Martí P, Mongini TE, Muelas N, Nishikawa A, O'Donnell-Luria A, Ogonuki N, O'Grady GL, O'Heir E, Paquay S, Phadke R, Pletcher BA, Romero NB, Schouten M, Shah S, Smuts I, Sznajer Y, Tasca G, Taylor RW, Tuite A, Van den Bergh P, VanNoy G, Voermans NC, Wanschitz JV, Wraige E, Yoshimura K, Oates EC, Nakagawa O, Nishino I, Laporte J, Vilchez JJ, MacArthur DG, Sarkozy A, Cordell HJ, Udd B, Busch-Nentwich EM, Muntoni F, Straub V. Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy. Nat Genet 2024; 56:395-407. [PMID: 38429495 PMCID: PMC10937387 DOI: 10.1038/s41588-023-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Dan Cox
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Valeria Di Leo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ian M Sealy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard J White
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Munise Merteroglu
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | | | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Beryl B Cummings
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Northern Genetics Service, Institute of Genetics Medicine, Newcastle upon Tyne, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matt Henderson
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jennifer Duff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jane Patrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sundos Al-Husayni
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Shobhana Bommireddipalli
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Mei-Ting Chiew
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sandra T Cooper
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Casie A Genetti
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carla Grosmann
- Department of Neurology, Rady Children's Hospital University of California San Diego, San Diego, CA, USA
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Creteil, France
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Pilar Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Tiziana E Mongini
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
- Department of Medicine, Universitat de Valencia, Valencia, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | | | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stéphanie Paquay
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beth A Pletcher
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, Sorbonne Université, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), GH Pitié-Salpêtrière, Paris, France
| | - Meyke Schouten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Snehal Shah
- Department of Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Yves Sznajer
- Center for Human Genetic, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Allysa Tuite
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Van den Bergh
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Grace VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Elizabeth Wraige
- Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Juan J Vilchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL & Great Ormond Street Hospital Trust, London, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Brugger M, Lutz M, Müller-Nurasyid M, Lichtner P, Slater EP, Matthäi E, Bartsch DK, Strauch K. Joint Linkage and Association Analysis Using GENEHUNTER-MODSCORE with an Application to Familial Pancreatic Cancer. Hum Hered 2024; 89:8-31. [PMID: 38198765 DOI: 10.1159/000535840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex. METHODS In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa). RESULTS Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer. CONCLUSION Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.
Collapse
Affiliation(s)
- Markus Brugger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Lutz
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University, Marburg, Germany
| | - Elvira Matthäi
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University, Marburg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
3
|
Hebbar P, Nizam R, John SE, Antony D, Dashti M, Channanath A, Shaltout A, Al-Khandari H, Koistinen HA, Tuomilehto J, Alsmadi O, Thanaraj TA, Al-Mulla F. Linkage analysis using whole exome sequencing data implicates SLC17A1, SLC17A3, TATDN2 and TMEM131L in type 1 diabetes in Kuwaiti families. Sci Rep 2023; 13:14978. [PMID: 37696853 PMCID: PMC10495342 DOI: 10.1038/s41598-023-42255-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency and lifelong dependency on exogenous insulin. Higher estimates of heritability rates in monozygotic twins, followed by dizygotic twins and sib-pairs, indicate the role of genetics in the pathogenesis of T1D. The incidence and prevalence of T1D are alarmingly high in Kuwait. Consanguineous marriages account for 50-70% of all marriages in Kuwait, leading to an excessive burden of recessive allele enrichment and clustering of familial disorders. Thus, genetic studies from this Arab region are expected to lead to the identification of novel gene loci for T1D. In this study, we performed linkage analyses to identify the recurrent genetic variants segregating in high-risk Kuwaiti families with T1D. We studied 18 unrelated Kuwaiti native T1D families using whole exome sequencing data from 86 individuals, of whom 37 were diagnosed with T1D. The study identified three potential loci with a LOD score of ≥ 3, spanning across four candidate genes, namely SLC17A1 (rs1165196:pT269I), SLC17A3 (rs942379: p.S370S), TATDN2 (rs394558:p.V256I), and TMEM131L (rs6848033:p.R190R). Upon examination of missense variants from these genes in the familial T1D dataset, we observed a significantly increased enrichment of the genotype homozygous for the minor allele at SLC17A3 rs56027330_p.G279R accounting for 16.2% in affected children from 6 unrelated Kuwaiti T1D families compared to 1000 genomes Phase 3 data (0.9%). Data from the NephQTL database revealed that the rs1165196, rs942379, rs394558, and rs56027330 SNPs exhibited genotype-based differential expression in either glomerular or tubular tissues. Data from the GTEx database revealed rs942379 and rs394558 as QTL variants altering the expression of TRIM38 and IRAK2 respectively. Global genome-wide association studies indicated that SLC17A1 rs1165196 and other variants from SLC17A3 are associated with uric acid concentrations and gout. Further evidence from the T1D Knowledge portal supported the role of shortlisted variants in T1D pathogenesis and urate metabolism. Our study suggests the involvement of SLC17A1, SLC17A3, TATDN2, and TMEM131L genes in familial T1D in Kuwait. An enrichment selection of genotype homozygous for the minor allele is observed at SLC17A3 rs56027330_p.G279R variant in affected members of Kuwaiti T1D families. Future studies may focus on replicating the findings in a larger T1D cohort and delineate the mechanistic details of the impact of these novel candidate genes on the pathophysiology of T1D.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Dinu Antony
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Mohammad Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Azza Shaltout
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hessa Al-Khandari
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait.
