1
|
Li Y, Chen Y, Lin B, Liu Z, Xu F, Song D, Che K, Chen D, Su Y, Li W, Xu W. A maternal low-protein diet impaired glucose metabolism and altered the lncRNA profiles of islets in adult offspring. J Nutr Biochem 2024; 128:109618. [PMID: 38462210 DOI: 10.1016/j.jnutbio.2024.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A maternal low-protein diet during pregnancy can increase children's susceptibility to diabetes mellitus in adulthood. However, whether long noncoding RNAs (lncRNAs) in islets participate in the development of diabetes in adult offspring following maternal protein restriction is not fully understood. Female mice were fed a low-protein (LP) diet or control diet throughout gestation and lactation. The male offspring were then randomly divided into two groups according to maternal diet: offspring from control diet group dams (Ctrl group) and offspring from LP group dams (LP group). We observed the glucose metabolism of adult offspring. A lncRNA microarray was constructed for the islets from the LP group and Ctrl group to explore the differently expressed lncRNAs. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used to predict the functions of the differently expressed lncRNAs. The body weight from birth to 12 weeks of age was significantly lower in the LP offspring. Adult LP offspring exhibited impaired glucose tolerance and decreased insulin secretion, consistent with the reduction in β-cell proliferation. According to the lncRNA microarray, four lncRNAs, three upregulated lncRNAs, and one downregulated lncRNA were differently expressed in LP offspring islets compared with Ctrl offspring. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed lncRNAs were mostly associated with the hypoxia-inducible factor-1α signaling pathway. Additionally, we validated the expression of these four differentially expressed lncRNAs via quantitative real-time polymerase chain reaction. Our findings demonstrated the expression patterns of lncRNAs in islets from adult offspring of mothers who consumed a maternal low-protein diet.
Collapse
Affiliation(s)
- Yanli Li
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yalan Chen
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Beisi Lin
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziyu Liu
- Department of Rheumatology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Xu
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dalong Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kanshou Che
- Guangzhou Medical University, Guangzhou, China
| | - Danrui Chen
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanna Su
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wen Xu
- Key Laboratory of Diabetology of Guangdong Province, Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Li J, Jiang H, Mu Y, Wei Z, Ma A, Sun M, Zhao J, Zhu C, Chen X. SRSF10 regulates proliferation of neural progenitor cells and affects neurogenesis in developing mouse neocortex. iScience 2023; 26:107042. [PMID: 37360696 PMCID: PMC10285642 DOI: 10.1016/j.isci.2023.107042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Alternative pre-mRNA splicing plays critical roles in brain development. SRSF10 is a splicing factor highly expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in neural development is unclear. In this study, by conditional depleting SRSF10 in neural progenitor cells (NPCs) in vivo and in vitro, we found that dysfunction of SRSF10 leads to developmental defects of the brain, which manifest as abnormal ventricle enlargement and cortical thinning anatomically, as well as decreased NPCs proliferation and weakened cortical neurogenesis histologically. Furthermore, we proved that the function of SRSF10 on NPCs proliferation involved the regulation of PI3K-AKT-mTOR-CCND2 pathway and the alternative splicing of Nasp, a gene encoding isoforms of cell cycle regulators. These findings highlight the necessity of SRSF10 in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
4
|
lncRNA–mRNA Expression Patterns in Invasive Pituitary Adenomas: A Microarray Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1380485. [PMID: 35572729 PMCID: PMC9098296 DOI: 10.1155/2022/1380485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
Background. Long noncoding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of various cancer types; however, their roles in the development of invasive pituitary adenomas (PAs) remain to be investigated. Methods. lncRNA microarray analysis was performed for three invasive and three noninvasive PAs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and coexpression networks between lncRNA and mRNA were constructed. Furthermore, three differentially expressed lncRNAs were selected for validation in PA samples by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The diagnostic values of these three lncRNAs were further evaluated by a receiver operating characteristic (ROC) curve analysis. Results. A total of 8872 lncRNAs were identified in invasive and paired noninvasive PAs via lncRNA microarray analysis. Among these, the differentially expressed lncRNAs included 81 that were upregulated and 165 that were downregulated. GO enrichment and KEGG pathway analysis showed that these differentially expressed lncRNAs were associated with the posttranslational modifications of proteins. Furthermore, we performed target gene prediction and coexpression analysis. The interrelationships between the significantly differentially expressed lncRNAs and mRNAs were identified. Additionally, three differentially expressed lncRNAs were selected for validation in 41 PA samples by qRT-PCR. The expression levels of FAM182B, LOC105371531, and LOC105375785 were significantly lower in the invasive PAs than in the noninvasive PAs (
). These results were consistent with the microarray data. ROC curve analysis suggested that the expression levels of FAM182B and LOC105375785 could be used to distinguish invasive PAs from noninvasive PAs. Conclusion. Our findings demonstrated the expression patterns of lncRNAs in invasive PAs. FAM182B and LOC105375785 may be involved in the invasiveness of PAs and serve as new candidate biomarkers for the diagnosis of invasive PAs.
Collapse
|
5
|
C T, Zaravinos A, Tsartsalis AN, Tagka A, Kotoulas A, Geronikolou SA, Braoudaki M, Lambrou GI. Systems Approaches in the Common Metabolomics in Acute Lymphoblastic Leukemia and Rhabdomyosarcoma Cells: A Computational Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1338:55-66. [PMID: 34973010 DOI: 10.1007/978-3-030-78775-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute lymphoblastic leukemia is the most common childhood malignancy. Rhabdomyosarcoma, on the other hand, is a rare type of malignancy which belongs to the primitive neuroectodermal family of tumors. The aim of the present study was to use computational methods in order to examine the similarities and differences of the two different tumors using two cell lines as a model, the T-cell acute lymphoblastic leukemia CCRF-CEM and rhabdomyosarcoma TE-671, and, in particular, similarities of the metabolic pathways utilized by two different cell types in vitro. Both cell lines were studied using microarray technology. Differential expression profile has revealed genes with similar expression, suggesting that there are common mechanisms between the two cell types, where some of these mechanisms are preserved from their ancestor embryonic cells. Expression of identified species was modeled using known functions, in order to find common patterns in metabolism-related mechanisms. Species expression manifested very interesting dynamics, and we were able to model the system with elliptical/helical functions. We discuss the results of our analysis in the context of the commonly occurring genes between the two cell lines and the respective participating pathways as far as extracellular signaling and cell cycle regulation/proliferation are concerned. In the present study, we have developed a methodology, which was able to unravel some of the underlying dynamics of the metabolism-related species of two different cell types. Such approaches could prove useful in understanding the mechanisms of tumor ontogenesis, progression, and proliferation.