| |
Collapse
|
4
|
Chang Y, Zhou L, Zhong X, Shi Z, Sun X, Wang Y, Li R, Long Y, Zhou H, Quan C, Kermode AG, Yu Q, Qiu W. Clinical and genetic analysis of familial neuromyelitis optica spectrum disorder in Chinese: associated with ubiquitin-specific peptidase USP18 gene variants. J Neurol Neurosurg Psychiatry 2022; 93:1269-1275. [PMID: 36376024 DOI: 10.1136/jnnp-2022-329623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Familial clustering of neuromyelitis optica spectrum disorder (NMOSD) was present in Chinese. This study was to investigate the clinical characteristics and genetic background of familial NMOSD. METHODS Through questionnaires in four medical centres in 2016-2020, we identified 10 families with NMOSD aggregation. The statistical differences of clinical characteristics between familial and sporadic NMOSD (22 cases and 459 cases) were summarised. The whole-exome sequencing (WES) for seven families (13 cases and 13 controls) was analysed, compared with our previous WES data for sporadic NMOSD (228 cases and 1 400 controls). The family-based and population-based association and linkage analysis were conducted to identify the pathogenetic genes, the variant impacts were predicted. RESULTS The familial occurrence was 0.87% in Chinese. Familial patients had higher expanded disability status scale score than sporadic patients (p=0.03). The single-nucleotide polymorphism (SNP) rs2252257 in the promoter and enhancer of ubiquitin-specific peptidase USP18 was linked to familial NMOSD (p=7.8E-05, logarithm of the odds (LOD)=3.1), SNPs rs361553, rs2252257 and rs5746523 were related to sporadic NMOSD (p=1.29E-10, 3.45E-07 and 2.01E-09, respectively). Patients with the SNP rs361553 T/T genotype had higher recurrence rate than C/T or C/C genotype (1.22±0.85 vs 0.69±0.57 and 0.81±0.65, p=0.003 and 0.001, respectively). SNPs rs361553 and rs2252257 altered USP18 expression in brain and nerve tissues. CONCLUSION Most clinical characteristics of familial NMOSD were indistinguishable from sporadic NMOSD except for the worst episodes severity. USP18 with impaired intronic regulatory function contributed to the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luyao Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Allan G Kermode
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Western Australia, Australia
| | - Qingfen Yu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
6
|
Haukka J, Sandholm N, Valo E, Forsblom C, Harjutsalo V, Cole JB, McGurnaghan SJ, Colhoun HM, Groop PH. Novel Linkage Peaks Discovered for Diabetic Nephropathy in Individuals With Type 1 Diabetes. Diabetes 2021; 70:986-995. [PMID: 33414249 PMCID: PMC8928864 DOI: 10.2337/db20-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/01/2021] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies (GWAS) and linkage studies have had limited success in identifying genome-wide significantly linked regions or risk loci for diabetic nephropathy (DN) in individuals with type 1 diabetes (T1D). As GWAS cohorts have grown, they have also included more documented and undocumented familial relationships. Here we computationally inferred and manually curated pedigrees in a study cohort of >6,000 individuals with T1D and their relatives without diabetes. We performed a linkage study for 177 pedigrees consisting of 452 individuals with T1D and their relatives using a genome-wide genotyping array with >300,000 single nucleotide polymorphisms and PSEUDOMARKER software. Analysis resulted in genome-wide significant linkage peaks on eight chromosomal regions from five chromosomes (logarithm of odds score >3.3). The highest peak was localized at the HLA region on chromosome 6p, but whether the peak originated from T1D or DN remained ambiguous. Of other significant peaks, the chromosome 4p22 region was localized on top of ARHGAP24, a gene associated with focal segmental glomerulosclerosis, suggesting this gene may play a role in DN as well. Furthermore, rare variants have been associated with DN and chronic kidney disease near the 4q25 peak, localized on top of CCSER1.
Collapse
Affiliation(s)
- Jani Haukka
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Joanne B. Cole
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
- Programs in Metabolism, Broad Institute, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Stuart J. McGurnaghan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Helen M. Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Corresponding author: Per-Henrik Groop,
| |
Collapse
|
7
|
Variants in regulatory elements of PDE4D associate with major mental illness in the Finnish population. Mol Psychiatry 2021; 26:816-824. [PMID: 31138891 DOI: 10.1038/s41380-019-0429-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
We have previously reported a replicable association between variants at the PDE4D gene and familial schizophrenia in a Finnish cohort. In order to identify the potential functional mutations underlying these previous findings, we sequenced 1.5 Mb of the PDE4D genomic locus in 20 families (consisting of 96 individuals and 79 independent chromosomes), followed by two stages of genotyping across 6668 individuals from multiple Finnish cohorts for major mental illnesses. We identified 4570 SNPs across the PDE4D gene, with 380 associated to schizophrenia (p ≤ 0.05). Importantly, two of these variants, rs35278 and rs165940, are located at transcription factor-binding sites, and displayed replicable association in the two-stage enlargement of the familial schizophrenia cohort (combined statistics for rs35278 p = 0.0012; OR = 1.18, 95% CI: 1.06-1.32; and rs165940 p = 0.0016; OR = 1.27, 95% CI: 1.13-1.41). Further analysis using additional cohorts and endophenotypes revealed that rs165940 principally associates within the psychosis (p = 0.025, OR = 1.18, 95% CI: 1.07-1.30) and cognitive domains of major mental illnesses (g-score p = 0.044, β = -0.033). Specifically, the cognitive domains represented verbal learning and memory (p = 0.0091, β = -0.044) and verbal working memory (p = 0.0062, β = -0.036). Moreover, expression data from the GTEx database demonstrated that rs165940 significantly correlates with the mRNA expression levels of PDE4D in the cerebellum (p-value = 0.04; m-value = 0.9), demonstrating a potential functional consequence for this variant. Thus, rs165940 represents the most likely functional variant for major mental illness at the PDE4D locus in the Finnish population, increasing risk broadly to psychotic disorders.
Collapse
|
8
|
Zhou J, Gao J, Zhang H, Zhao D, Li A, Iqbal F, Shi Q, Zhang Y. PedMiner: a tool for linkage analysis-based identification of disease-associated variants using family based whole-exome sequencing data. Brief Bioinform 2020; 22:5835558. [PMID: 32393981 PMCID: PMC8138824 DOI: 10.1093/bib/bbaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
With the advances of next-generation sequencing technology, the field of disease research has been revolutionized. However, pinpointing the disease-causing variants from millions of revealed variants is still a tough task. Here, we have reviewed the existing linkage analysis tools and presented PedMiner, a web-based application designed to narrow down candidate variants from family based whole-exome sequencing (WES) data through linkage analysis. PedMiner integrates linkage analysis, variant annotation and prioritization in one automated pipeline. It provides graphical visualization of the linked regions along with comprehensive annotation of variants and genes within these linked regions. This efficient and comprehensive application will be helpful for the scientific community working on Mendelian inherited disorders using family based WES data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinghua Shi
- Qinghua Shi, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Shushan District, Hefei 230027, China. Tel: +86-551-63600442; Fax: +86-551-63600344; E-mail:
| | - Yuanwei Zhang
- Corresponding author: Yuanwei Zhang, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Shushan District, Hefei 230027, China. Tel: +86-551-63600442; Fax: +86-551-63600344; E-mail:
| |
Collapse
|
9
|