Collapse
Affiliation(s)
- Tselios C
- National and Kapodistrian University of Athens, Laboratory for the Research of Musculoskeletal Disorders, Athens, Greece
| | | | - Athanasios N Tsartsalis
- Naval Hospital of Athens, Department of Endocrinology Diabetes and Metabolism, Athens, Greece
| | - Anna Tagka
- First Department of Dermatology and Venereology, "Andreas Syggros" Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Kotoulas
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Athens, Greece
| | - Styliani A Geronikolou
- Biomedical Research Foundation of Academy of Athens, Clinical, Translational, Experimental Surgery Research Centerment of Pediatrics, Choremeio Research Laboratory, Athens, Greece
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield, England
| | - George I Lambrou
- National and Kapodistrian University of Athens, First Department of Pediatrics, Choremeio Research Laboratory, Athens, Greece.
| |
Collapse
|
6
|
Lin T, Zhang S, Zhou Y, Wu L, Liu X, Huang H. Small RNA perspective of physical exercise-related improvement of male reproductive dysfunction due to obesity. Front Endocrinol (Lausanne) 2022; 13:1038449. [PMID: 36531465 PMCID: PMC9756842 DOI: 10.3389/fendo.2022.1038449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE To study whether physical exercise can effectively ameliorate obesity-induced abnormalities in male fertility and provide a new perspective on the role of small noncoding RNAs in spermatogenesis in obese male mice. METHODS In this study, four-week-old C57/Bl6 male mice were randomly allocated to receive a control diet, a high-fat diet or physical exercise intervention for 40 weeks. Purified round spermatids and spermatozoa were obtained after intervention. Sperm motility, concentration, the ability of the sperm to undergo capacitation and acrosome reaction were assessed. Small RNA sequencing was conducted on round spermatids and spermatozoa. The small noncoding RNAs expression pattern was systematically analyzed. RESULTS The spermatozoa concentration and percentage of motile spermatozoa, the capacitation and acrosome reaction, and the reproductive success rate, including mating success and pregnancy success, were decreased or delayed in the obesity group compared with controls. Physical exercise was able to restore the parameters to normal levels. Three microRNAs were consistently upregulated and 5 were downregulated in round spermatids and epididymal spermatozoa between the obesity and control groups. CONCLUSIONS This report provides evidence that the adverse effects of obesity could be offset after physical exercise. small noncoding RNAs, especially microRNAs in germ cells, may play an important role in the effects of obesity and physical exercise on spermatozoa.
Collapse
Affiliation(s)
- Tingting Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Shuyu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuchuan Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences–University of Chinese Academy of Sciences, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Hefeng Huang, ; Xinmei Liu,
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hefeng Huang, ; Xinmei Liu,
| |
Collapse
|
7
|
Jiang Z, Du X, Wen X, Li H, Zeng A, Sun H, Hu S, He Q, Liao W, Zhang Z. Whole-Transcriptome Sequence of Degenerative Meniscus Cells Unveiling Diagnostic Markers and Therapeutic Targets for Osteoarthritis. Front Genet 2021; 12:754421. [PMID: 34721542 PMCID: PMC8554121 DOI: 10.3389/fgene.2021.754421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Meniscus plays an important role in joint homeostasis. Tear or degeneration of meniscus might facilitate the process of knee osteoarthritis (OA). Hence, to investigate the transcriptome change during meniscus degeneration, we reveal the alterations of messenger RNA (mRNA), microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) in meniscus during OA by whole-transcriptome sequence. A total of 375 mRNAs, 15 miRNAs, 56 lncRNAs, and 90 circRNAs were significantly altered in the degenerative meniscus treated with interleukin-1β (IL-1β). More importantly, highly specific co-expression RNA (ceRNA) networks regulated by lncRNA LOC107986251-miR-212-5p-SESN3 and hsa_circ_0018069-miR-147b-3p-TJP2 were screened out during IL-induced meniscus degeneration, unveiling potential therapeutic targets for meniscus degeneration during the OA process. Furthermore, lipocalin-2 (LCN2) and RAB27B were identified as potential biomarkers in meniscus degeneration by overlapping three previously constructed databases of OA menisci. LCN2 and RAB27B were both upregulated in osteoarthritic menisci and IL-1β-treated menisci and were highly associated with the severity of OA. This could introduce potential novel molecules into the database of clinical diagnostic biomarkers and possible therapeutic targets for early-stage OA treatment.
Collapse
Affiliation(s)
- Zongrui Jiang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Du
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xingzhao Wen
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyi Li
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anyu Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Musculoskeletal Cancer Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Sun
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Shu Hu
- Department of Joint Surgery, Third Affiliated Hospital of Southern Medical Hospital, Guangzhou, China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Huang JT, Chen JN, Bi YH, Gong LP, Zhang JY, DU Y, Shao CK. Comparative Transcriptome Provides a Systematic Perspective on Epstein-Barr Virus-Associated Gastric Carcinoma Cell Lines. Onco Targets Ther 2021; 14:5169-5182. [PMID: 34720592 PMCID: PMC8550799 DOI: 10.2147/ott.s332513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Epstein–Barr virus (EBV) is widely recognised to cause various tumours, and EBV-associated gastric carcinoma (EBVaGC) is a special type of GC. It has obviously different clinical features and pathological manifestations from EBV-negative gastric carcinoma, but its progression remains elusive. The underlying cancer progression of viral infection detected by genome-wide transcriptome analysis has been demonstrated in numerous diseases. Methods We performed comparative RNA sequencing to identify gene expression signatures between GC and EBVaGC cell lines. The differentially expressed (DE) genes were analysed using gene ontology and pathway enrichment. Results A total of 4438 DE mRNAs, 3650 DE long non-coding RNAs (lncRNAs), and 248 DE circular RNAs (circRNAs) were detected in GC cells after EBV infection, most of which were highly related to oncogenesis. Likewise, EBV-coding RNA and non-coding RNA were also well-supplemented in EBVaGC. According to bioinformatics, DE mRNAs may contribute to the completion of EBV-infected host cells and modulate mitosis. Binding to actin and participating in adherens junctions to promote contact between the virus and cells are a potential function of DE lncRNAs. The roles of DE circRNAs were enriched in DNA repair and protein modification, and a typical example of this is acting as an miRNA sponge. The establishment of a circRNA-miRNA-mRNA network helps to determine the key elements in the progression of EBVaGC. Conclusion This study is the first to systematically reveal the transcriptome landscape of EBVaGC, which will provide an essential resource for genomic, genetic, and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Emergency, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuan-Hua Bi
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu DU
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
10
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:cancers13123028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Childhood tumors of the central nervous system (CNS) constitute a grave disease and their diagnosis is difficult to be handled. To gain better knowledge of the tumor’s biology, it is essential to understand the underlying mechanisms of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that are dysregulated in many types of CNS tumors and regulate their occurrence and development through specific signal pathways. However, different types of CNS tumors’ area are characterized by different deregulated miRNAs. Here, we hypothesized that CNS tumors could have commonly deregulated miRNAs, i.e., miRNAs that are simultaneously either upregulated or downregulated in all tumor types compared to the normal brain tissue, irrespectively of the tumor sub-type and/or diagnosis. The only criterion is that they are present in brain tumors. This approach could lead us to the discovery of miRNAs that could be used as pan-CNS tumoral therapeutic targets, if successful. Abstract Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| |
Collapse
|
11
|