Du Y, Chen F, Zhang J, Lin Z, Ma Q, Xu G, Xiao D, Gui Y, Yang J, Wan S. A rare TTC30B variant is identified as a candidate for synpolydactyly in a Chinese pedigree. Bone 2019; 127:503-509. [PMID: 31306809 DOI: 10.1016/j.bone.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Syndactyly type II (synpolydactyly, SPD) is a rare autosomal dominant inherited disease with higher incomplete penetrance. Currently, several variants in HOXD13 and one deletion in FBLN1 have been associated with SPD. However, the causative variants in several SPD families and their etiological mechanism are still largely unknown. METHODS Whole exome and PCR-sanger sequencing followed by two-point linkage analysis were performed to identify the pathogenic variant in a six-generation Chinese pedigree. Homology modeling in combination with the RNAi and qRT-PCR experiments was used for revealing the pathogenic mechanism of the TTC30B variant. RESULTS A six-generation SPD family was reported. The affected subjects in this family had no other clinical malformation beyond SPD. A rare missense variant c.1157C>T [p.Ala375Val] (chr2:178416368, hg19) in TTC30B was demonstrated to be responsible for this SPD family. The modeling structure indicated that the Ala375 was evolutionarily and structurally conserved. The variant p.Ala375Val was predicted to be deleterious for protein structure and/or stability. Two-point linkage analysis resulted in a maximum LOD score of 3.1444 (P = 0.000071). Furthermore, we found that TTC30B was regulated by the Shh signaling pathway and the abnormal expression of TTC30B will affect the activation of the Shh signaling pathway in human retinal pigment epithelial cells. CONCLUSIONS This study demonstrates for the first time that an IFT (intraflagellar transport) - related gene TTC30B is implicated with SPD.
Collapse
Affiliation(s)
- Ye Du
- Medical Research Center, The People's Hospital of Longhua, Shenzhen 518109, China; Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fangfang Chen
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Zhang
- Department of Hand Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zheguang Lin
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qian Ma
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guisheng Xu
- Department of Hand Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deming Xiao
- Department of Hand Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Shengxiang Wan
- Department of Hand Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
10
|
Puigdevall P, Piccari L, Blanco I, Barberà JA, Geiger D, Badenas C, Milà M, Castelo R, Madrigal I. Genetic linkage analysis of a large family identifies FIGN as a candidate modulator of reduced penetrance in heritable pulmonary arterial hypertension. J Med Genet 2019; 56:481-490. [PMID: 30894412 DOI: 10.1136/jmedgenet-2018-105669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mapping the genetic component of molecular mechanisms responsible for the reduced penetrance (RP) of rare disorders constitutes one of the most challenging problems in human genetics. Heritable pulmonary arterial hypertension (PAH) is one such disorder characterised by rare mutations mostly occurring in the bone morphogenetic protein receptor type 2 (BMPR2) gene and a wide heterogeneity of penetrance modifier mechanisms. Here, we analyse 32 genotyped individuals from a large Iberian family of 65 members, including 22 carriers of the pathogenic BMPR2 mutation c.1472G>A (p.Arg491Gln), 8 of them diagnosed with PAH by right-heart catheterisation, leading to an RP rate of 36.4%. METHODS We performed a linkage analysis on the genotyping data to search for genetic modifiers of penetrance. Using functional genomics data, we characterised the candidate region identified by linkage analysis. We also predicted the haplotype segregation within the family. RESULTS We identified a candidate chromosome region in 2q24.3, 38 Mb upstream from BMPR2, with significant linkage (LOD=4.09) under a PAH susceptibility model. This region contains common variants associated with vascular aetiology and shows functional evidence that the putative genetic modifier is located in the upstream distal promoter of the fidgetin (FIGN) gene. CONCLUSION Our results suggest that the genetic modifier acts through FIGN transcriptional regulation, whose expression variability would contribute to modulating heritable PAH. This finding may help to advance our understanding of RP in PAH across families sharing the p.Arg491Gln pathogenic mutation in BMPR2.