Lambrou GI, Karakonstantakis T, Vlahopoulos S, Zaravinos A. Dual Mechanisms of Metabolism and Gene Expression of the CCRF-CEM Leukemia Cells under Glucocorticoid Treatment. Int J Mol Sci 2021; 22:ijms22115889. [PMID: 34072627 PMCID: PMC8198442 DOI: 10.3390/ijms22115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glucocorticoids play an essential part in anti-leukemic therapies, but resistance is a crucial event for the prognosis of the disease. Glucocorticoids influence the metabolic properties of leukemic cells. The inherent plasticity of clinically evolving cancer cells justifies the characterization of drug-induced early oncogenic pathways, which represent a likely source of detrimental secondary effects. AIM The present work aims to investigate the effect of glucocorticoids in metabolic pathways in the CCRF-CEM leukemic cells. Metabolic factors and gene expression profiles were examined in order to unravel the possible mechanisms of the CCRF-CEM leukemic cell growth dynamics. METHODS CCRF-CEM cells were used as a model. Cells were treated with prednisolone with concentrations 0-700 μM. Cell culture supernatants were used for glucose, lactic acid, LDH, Na+, K+ and Ca++ measurements. Cytotoxicity was determined with flow cytometry. Microarray analysis was performed using two different chips of 1.2 k and 4.8 k genes. Gene Ontology enrichment analysis was applied to find metabolism- and GC-related genes. RESULTS Higher prednisolone concentrations inhibited glucose uptake, without exhibiting any cytotoxic effects. Glucose consumption did not correlate with the total cell population, or the viable population, indicating that growth is not directly proportional to glucose consumption. Neither of the subpopulations, i.e., viable, necrotic, or apoptotic cells, contributed to this. CONCLUSIONS Different types of leukemic cells seem to exhibit different patterns of glucose metabolism. Both resistant and sensitive CCRF-CEM cells followed the aerobic pathway of glycolysis. There is probably a rapid change in membrane permeability, causing a general shutdown towards everything that is outside the cell. This could in part also explain the observed resistance. Glucocorticoids do not enter the cell passively anymore and therefore no effects are observed. Based on our observations, ion concentrations are measurable factors both in vitro and in vivo, which makes them possible markers of glucocorticoid cytotoxic action.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| | | | - Spiros Vlahopoulos
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| |
Collapse
|
12
|
Attia GH, Marrez DA, Mohammed MA, Albarqi HA, Ibrahim AM, Raey MAE. Synergistic Effect of Mandarin Peels and Hesperidin with Sodium Nitrite against Some Food Pathogen Microbes. Molecules 2021; 26:3186. [PMID: 34073447 PMCID: PMC8199405 DOI: 10.3390/molecules26113186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Food preservatives such as NaNO2, which are widely used in human food products, undoubtedly affect, to some extent, human organs and health. For this reason, there is a need to reduce the hazards of these chemical preservatives, by replacing them with safe natural bio-preservatives, or adding them to synthetic ones, which provides synergistic and additive effects. The Citrus genus provides a rich source of such bio-preservatives, in addition to the availability of the genus and the low price of citrus fruit crops. In this study, we identify the most abundant flavonoids in citrus fruits (hesperidin) from the polar extract of mandarin peels (agro-waste) by using spectroscopic techniques, as well as limonene from the non-polar portion using GC techniques. Then, we explore the synergistic and additive effects of hesperidin from total mandarin extract with widely used NaNO2 to create a chemical preservative in food products. The results are promising and show a significant synergistic and additive activity. The combination of mandarin peel extract with NaNO2 had synergistic antibacterial activity against B. cereus, Staph. aureus, E. coli, and P. aeruginosa, while hesperidin showed a synergistic effect against B. cereus and P. aeruginosa and an additive effect against Staph. aureus and E. coli. These results refer to the ability of reducing the concentration of NaNO2 and replacing it with a safe natural bio-preservative such as hesperidin from total mandarin extract. Moreover, this led to gaining benefits from their biological and nutritive values.
Collapse
Affiliation(s)
- Gouda H. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Diaa A. Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt;
| | - Mona A. Mohammed
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Cairo 12622, Egypt;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia;
| | - Ammar M. Ibrahim
- Applied Medical Sciences College, Najran University, Najran 1988, Saudi Arabia;
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
13
|
Singh A, Majeed A, Bhardwaj P. Transcriptome characterization and generation of marker resource for Himalayan vulnerable species, Ulmus wallichiana. Mol Biol Rep 2021; 48:721-729. [PMID: 33439411 DOI: 10.1007/s11033-021-06138-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
Ulmus wallichiana is a traditional medicinal plant listed as a vulnerable in the IUCN red list data. Genomic and transcriptomic resources for this species are lacking, hindering its genetic exploration. Further, no polymorphic marker resource is available for this species, thus limiting the elucidation of its underlying genetic diversity, which is a pre-requisite for its conservation. This study was therefore aimed to generate a functionally annotated transcriptomic resource and screen it for SSR regions. We used paired-end Illumina based RNAseq technology and trinity based de novo assembly approach to generate full length transcripts, which were screened for SSR regions and functionally annotated. Around 6.6 million raw reads were de novo assembled transcripts, which were clustered into 146,083 unigenes. 19,909 transcripts were provided with 3986 unique KEGG ids, 70,519 transcripts with 6621 unique Pfam domains, and 45,125 transcripts with 7302 unique INTERPRO domains. 1456 transcripts were identified as transcriptions factors (TFs). Further, 8868 unique GO terms were obtained for the unigenes. The transcripts mapped to 23,056 known pre-determined orthology clusters in the eggNOG database. A total of 16,570 SSRs were identified from the unigenes. Out of the 90 SSRs selected for characterization on 20 genotypes, 28 were polymorphic. Mean effective alleles (Ne) of 2.53, mean observed heterozygosity (Ho) of 0.77, and average polymorphic information content (PIC) of 0.57 were found. This study may facilitate the genetic exploration of this species. The polymorphic SSRs would prove useful to explore its genetic diversity patterns, required for its conservation.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt, Bathinda, 151401, India
| | - Aasim Majeed
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt, Bathinda, 151401, India
| | - Pankaj Bhardwaj
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt, Bathinda, 151401, India.
| |
Collapse
|
14
|
Tsartsalis AN, Tagka A, Kotoulas A, Mirkopoulou D, Geronikolou SA, G L. Adiponectin and Its Effects on Acute Leukemia Cells: An Experimental and Bioinformatics Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1338:117-127. [DOI: 10.1007/978-3-030-78775-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Schneider K, Venn B, Mühlhaus T. TMEA: A Thermodynamically Motivated Framework for Functional Characterization of Biological Responses to System Acclimation. ENTROPY 2020; 22:e22091030. [PMID: 33286800 PMCID: PMC7597090 DOI: 10.3390/e22091030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
The objective of gene set enrichment analysis (GSEA) in modern biological studies is to identify functional profiles in huge sets of biomolecules generated by high-throughput measurements of genes, transcripts, metabolites, and proteins. GSEA is based on a two-stage process using classical statistical analysis to score the input data and subsequent testing for overrepresentation of the enrichment score within a given functional coherent set. However, enrichment scores computed by different methods are merely statistically motivated and often elusive to direct biological interpretation. Here, we propose a novel approach, called Thermodynamically Motivated Enrichment Analysis (TMEA), to account for the energy investment in biological relevant processes. Therefore, TMEA is based on surprisal analysis, which offers a thermodynamic-free energy-based representation of the biological steady state and of the biological change. The contribution of each biomolecule underlying the changes in free energy is used in a Monte Carlo resampling procedure resulting in a functional characterization directly coupled to the thermodynamic characterization of biological responses to system perturbations. To illustrate the utility of our method on real experimental data, we benchmark our approach on plant acclimation to high light and compare the performance of TMEA with the most frequently used method for GSEA.