Collapse
Affiliation(s)
- Pau Puigdevall
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lucilla Piccari
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Blanco
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Dan Geiger
- Faculty of Computer Science, Technion Israel Institute of Technology, Haifa, Israel
| | - Celia Badenas
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Milà
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert Castelo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Irene Madrigal
- Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Javanrouh N, Soltanian AR, Tapak L, Azizi F, Ott J, Daneshpour MS. A novel association of rs13334070 in the RPGRIP1L gene with adiposity factors discovered by joint linkage and linkage disequilibrium analysis in Iranian pedigrees: Tehran Cardiometabolic Genetic Study (TCGS). Genet Epidemiol 2018; 43:342-351. [PMID: 30597647 DOI: 10.1002/gepi.22179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023]
Abstract
Understanding the genetic and metabolic bases of obesity is helpful in planning and developing health strategies. Therefore, the first family-based joint linkage and linkage disequilibrium study was conducted in Iranian pedigrees to assess the relationship between obesity and single-nucleotide polymorphisms (SNPs) located in the 16q12.2 region. In the present study, a total of 13,344 individuals were included, of whom 12,502 individuals were within 3,109 pedigrees and 842 were unrelated singletons. To investigate the relationship between obesity and genetic variants, a joint model of linkage and linkage disequilibrium was applied. Moreover, a sequence kernel association test (SKAT) was used to evaluate the association of the SNP set with body size and lipid profile measurements. The joint model showed that rs13334070, in the intron 4 of the RPGRIP1L gene, has a significant association with obesity. According to the 4-gamete rule, which is a procedure for constructing SNP sets by considering recombination occurrence between SNPs, this polymorphism has a high correlation with six nearby SNPs that make an SNP set. SKAT showed that this SNP set has a significant association with body size factors, but almost no association with most of the lipid profile measurements. In conclusion, from the result of this study, it might be reasonable to consider RPGRIP1L as an important gene whose variations could be associated with obesity risk factors.
Collapse
Affiliation(s)
- Niloufar Javanrouh
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Cellular and Molecular, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Soltanian
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereidoun Azizi
- Department of Thyroid, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jurg Ott
- Department of Statistical Genomics Methodology, Laboratory of Statistical Genetics, Rockefeller University, New York, New York
| | - Maryam S Daneshpour
- Department of Cellular and Molecular, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Feng Y, Hong Y, Zhang X, Cao C, Yang X, Lai S, Fan C, Cheng F, Yan M, Li C, Huang W, Chen W, Zhu P, Zeng C. Genetic variants of TREML2 are associated with HLA-B27-positive ankylosing spondylitis. Gene 2018; 668:121-128. [PMID: 29778423 DOI: 10.1016/j.gene.2018.05.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
Although ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the precise genetic mechanism underlying the disease remains elusive. Here, we investigate the disease-causing mutations in a large AS family with distinguished complexity, consisting of 23 patients covering four generations and exhibiting a mixed HLA-B27 (+) and (-) status. Linkage analysis with 32 members using three methods and whole-exome sequencing analysis with three HLA-B27 (+) patients, one HLA-B27 (-) patient, and one healthy individual did not identify a mutation common to all of the patients, strongly suggesting the existence of genetic heterogeneity in this large pedigree. However, if only B27-positive patients were analyzed, the linkage analysis located a 22-Mb region harboring the HLA gene cluster in chromosome 6 (LOD = 4.2), and the subsequent exome analysis identified two non-synonymous mutations in the TREML2 and IP6K3 genes. These genes were resequenced among 370 sporadic AS patients and 487 healthy individuals. A significantly higher mutation frequency of TREML2 was observed in AS patients (1.51% versus 0.21%). The results obtained for the AS pedigree and sporadic patients suggest that mutation of TREML2 is a major factor leading to AS for HLA-B27 (+) members in this large family and that TREML2 is also a susceptibility gene promoting the development of ankylosing spondylitis in HLA-B27 (+) individuals.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Yaqiang Hong
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Chunwei Cao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xichao Yang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Shujuan Lai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chunmei Fan
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Feng Cheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mei Yan
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Chaohua Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wan Huang
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shanxi Province, China
| | - Wei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi Province, China.