Collapse
|
16
|
Li T, Li X, Guo Y, Zheng G, Yu T, Zeng W, Qiu L, He X, Yang Y, Zheng X, Li Y, Huang H, Liu X. Distinct mRNA and long non-coding RNA expression profiles of decidual natural killer cells in patients with early missed abortion. FASEB J 2020; 34:14264-14286. [PMID: 32915478 DOI: 10.1096/fj.202000621r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Early non-chromosome-related missed abortion (MA) is commonly associated with an altered immunological environment during pregnancy. Human decidual natural killer (dNK) cells, the most abundant lymphocyte population within the first-trimester maternal-fetal interface, are vital maternal regulators of immune tolerance mediating successful embryo implantation and placentation. Previous studies have shown that dNK cells may play a role in MA. However, the gene expression status and specific altered manifestations of dNK cells in patients with early MA remain largely unknown. Here, we show that MA dNK cells have distinct mRNA and lncRNA expression profiles through RNA sequencing, with a total of 276 mRNAs and 67 lncRNAs being differentially expressed compared with controls. Protein-protein interaction analysis of differentially expressed mRNAs was performed to identify hub genes and key modules. An lncRNA-mRNA regulatory network characterized by the small-world property was constructed to reveal the regulation of mRNA transcription by differential hub lncRNAs. Functional annotation of differentially expressed mRNAs and lncRNAs was performed to disclose their potential roles in MA pathogenesis. Our data highlight several enriched biological processes (immune response, inflammatory response, cell adhesion, and extracellular matrix [ECM] organization) and signaling pathways (cytokine-cytokine receptor interaction, ECM-receptor interaction, Toll-like receptor signaling pathway, and phosphatidylinositol signaling system) that may influence MA. This study is the first to demonstrate the involvement of altered mRNA and lncRNA expression profiles in the dNK cell pathogenesis of early MA, facilitating a better understanding of the underlying molecular mechanisms and the development of novel MA therapeutic strategies targeting key mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Tong Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinzhu Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Qiu
- Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Gynecology & Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Ultrasonography, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguo Zheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinmei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Soliman AM, Karam HM, Mekkawy MH, Higgins M, Dinkova-Kostova AT, Ghorab MM. Radiomodulatory effect of a non-electrophilic NQO1 inducer identified in a screen of new 6, 8-diiodoquinazolin-4(3H)-ones carrying a sulfonamide moiety. Eur J Med Chem 2020; 200:112467. [PMID: 32502866 PMCID: PMC7355233 DOI: 10.1016/j.ejmech.2020.112467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Fifteen new quinazolinone derivatives bearing benzenesulfonamide moiety with variable acetamide tail were synthesized. The structures assigned to the products were concordant with the microanalytical and spectral data. Compounds 4-18 were screened for their ability to induce the antioxidant enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1) in cells, a classical target for transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The 2-((6,8-diiodo-4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio)-N-(3,4,5-trimethoxyphenyl) acetamide 15 showed the most potent NQO1 inducer activity in vitro. Compound 15 had low toxicity in mice (LD50 = 500 mg/kg). It also reduced the damaging effects of gamma radiation, as assessed by the levels of Nrf2, NQO1, reactive oxygen species (ROS) and malondialdehyde (MDA) in liver tissues. In addition, compound 15 showed amelioration in the complete blood count of irradiated mice and enhanced survival over a period of 30 days following irradiation. Molecular docking of 15 inside the Nrf2-binding site of Kelch-like ECH associated protein 1 (Keap1), the main negative regulator of Nrf2, showed the same binding interactions as that of the co-crystallized ligand considering the binding possibilities and energy scores. These findings suggest that compound 15 could be considered as a promising antioxidant and radiomodulatory agent.
Collapse
Affiliation(s)
- Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo, 11765, Egypt
| | - Heba M Karam
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo, 11765, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo, 11765, Egypt
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo, 11765, Egypt.
| |
Collapse
|
18
|
Bai Y, Baker S, Exoo K, Dai X, Ding L, Khattak NA, Li H, Liu H, Liu X. MMiRNA-Viewer2, a bioinformatics tool for visualizing functional annotation for MiRNA and MRNA pairs in a network. BMC Bioinformatics 2020; 21:247. [PMID: 32631332 PMCID: PMC7336395 DOI: 10.1186/s12859-020-3436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022] Open
Abstract
Background Although there are many studies on the characteristics of miRNA-mRNA interactions using miRNA and mRNA sequencing data, the complexity of the change of the correlation coefficients and expression values of the miRNA-mRNA pairs between tumor and normal samples is still not resolved, and this hinders the potential clinical applications. There is an urgent need to develop innovative methodologies and tools that can characterize and visualize functional consequences of cancer risk gene and miRNA pairs while analyzing the tumor and normal samples simultaneously. Results We developed an innovative bioinformatics tool for visualizing functional annotation of miRNA-mRNA pairs in a network, known as MMiRNA-Viewer2. The tool takes mRNA and miRNA interaction pairs and visualizes mRNA and miRNA regulation network. Moreover, our MMiRNA-Viewer2 web server integrates and displays the mRNA and miRNA gene annotation information, signaling cascade pathways and direct cancer association between miRNAs and mRNAs. Functional annotation and gene regulatory information can be directly retrieved from our web server, which can help users quickly identify significant interaction sub-network and report possible disease or cancer association. The tool can identify pivotal miRNAs or mRNAs that contribute to the complexity of cancer, while engaging modern next-generation sequencing technology to analyze the tumor and normal samples concurrently. We compared our tools with other visualization tools. Conclusion Our MMiRNA-Viewer2 serves as a multitasking platform in which users can identify significant interaction clusters and retrieve functional and cancer-associated information for miRNA-mRNA pairs between tumor and normal samples. Our tool is applicable across a range of diseases and cancers and has advantages over existing tools.
Collapse
|
19
|
Sun H, Zou HY, Cai XY, Zhou HF, Li XQ, Xie WJ, Xie WM, Du ZP, Xu LY, Li EM, Wu BL. Network Analyses of the Differential Expression of Heat Shock Proteins in Glioma. DNA Cell Biol 2020; 39:1228-1242. [PMID: 32429692 DOI: 10.1089/dna.2020.5425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein (HSP) is a family of highly conserved protein, which exists widely in various organisms and has a variety of important physiological functions. Currently, there is no systematic analysis of HSPs in human glioma. The aim of this study was to investigate the characteristics of HSPs through constructing protein-protein interaction network (PPIN) considering the expression level of HSPs in glioma. After the identification of the differentially expressed HSPs in glioma tissues, a specific PPIN was constructed and found that there were many interactions between the differentially expressed HSPs in glioma. Subcellular localization analysis shows that HSPs and their interacting proteins distribute from the cell membrane to the nucleus in a multilayer structure. By functional enrichment analysis, gene ontology analysis, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, the potential function of HSPs and two meaningful enrichment pathways was revealed. In addition, nine HSPs (DNAJA4, DNAJC6, DNAJC12, HSPA6, HSP90B1, DNAJB1, DNAJB6, DNAJC10, and SERPINH1) are prognostic markers for human brain glioma. These analyses provide a full view of HSPs about their expression, biological process, as well as clinical significance in glioma.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Hai-Ying Zou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Xin-Yi Cai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Hao-Feng Zhou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Xiao-Qi Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Wei-Jie Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Wen-Ming Xie
- Network and Information Center, Shantou University Medical College, Shantou, China
| | - Ze-Peng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Bing-Li Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
20
|
Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges. ENTROPY 2020; 22:e22040427. [PMID: 33286201 PMCID: PMC7516904 DOI: 10.3390/e22040427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Over the last decade, gene set analysis has become the first choice for gaining insights into underlying complex biology of diseases through gene expression and gene association studies. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Although gene set analysis approaches are extensively used in gene expression and genome wide association data analysis, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. In this article, we provide a comprehensive overview, statistical structure and steps of gene set analysis approaches used for microarrays, RNA-sequencing and genome wide association data analysis. Further, we also classify the gene set analysis approaches and tools by the type of genomic study, null hypothesis, sampling model and nature of the test statistic, etc. Rather than reviewing the gene set analysis approaches individually, we provide the generation-wise evolution of such approaches for microarrays, RNA-sequencing and genome wide association studies and discuss their relative merits and limitations. Here, we identify the key biological and statistical challenges in current gene set analysis, which will be addressed by statisticians and biologists collectively in order to develop the next generation of gene set analysis approaches. Further, this study will serve as a catalog and provide guidelines to genome researchers and experimental biologists for choosing the proper gene set analysis approach based on several factors.
Collapse
|
21
|
Lu L, Huang J, Xu F, Xiao Z, Wang J, Zhang B, David NV, Arends D, Gu W, Ackert-Bicknell C, Sabik OL, Farber CR, Quarles LD, Williams RW. Genetic Dissection of Femoral and Tibial Microarchitecture. JBMR Plus 2019; 3:e10241. [PMID: 31844829 PMCID: PMC6894729 DOI: 10.1002/jbm4.10241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Our understanding of the genetic control of bone strength has relied mainly on estimates of bone mineral density. Here we have mapped genetic factors that influence femoral and tibial microarchitecture using high‐resolution x‐ray computed tomography (8‐μm isotropic voxels) across a family of 61 BXD strains of mice, roughly 10 isogenic cases per strain and balanced by sex. We computed heritabilities for 25 cortical and trabecular traits. Males and females have well‐matched heritabilities, ranging from 0.25 to 0.75. We mapped 16 genetic loci most of which were detected only in females. There is also a bias in favor of loci that control cortical rather than trabecular bone. To evaluate candidate genes, we combined well‐established gene ontologies with bone transcriptome data to compute bone‐enrichment scores for all protein‐coding genes. We aligned candidates with those of human genome‐wide association studies. A subset of 50 strong candidates fell into three categories: (1) experimentally validated genes already known to modulate bone function (Adamts4, Ddr2, Darc, Adam12, Fkbp10, E2f6, Adam17, Grem2, Ifi204); (2) candidates without any experimentally validated function in bone (eg, Greb1, Ifi202b), but linked to skeletal phenotypes in human cohorts; and (3) candidates that have high bone‐enrichment scores, but for which there is not yet any functional link to bone biology or skeletal system disease (including Ifi202b, Ly9, Ifi205, Mgmt, F2rl1, Iqgap2). Our results highlight contrasting genetic architecture between sexes and among major bone compartments. The alignment of murine and human data facilitates function analysis and should prove of value for preclinical testing of molecular control of bone structure. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lu Lu
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center Memphis TN USA
| | - Jinsong Huang
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center Memphis TN USA
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center Memphis TN USA
| | - Zhousheng Xiao
- Department of Medicine University of Tennessee Health Science Center Memphis TN USA
| | - Jing Wang
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Bing Zhang
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Nicolae Valentin David
- Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Danny Arends
- Breeding Biology and Molecular Animal Breeding Humboldt University Berlin Germany
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering University of Tennessee Health Science Center Memphis TN USA
| | | | - Olivia L Sabik
- Center for Public Health Genomics University of Virginia Charlottesville VA USA
| | - Charles R Farber
- Center for Public Health Genomics University of Virginia Charlottesville VA USA
| | - Leigh Darryl Quarles
- Department of Medicine University of Tennessee Health Science Center Memphis TN USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center Memphis TN USA
| |
Collapse
|
22
|
Song SY, Meng XW, Xia Z, Liu H, Zhang J, Chen QC, Liu HY, Ji FH, Peng K. Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2019; 11:8386-8417. [PMID: 31582589 PMCID: PMC6814607 DOI: 10.18632/aging.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Children with repeated inhalational anesthesia may develop cognitive disorders. This study aimed to investigate the transcriptome-wide response of hippocampus in young mice that had been exposed to multiple sevoflurane in the neonatal period. Mice received 3% sevoflurane for 2 h on postnatal day (PND) 6, 8, and 10, followed by arterial blood gas test on PND 10, behavioral experiments on PND 31–36, and RNA sequencing (RNA-seq) of hippocampus on PND 37. Functional annotation and protein-protein interaction analyses of differentially expressed genes (DEGs) and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. Neonatal sevoflurane exposures induced cognitive and social behavior disorders in young mice. RNA-seq identified a total of 314 DEGs. Several enriched biological processes (ion channels, brain development, learning, and memory) and signaling pathways (oxytocin signaling pathway and glutamatergic, cholinergic, and GABAergic synapses) were highlighted. As hub-proteins, Pten was involved in nervous system development, synapse assembly, learning, memory, and behaviors, Nos3 and Pik3cd in oxytocin signaling pathway, and Cdk16 in exocytosis and phosphorylation. Some top DEGs were validated by qPCR. This study revealed a transcriptome-wide profile in mice hippocampus after multiple neonatal exposures to sevoflurane, promoting better understanding of underlying mechanisms and investigation of preventive strategies.
Collapse
Affiliation(s)
- Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - ZhengYuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Hassan H, Shanak S. GOTrapper: a tool to navigate through branches of gene ontology hierarchy. BMC Bioinformatics 2019; 20:20. [PMID: 30634902 PMCID: PMC6330489 DOI: 10.1186/s12859-018-2581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/11/2018] [Indexed: 11/14/2022] Open
Abstract
Background Gene Ontology (GO) is a useful resource of controlled vocabulary that provides information about annotated genes. Based on such resource, finding the biological function is useful for biologists to come up with different hypotheses and help further investigations of an experiment. The biological function for desired genes and gene associations is picked up from a randomly chosen list or through the analysis of differential gene expression. Many tools have been developed to utilize GO knowledge and cluster genes according to relevant biological functions. The retrieved GO terms include both specific and non-specific terms, which is not user-friendly in terms of data analysis. Thus one approach is still missing, which allows navigating through different levels of GO hierarchy manually. Result We developed a tool, GOTrapper, which allows moving up or down to the very bottom of the GO hierarchy. This is performed manually by the user, based on an assigned threshold. This tool grabs the shared terms by the desired set of input genes of Homo sapiens. Here, two inputs are possible. “Within” is to find associated terms within one gene list, and “Between” is to find associated terms between two lists. The tool also provides the option to return the terms with the pre-selected evidence codes. Conclusion GOTrapper is a user-friendly Java tool that helps the user move up and down the ontology tree, which leads to new hypotheses and devising new association of the input genes. It also allows returning terms of associated genes based on selected evidence codes. This tool can be accessed and is freely available at https://github.com/BioGeneTools/GOTrapper. Electronic supplementary material The online version of this article (10.1186/s12859-018-2581-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hezha Hassan
- Public Health Laboratory, Sulaimaniyah, Kurdistan Region, 46001, Iraq. .,Genome Informatics, Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| | - Siba Shanak
- Faculty of Sciences, Arab American University-Palestine, P.O Box 240, Jenin, Palestine
| |
Collapse
|
24
|
Ding X, Zhang S, Li X, Feng C, Huang Q, Wang S, Wang S, Xia W, Yang F, Yin R, Xu L, Qiu M, Li M, Wang J. Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing. FEBS Open Bio 2018; 8:544-555. [PMID: 29632808 PMCID: PMC5881538 DOI: 10.1002/2211-5463.12397] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 12/02/2022] Open
Abstract
Noncoding RNA play important roles in various biological processes and diseases, including cancer. The expression profile of circular RNA (circRNA) has not been systematically investigated in lung adenocarcinoma (LUAD). In this study, we performed genomewide transcriptome profiling of coding genes, long noncoding RNA (lncRNA), and circRNA in paired LUAD and nontumor tissues by ribosomal RNA‐depleted RNA sequencing. The detected reads were first mapped to the human genome to analyze expression of coding genes and lncRNA, while the unmapped reads were subjected to a circRNA prediction algorithm to identify circRNA candidates. We identified 1282 differentially expressed coding genes in LUAD. Expression of 19 023 lncRNA was detected, of which 244 lncRNAs were differentially expressed in LUAD. AFAP1‐AS1, BLACAT1, LOC101928245, and FENDRR were most differentially expressed lncRNAs in LUAD. Also identified were 9340 circRNA candidates with ≥ 2 backspliced, including 3590 novel circRNA transcripts. The median length of circRNA was ~ 530 nt. CircRNA are often of low abundance, and more than half of circRNAs we identified had < 10 reads. Agarose electrophoresis and Sanger sequencing were used to confirm that four candidate circRNA were truly circular. Our results characterized the expression profile of coding genes, lncRNA, and circRNA in LUAD; 9340 circRNAs were detected, demonstrating that circRNA are widely expressed in LUAD. Database The raw RNA sequencing data have been submitted to Gene Expression Omnibus (GEO) database and can be accessed with the ID GEO: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104854.