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China.
| |
Collapse
|
13
|
Zhang J, Matsuo T. MGST2 and WNT2 are candidate genes for comitant strabismus susceptibility in Japanese patients. PeerJ 2017; 5:e3935. [PMID: 29062608 PMCID: PMC5649647 DOI: 10.7717/peerj.3935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIM Strabismus is a common condition with misalignment between two eyes that may lead to decrease of visual acuity, lack of binocularity, and diplopia. It is caused by heterogeneous environmental and genetic risk factors. Our previous research has identified new chromosomal susceptibility loci in 4q28.3 and 7q31.2 regions for comitant strabismus in Japanese families. We conducted a verification study by linkage analysis to narrow the chromosomal loci down to a single gene. METHODS From Japanese and U.S. databases, 24 rsSNPs and 233 rsSNPs were chosen from the 4q28.3 and 7q31.2 region, respectively, and were typed in 108 affected subjects and 96 unaffected subjects of 58 families with primary and non-syndromic comitant strabismus. Three major analytical methods were used: transmission disequilibrium test (TDT), TDT allowing for errors (TDTae), and linkage analysis under dominant and recessive inheritance. RESULTS The SNPs with significant P values in TDT and TDTae were located solely at the gene, microsomal glutathione S-transferase 2 (MGST2), on chromosome 4q28.3 locus. In contrast, significant SNPs were dispersed in a few genes, containing wingless-type MMTV integration site family member 2 (WNT2), on chromosome 7q31.2 locus. The distribution of significant SNPs on the 7q31.2 locus showed that only the ST7 to WNT2 region in the same big haplotype block contained significant SNPs for all three methods of linkage analysis. CONCLUSIONS This study suggests that MGST2 and WNT2 are potential candidates for comitant strabismus in Japanese population.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Toshihiko Matsuo
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| |
Collapse
|
14
|
Gupta R, Qaiser B, He L, Hiekkalinna TS, Zheutlin AB, Therman S, Ollikainen M, Ripatti S, Perola M, Salomaa V, Milani L, Cannon TD, Madden PAF, Korhonen T, Kaprio J, Loukola A. Neuregulin signaling pathway in smoking behavior. Transl Psychiatry 2017; 7:e1212. [PMID: 28892072 PMCID: PMC5611747 DOI: 10.1038/tp.2017.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular processes that link comorbid traits such as addictions and mental disorders can provide novel therapeutic targets. Neuregulin signaling pathway (NSP) has previously been implicated in schizophrenia, a neurodevelopmental disorder with high comorbidity to smoking. Using a Finnish twin family sample, we have previously detected association between nicotine dependence and ERBB4 (a neuregulin receptor), and linkage for smoking initiation at the ERBB4 locus on 2q33. Further, Neuregulin3 has recently been shown to associate with nicotine withdrawal in a behavioral mouse model. In this study, we scrutinized association and linkage between 15 036 common, low frequency and rare genetic variants in 10 NSP genes and phenotypes encompassing smoking and alcohol use. Using the Finnish twin family sample (N=1998 from 740 families), we detected 66 variants (representing 23 LD blocks) significantly associated (false discovery rate P<0.05) with smoking initiation, nicotine dependence and nicotine withdrawal. We comprehensively annotated the associated variants using expression (eQTL) and methylation quantitative trait loci (meQTL) analyses in a Finnish population sample. Among the 66 variants, we identified 25 eQTLs (in NRG1 and ERBB4), 22 meQTLs (in NRG3, ERBB4 and PSENEN), a missense variant in NRG1 (rs113317778) and a splicing disruption variant in ERBB4 (rs13385826). Majority of the QTLs in blood were replicated in silico using publicly available databases, with additional QTLs observed in brain. In conclusion, our results support the involvement of NSP in smoking behavior but not in alcohol use and abuse, and disclose functional potential for 56 of the 66 associated single-nucleotide polymorphism.
Collapse
Affiliation(s)
- R Gupta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - B Qaiser
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - L He
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - T S Hiekkalinna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - A B Zheutlin
- Department of Psychology, Yale University, New Haven, CT, USA
| | - S Therman
- National Institute for Health and Welfare, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - S Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - M Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - V Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - L Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - T D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
| | - P A F Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - T Korhonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - A Loukola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Misiewicz Z, Hiekkalinna T, Paunio T, Varilo T, Terwilliger JD, Partonen T, Hovatta I. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate. Sci Rep 2016; 6:39345. [PMID: 27996024 PMCID: PMC5171840 DOI: 10.1038/srep39345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Development of Work and Work Organizations, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Varilo
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Joseph D Terwilliger
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Department of Genetics and Development, and Gertrude H. Sergievsky Center, Columbia University, New York NY, USA.,Division of Medical Genetics, New York State Psychiatric Institute, New York NY, USA
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
16
|
Oikkonen J, Kuusi T, Peltonen P, Raijas P, Ukkola-Vuoti L, Karma K, Onkamo P, Järvelä I. Creative Activities in Music--A Genome-Wide Linkage Analysis. PLoS One 2016; 11:e0148679. [PMID: 26909693 PMCID: PMC4766096 DOI: 10.1371/journal.pone.0148679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.