Collapse
Affiliation(s)
- Xiangxiang Ding
- Department of Radiology Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China.,Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Shuai Zhang
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Xiao Li
- Department of Thoracic Surgery Peking University People's Hospital Beijing China
| | - Changjiang Feng
- Department of Thoracic Surgery The Chinese People's Liberation Army General Hospital Beijing China
| | - Qi Huang
- Department of Thoracic Surgery Peking University People's Hospital Beijing China
| | - Shaodong Wang
- Department of Thoracic Surgery Peking University People's Hospital Beijing China
| | - Siwei Wang
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Wenjia Xia
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Fan Yang
- Department of Thoracic Surgery Peking University People's Hospital Beijing China
| | - Rong Yin
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Lin Xu
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Mantang Qiu
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China.,Department of Thoracic Surgery Peking University People's Hospital Beijing China
| | - Ming Li
- Department of Thoracic Surgery Jiangsu Key Laboratory of Molecular and Translational Cancer Research Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Medical University Affiliated Cancer Hospital Nanjing China
| | - Jun Wang
- Department of Thoracic Surgery Peking University People's Hospital Beijing China
| |
Collapse
|
25
|
Mwapagha LM, Tiffin N, Parker MI. Delineation of the HPV11E6 and HPV18E6 Pathways in Initiating Cellular Transformation. Front Oncol 2017; 7:258. [PMID: 29164058 PMCID: PMC5672010 DOI: 10.3389/fonc.2017.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are the major risk factors for cervical cancer they have been associated with several other cancers, such as head and neck and oral cancers. Since integration of low-risk HPV11 DNA has been demonstrated in esophageal tumor genomes, this study compared the effects of low-risk HPV11E6 and high-risk HPV18E6 on cellular gene expression. The HPV11E6 and HPV18E6 genes were cloned into an adenoviral vector and expressed in human keratinocytes (HaCaT) in order to investigate early events and to eliminate possible artifacts introduced by selective survival of fast growing cells in stable transfection experiments. HPV11E6 had very little effect on p21 and p53 gene expression, while HPV18E6 resulted in a marked reduction in both these proteins. Both HPV11E6 and HPV18E6 enabled growth of colonies in soft agar, but the level of colony formation was higher in HPV18E6 infected cells. DNA microarray analysis identified significantly differentially regulated genes involved in the cellular transformation signaling pathways. These findings suggest that HPV11E6 and HPV18E6 are important in initiating cellular transformation via deregulation of signaling pathways such as PI3K/AKT and pathways that are directly involved in DNA damage repair, cell survival, and cell proliferation. This study shows that the low-risk HPV11E6 may have similar effects as the high-risk HPV18E6 during the initial stages of infection, but at a much reduced level.
Collapse
Affiliation(s)
- Lamech M. Mwapagha
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Nicki Tiffin
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - M. Iqbal Parker
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| |
Collapse
|
26
|
Khalili A, Potter D, Yan P, Li L, Gray J, Huang T, Lin S. Gamma-Normal-Gamma Mixture Model for Detecting Differentially Methylated Loci in Three Breast Cancer Cell Lines. Cancer Inform 2017. [DOI: 10.1177/117693510700300012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
With state-of-the-art microarray technologies now available for whole genome CpG island (CGI) methylation profiling, there is a need to develop statistical models that are specifically geared toward the analysis of such data. In this article, we propose a Gamma-Normal-Gamma (GNG) mixture model for describing three groups of CGI loci: hypomethylated, undifferentiated, and hypermethylated, from a single methylation microarray. This model was applied to study the methylation signatures of three breast cancer cell lines: MCF7, T47D, and MDAMB361. Biologically interesting and interpretable results are obtained, which highlights the heterogeneity nature of the three cell lines. This underlies the premise for the need of analyzing each of the microarray slides individually as opposed to pooling them together for a single analysis. Our comparisons with the fitted densities from the Normal-Uniform (NU) mixture model in the literature proposed for gene expression analysis show an improved goodness of fit of the GNG model over the NU model. Although the GNG model was proposed in the context of single-slide methylation analysis, it can be readily adapted to analyze multi-slide methylation data as well as other types of microarray data.
Collapse
Affiliation(s)
- Abbas Khalili
- Department of Statistics, The Ohio State University, Columbus, OH 43210
| | - Dustin Potter
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210
| | - Pearlly Yan
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
| | - Lang Li
- Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, One Cyclotron Rd. Indianapolis, IN 47405
| | - Joe Gray
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Tim Huang
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH 43210
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
27
|
Xu S, Dong L, Shi Y, Chen L, Yuan P, Wang S, Li Z, Sun Y, Han S, Yin J, Peng B, He X, Liu W. The Novel Landscape of Long Non-Coding RNAs in Response to Human Foamy Virus Infection Characterized by RNA-Seq. AIDS Res Hum Retroviruses 2017; 33:452-464. [PMID: 27750433 DOI: 10.1089/aid.2016.0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human foamy virus (HFV) is a complex and unique retrovirus with the longest genomes among retroviruses that are used as vectors for gene therapy. Long non-coding RNAs (lncRNAs) are regarded as key regulators that are involved in diverse biological processes during viral infection. However, the role of lncRNAs in HFV infection remains unknown. In this study, we utilized next-generation sequencing to first characterize lncRNAs in 293T cells after HFV infection, evaluating length distribution, exon number distribution, volcano picture, and lncRNA class distribution. We identified 11,336 lncRNAs (4,729 upregulated lncRNAs and 6,588 downregulated lncRNAs) and 61,367 mRNAs (30,133 upregulated mRNAs and 31,220 downregulated mRNAs), which were differentially expressed in the HFV-infected 293T cells. Subsequently, six differentially expressed lncRNAs characterized using RNA-seq were confirmed by quantitative real-time polymerase chain reaction assays. Interestingly, Gene Ontology (GO)/Gene Ontology Tree Machine (GOTM) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses indicated that positive regulation of interleukin 8 (IL8) production and cytokine-cytokine receptor interaction might be involved in the functional enrichment of lncRNAs. Moreover, cis-acting and trans-acting regulatory networks show that NR_028036 may target the fas gene in a cis-acting manner and that ENST00000354838 may target the IL18 gene in a trans-acting manner. Overall, these results not only provide novel insights into the relationship between HFV and lncRNAs in the host response to infection but also have implications for the future wider application of HFV as a vector.