Collapse
Affiliation(s)
- Jaana Oikkonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tuire Kuusi
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Petri Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Kai Karma
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Peltola MA, Kuja-Panula J, Liuhanen J, Võikar V, Piepponen P, Hiekkalinna T, Taira T, Lauri SE, Suvisaari J, Kulesskaya N, Paunio T, Rauvala H. AMIGO-Kv2.1 Potassium Channel Complex Is Associated With Schizophrenia-Related Phenotypes. Schizophr Bull 2016; 42:191-201. [PMID: 26240432 PMCID: PMC4681558 DOI: 10.1093/schbul/sbv105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enormous variability in electrical properties of neurons is largely affected by a multitude of potassium channel subunits. Kv2.1 is a widely expressed voltage-dependent potassium channel and an important regulator of neuronal excitability. The Kv2.1 auxiliary subunit AMIGO constitutes an integral part of the Kv2.1 channel complex in brain and regulates the activity of the channel. AMIGO and Kv2.1 localize to the distinct somatodendritic clusters at the neuronal plasma membrane. Here we have created and characterized a mouse line lacking the AMIGO gene. Absence of AMIGO clearly reduced the amount of the Kv2.1 channel protein in mouse brain and altered the electrophysiological properties of neurons. These changes were accompanied by behavioral and pharmacological abnormalities reminiscent of those identified in schizophrenia. Concomitantly, we have detected an association of a rare, population-specific polymorphism of KV2.1 (KCNB1) with human schizophrenia in a genetic isolate enriched with schizophrenia. Our study demonstrates the involvement of AMIGO-Kv2.1 channel complex in schizophrenia-related behavioral domains in mice and identifies KV2.1 (KCNB1) as a strong susceptibility gene for schizophrenia spectrum disorders in humans.
Collapse
Affiliation(s)
- Marjaana A. Peltola
- Neuroscience Center, University of Helsinki, Helsinki, Finland;,*To whom correspondence should be addressed; Neuroscience Center, PO Box 56 (Viikinkaari 4), FI-00014 University of Helsinki, Helsinki, Finland; tel: +358-2941-57649, fax: +358-2941-57620, e-mail:
| | | | - Johanna Liuhanen
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Petteri Piepponen
- Division of Pharmacology and Toxicology, University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland;,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Neuroscience Center, University of Helsinki, Helsinki, Finland;,Department of Biosciences, University of Helsinki, Helsinki, Finland;,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E. Lauri
- Neuroscience Center, University of Helsinki, Helsinki, Finland;,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jaana Suvisaari
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Tiina Paunio
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland;,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland;,Department of Psychiatry, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Barral S, Cheng R, Reitz C, Vardarajan B, Lee J, Kunkle B, Beecham G, Cantwell LS, Pericak-Vance MA, Farrer LA, Haines JL, Goate AM, Foroud T, Boerwinkle E, Schellenberg GD, Mayeux R. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer's disease. Alzheimers Dement 2015; 11:1397-1406. [PMID: 26433351 PMCID: PMC4690771 DOI: 10.1016/j.jalz.2015.07.487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION We performed linkage analyses in Caribbean Hispanic families with multiple late-onset Alzheimer's disease (LOAD) cases to identify regions that may contain disease causative variants. METHODS We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of the linked regions was repeated using the entire sample of 282 families. Validated chromosomal regions were analyzed using joint linkage and association. RESULTS We identified 26 regions linked to LOAD (HLOD ≥3.6). We validated 13 of the regions (HLOD ≥2.5) using the entire family sample. The strongest signal was at 11q12.3 (rs2232932: HLODmax = 4.7, Pjoint = 6.6 × 10(-6)), a locus located ∼2 Mb upstream of the membrane-spanning 4A gene cluster. We additionally identified a locus at 7p14.3 (rs10255835: HLODmax = 4.9, Pjoint = 1.2 × 10(-5)), a region harboring genes associated with the nervous system (GARS, GHRHR, and NEUROD6). DISCUSSION Future sequencing efforts should focus on these regions because they may harbor familial LOAD causative mutations.