Collapse
Affiliation(s)
- Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lanlan Dong
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Wuhan General Hospital, Guangzhou Military Command, Wuhan, China
| | - Yingying Shi
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liujun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
28
|
Pozzo F, Bittolo T, Vendramini E, Bomben R, Bulian P, Rossi FM, Zucchetto A, Tissino E, Degan M, D'Arena G, Di Raimondo F, Zaja F, Pozzato G, Rossi D, Gaidano G, Del Poeta G, Gattei V, Dal Bo M. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia 2017; 31:2407-2415. [PMID: 28321119 DOI: 10.1038/leu.2017.90] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
In chronic lymphocytic leukemia (CLL), the mechanisms controlling cell growth and proliferation in the presence of NOTCH1 mutations remain largely unexplored. By performing a gene expression profile of NOTCH1-mutated (NOTCH1-mut) versus NOTCH1 wild-type CLL, we identified a gene signature of NOTCH1-mut CLL characterized by the upregulation of genes related to ribosome biogenesis, such as nucleophosmin 1 (NPM1) and ribosomal proteins (RNPs). Activation of NOTCH1 signaling by ethylenediaminetetraacetic acid or by coculture with JAGGED1-expressing stromal cells increased NPM1 expression, and inhibition of NOTCH1 signaling by either NOTCH1-specific small interfering RNA (siRNA) or γ-secretase inhibitor reduced NPM1 expression. Bioinformatic analyses and in vitro activation/inhibition of NOTCH1 signaling suggested a role of MYC as a mediator of NOTCH1 effects over NPM1 and RNP expression in NOTCH1-mut CLL. Chromatin immunoprecipitation experiments performed on NOTCH1 intracellular domain (NICD)-transfected CLL-like cells showed the direct binding of NOTCH1 to the MYC promoter, and transfection with MYC-specific siRNA reduced NPM1 expression. In turn, NPM1 determined a proliferation advantage of CLL-like cells, as demonstrated by NPM1-specific siRNA transfection. In conclusion, NOTCH1 mutations in CLL are associated with the overexpression of MYC and MYC-related genes involved in protein biosynthesis including NPM1, which are allegedly responsible for cell growth and/or proliferation advantages of NOTCH1-mut CLL.
Collapse
Affiliation(s)
- F Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - T Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - E Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - R Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - P Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - F M Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - A Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - E Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - M Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - G D'Arena
- Department of Onco-Hematology, IRCCS 'Centro di Riferimento Oncologico della Basilicata', Rionero in Vulture, Italy
| | - F Di Raimondo
- Division of Hematology, Ferrarotto Hospital, Catania, Italy
| | - F Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari 'Carlo Melzi' DISM, Azienda Ospedaliera Universitaria S Maria Misericordia, Udine, Italy
| | - G Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | - D Rossi
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - G Gaidano
- Department of Translational Medicine, Division of Hematology, University of Eastern Piedmont, Novara, Italy
| | - G Del Poeta
- Division of Hematology, S Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - V Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - M Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| |
Collapse
|
29
|
Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms. Sci Rep 2016; 6:39237. [PMID: 27976738 PMCID: PMC5157009 DOI: 10.1038/srep39237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Currently most terms and term-term relationships in Gene Ontology (GO) are defined manually, which creates cost, consistency and completeness issues. Recent studies have demonstrated the feasibility of inferring GO automatically from biological networks, which represents an important complementary approach to GO construction. These methods (NeXO and CliXO) are unsupervised, which means 1) they cannot use the information contained in existing GO, 2) the way they integrate biological networks may not optimize the accuracy, and 3) they are not customized to infer the three different sub-ontologies of GO. Here we present a semi-supervised method called Unicorn that extends these previous methods to tackle the three problems. Unicorn uses a sub-tree of an existing GO sub-ontology as training part to learn parameters in integrating multiple networks. Cross-validation results show that Unicorn reliably inferred the left-out parts of each specific GO sub-ontology. In addition, by training Unicorn with an old version of GO together with biological networks, it successfully re-discovered some terms and term-term relationships present only in a new version of GO. Unicorn also successfully inferred some novel terms that were not contained in GO but have biological meanings well-supported by the literature.Availability: Source code of Unicorn is available at http://yiplab.cse.cuhk.edu.hk/unicorn/.
Collapse
|
30
|
Chen J, Yu L, Zhang S, Chen X. Network Analysis-Based Approach for Exploring the Potential Diagnostic Biomarkers of Acute Myocardial Infarction. Front Physiol 2016; 7:615. [PMID: 28018242 PMCID: PMC5145872 DOI: 10.3389/fphys.2016.00615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for AMI have not been identified. In order to explore the potential diagnostic biomarkers and possible regulatory targets of AMI, we used a network analysis-based approach to analyze microarray expression profiling of peripheral blood in patients with AMI. The significant differentially-expressed genes (DEGs) were screened by Limma and constructed a gene function regulatory network (GO-Tree) to obtain the inherent affiliation of significant function terms. The pathway action network was constructed, and the signal transfer relationship between pathway terms was mined in order to investigate the impact of core pathway terms in AMI. Subsequently, constructed the transcription regulatory network of DEGs. Weighted gene co-expression network analysis (WGCNA) was employed to identify significantly altered gene modules and hub genes in two groups. Subsequently, the transcription regulation network of DEGs was constructed. We found that specific gene modules may provide a better insight into the potential diagnostic biomarkers of AMI. Our findings revealed and verified that NCF4, AQP9, NFIL3, DYSF, GZMA, TBX21, PRF1 and PTGDR genes by RT-qPCR. TBX21 and PRF1 may be potential candidates for diagnostic biomarker and possible regulatory targets in AMI.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| |
Collapse
|
31
|
Sundaram K, Sambandam Y, Shanmugarajan S, Rao DS, Reddy SV. Measles virus nucleocapsid protein modulates the Signal Regulatory Protein-β1 (SIRPβ1) to enhance osteoclast differentiation in Paget's disease of bone. Bone Rep 2016; 7:26-32. [PMID: 28840181 PMCID: PMC5558424 DOI: 10.1016/j.bonr.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 10/28/2022] Open
Abstract
Paget's disease of bone (PDB) is a chronic localized bone disorder in an elderly population. Environmental factors such as paramyxovirus are implicated in PDB and measles virus nucleocapsid protein (MVNP) has been shown to induce pagetic osteoclasts (OCLs). However, the molecular mechanisms underlying MVNP stimulation of OCL differentiation in the PDB are unclear. We therefore determined the MVNP regulated gene expression profiling during OCL differentiation. Agilent microarray analysis of gene expression identified high levels of SIRPβ1 (353-fold) expression in MVNP transduced human bone marrow mononuclear cells stimulated with RANKL. Real-time PCR analysis further confirmed that MVNP alone upregulates SIRPβ1 mRNA expression in these cells. Also, bone marrow mononuclear cells derived from patients with PDB showed high levels of SIRPβ1 mRNA expression compared to normal subjects. We further show that MVNP increases SIRPβ1 interaction with DAP12 adaptor protein in the presence and absence of RANKL stimulation. shRNA knockdown of SIRPβ1 expression in normal human bone marrow monocytes decreased the levels of MVNP enhanced p-Syk and c-Fos expression. In addition, SIRPβ1 knockdown significantly decreased MVNP stimulated dendritic cell-specific transmembrane protein (DC-STAMP) and connective tissue growth factor (CTGF) mRNA expression during OCL differentiation. Furthermore, we demonstrated the contribution of SIRPβ1 in MVNP induced OCL formation and bone resorption. Thus, our results suggest that MVNP modulation of SIRPβ1 provides new insights into the molecular mechanisms which control high bone turnover in PDB.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Sakamuri V Reddy
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Kim MC, Zhu Y, Chen C. How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014). Scientometrics 2016. [DOI: 10.1007/s11192-015-1830-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Abstract
UNLABELLED Understanding the composition of gene lists that result from high-throughput experiments requires elaborate processing of gene annotation lists. In this article we present GOAT (Gene Ontology Analysis Tool), a tool based on the statistical software 'R' for analysing Gene Ontologytrade mark (GO) term enrichment in gene lists. Given a gene list, GOAT calculates the enrichment and statistical significance of every GO term and generates graphical presentations of significantly enriched terms. GOAT works for any organism with a genome-scale GO annotation and allows easy updates of ontologies and annotations. AVAILABILITY GOAT is freely available from http://dictygenome.org/software/GOAT/ CONTACT: Gad Shaulsky (gadi@bcm.tmc.edu).