Collapse
Affiliation(s)
- Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Rong Cheng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Joseph Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Brian Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gary Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Laura S Cantwell
- Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Medicine (Biomedical Genetics), Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Neurology, Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Epidemiology, Boston University School of Medicine and Public Health, Boston, MA, USA
| | - Jonathan L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Kavaklioglu T, Ajmal M, Hameed A, Francks C. Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia 2015; 93:342-349. [PMID: 26581626 DOI: 10.1016/j.neuropsychologia.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level.
Collapse
Affiliation(s)
- Tulya Kavaklioglu
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering (IBGE), 24-Mauve Area, G-9/1, Islamabad, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), 24-Mauve Area, G-9/1, Islamabad, Pakistan.
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Barral S, Vardarajan BN, Reyes-Dumeyer D, Faber KM, Bird TD, Tsuang D, Bennett DA, Rosenberg R, Boeve BF, Graff-Radford NR, Goate AM, Farlow M, Lantigua R, Medrano MZ, Wang X, Kamboh MI, Barmada MM, Schaid DJ, Foroud TM, Weamer EA, Ottman R, Sweet RA, Mayeux R. Genetic variants associated with susceptibility to psychosis in late-onset Alzheimer's disease families. Neurobiol Aging 2015; 36:3116.e9-3116.e16. [PMID: 26359528 DOI: 10.1016/j.neurobiolaging.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 08/08/2015] [Indexed: 11/16/2022]
Abstract
Psychotic symptoms are frequent in late-onset Alzheimer's disease (LOAD) patients. Although the risk for psychosis in LOAD is genetically mediated, no genes have been identified. To identify loci potentially containing genetic variants associated with risk of psychosis in LOAD, a total of 263 families from the National Institute of Aging-LOAD cohort were classified into psychotic (LOAD+P, n = 215) and nonpsychotic (LOAD-P, n = 48) families based on the presence/absence of psychosis during the course of LOAD. The LOAD+P families yielded strong evidence of linkage on chromosome 19q13 (two-point [2-pt] logarithm of odds [LOD] = 3.8, rs2285513 and multipoint LOD = 2.7, rs541169). Joint linkage and association in 19q13 region detected strong association with rs2945988 (p = 8.7 × 10(-7)). Linkage results for the LOAD-P families yielded nonsignificant 19q13 LOD scores. Several 19q13 single-nucleotide polymorphisms generalized the association of LOAD+P in a Caribbean Hispanic (CH) cohort, and the strongest signal was rs10410711 (pmeta = 5.1 × 10(-5)). A variant located 24 kb upstream of rs10410711 and rs10421862 was strongly associated with LOAD+P (pmeta = 1.0 × 10(-5)) in a meta-analysis of the CH cohort and an additional non-Hispanic Caucasian dataset. Identified variants rs2945988 and rs10421862 affect brain gene expression levels. Our results suggest that genetic variants in genes on 19q13, some of which are involved in brain development and neurodegeneration, may influence the susceptibility to psychosis in LOAD patients.
Collapse
Affiliation(s)
- Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Debby Tsuang
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Roger Rosenberg
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Alison M Goate
- Icanhn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University Center for Alzheimer's Disease and Related Disorders, Indianapolis, IN, USA
| | - Rafael Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Medicine, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Martin Z Medrano
- Department of Geriatrics, Pontificia Universidad Católica Madre y Maestra, Santiago, Dominican Republic
| | - Xinbing Wang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Elise A Weamer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruth Ottman
- Gertrude H. Sergievsky Center, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA.
| | | |
Collapse
|
21
|
Abstract
For many years, linkage analysis was the primary tool used for the genetic mapping of Mendelian and complex traits with familial aggregation. Linkage analysis was largely supplanted by the wide adoption of genome-wide association studies (GWASs). However, with the recent increased use of whole-genome sequencing (WGS), linkage analysis is again emerging as an important and powerful analysis method for the identification of genes involved in disease aetiology, often in conjunction with WGS filtering approaches. Here, we review the principles of linkage analysis and provide practical guidelines for carrying out linkage studies using WGS data.
Collapse
Affiliation(s)
- Jurg Ott
- 1] Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China. [2] Laboratory of Statistical Genetics, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|