Collapse
Affiliation(s)
- Qikai Xu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, USADepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
34
|
Bui-Nguyen TM, Baer CE, Lewis JA, Yang D, Lein PJ, Jackson DA. Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio. BMC Genomics 2015; 16:853. [PMID: 26499117 PMCID: PMC4619386 DOI: 10.1186/s12864-015-1941-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Exposure to dichlorvos (DDVP), an organophosphorus pesticide, is known to result in neurotoxicity as well as other metabolic perturbations. However, the molecular causes of DDVP toxicity are poorly understood, especially in cells other than neurons and muscle cells. To obtain a better understanding of the process of non-neuronal DDVP toxicity, we exposed zebrafish to different concentrations of DDVP, and investigated the resulting changes in liver histology and gene transcription. Results Functional enrichment analysis of genes affected by DDVP exposure identified a number of processes involved in energy utilization and stress response in the liver. The abundance of transcripts for proteins involved in glucose metabolism was profoundly affected, suggesting that carbon flux might be diverted toward the pentose phosphate pathway to compensate for an elevated demand for energy and reducing equivalents for detoxification. Strikingly, many transcripts for molecules involved in β-oxidation and fatty acid synthesis were down-regulated. We found increases in message levels for molecules involved in reactive oxygen species responses as well as ubiquitination, proteasomal degradation, and autophagy. To ensure that the effects of DDVP on energy metabolism were not simply a consequence of poor feeding because of neuromuscular impairment, we fasted fish for 29 or 50 h and analyzed liver gene expression in them. The patterns of gene expression for energy metabolism in fasted and DDVP-exposed fish were markedly different. Conclusion We observed coordinated changes in the expression of a large number of genes involved in energy metabolism and responses to oxidative stress. These results argue that an appreciable part of the effect of DDVP is on energy metabolism and is regulated at the message level. Although we observed some evidence of neuromuscular impairment in exposed fish that may have resulted in reduced feeding, the alterations in gene expression in exposed fish cannot readily be explained by nutrient deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1941-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tri M Bui-Nguyen
- ORISE Postdoctoral Fellow, Fort Detrick, MD, 21702, USA. .,Current address: US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - John A Lewis
- US Army Center for Environmental Health Research, Fort Detrick, MD, 21702, USA.
| | - Dongren Yang
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - David A Jackson
- US Army Center for Environmental Health Research, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
35
|
Zhu J, Zeng Y, Xu C, Qin H, Lei Z, Shen D, Liu Z, Huang JA. Expression profile analysis of microRNAs and downregulated miR-486-5p and miR-30a-5p in non-small cell lung cancer. Oncol Rep 2015; 34:1779-86. [PMID: 26238736 DOI: 10.3892/or.2015.4141] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide and although there have been improvements in treatment there is a low survival rate. The aim of the present study was to investigate the effect of microRNA (miRNA) on cell pathways. A miRNA microarray was used to profile miRNAs of lung cancer tissues. It was identified that 33 miRNAs with >2.0-fold change and FDR <0.05 were differentially expressed between the adjacent non-cancerous lung tissues and non-small cell lung cancers NSCLCs (P<0.005). The data were optimized in combination with physical interaction analysis to obtain crucial miRNAs. The results showed that differentially expressed miRNAs were associated with biological processes such as cell migration, protein phosphorylation and neuron differentiation, and signaling pathways such as MAPK, TGF-β and PI3K/Akt signaling pathways. Validation of significant miRNAs in independent 40 paired NSCLC tissues demonstrated that the expression level of miR-486-5p and miR-30a-5p was significantly downregulated in another 40 paired lung cancer tissues. Taken together, the results provided strong evidence of the possible involvement of miRNAs in the development and progression of NSCLC. Thus, the results are of importance for clinical investigators and for those who design miRNA‑based novel cancer therapeutics.
Collapse
Affiliation(s)
- Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Chun Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Zhe Lei
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu, P.R. China
| | - Dan Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
36
|
Park J, Taslim C, Lin S. BOG: R-package for Bacterium and virus analysis of Orthologous Groups. Comput Struct Biotechnol J 2015; 13:366-9. [PMID: 26106460 PMCID: PMC4475783 DOI: 10.1016/j.csbj.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/15/2015] [Indexed: 11/26/2022] Open
Abstract
BOG (Bacterium and virus analysis of Orthologous Groups) is a package for identifying groups of differentially regulated genes in the light of gene functions for various virus and bacteria genomes. It is designed to identify Clusters of Orthologous Groups (COGs) that are enriched among genes that have gone through significant changes under different conditions. This would contribute to the detection of pathogens, an important scientific research area of relevance in uncovering bioterrorism, among others. Particular statistical analyses include hypergeometric, Mann–Whitney rank sum, and gene set enrichment. Results from the analyses are organized and presented in tabular and graphical forms for ease of understanding and dissemination of results. BOG is implemented as an R-package, which is available from CRAN or can be downloaded from http://www.stat.osu.edu/~statgen/SOFTWARE/BOG/.
Collapse
Affiliation(s)
- Jincheol Park
- Department of Statistics, Keimyung University, South Korea
| | | | - Shili Lin
- Department of Statistics, State University, USA
| |
Collapse
|
37
|
IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta Neuropathol Commun 2015; 3:1. [PMID: 25627031 PMCID: PMC4308930 DOI: 10.1186/s40478-014-0179-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/15/2014] [Indexed: 01/11/2023] Open
Abstract
Introduction Anti-acetylcholine receptor (AChR) autoantibodies target muscles in spontaneous human myasthenia gravis (MG) and its induced experimental autoimmune model MG (EAMG). The aim of this study was to identify novel functional mechanisms occurring in the muscle pathology of myasthenia. Results A transcriptome analysis performed on muscle tissue from MG patients (compared with healthy controls) and from EAMG rats (compared with control rats) revealed a deregulation of genes associated with the Interleukin-6 (IL-6) and Insulin-Like Growth Factor 1 (IGF-1) pathways in both humans and rats. The expression of IL-6 and its receptor IL-6R transcripts was found to be altered in muscles of EAMG rats and mice compared with control animals. In muscle biopsies from MG patients, IL-6 protein level was higher than in control muscles. Using cultures of human muscle cells, we evaluated the effects of anti-AChR antibodies on IL-6 production and on the phosphorylation of Protein Kinase B (PKB/Akt). Most MG sera and some monoclonal anti-AChR antibodies induced a significant increase in IL-6 production by human muscle cells. Furthermore, Akt phosphorylation in response to insulin was decreased in the presence of monoclonal anti-AChR antibodies. Conclusions Anti-AChR antibodies alter IL-6 production by muscle cells, suggesting a putative novel functional mechanism of action for the anti-AChR antibodies. IL-6 is a myokine with known effects on signaling pathways such as Akt/mTOR (mammalian Target of Rapamycin). Since Akt plays a key role in multiple cellular processes, the reduced phosphorylation of Akt by the anti-AChR antibodies may have a significant impact on the muscle fatigability observed in MG patients. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0179-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Nizard P, Ezan F, Bonnier D, Le Meur N, Langouët S, Baffet G, Arlot-Bonnemains Y, Théret N. Integrative analysis of high-throughput RNAi screen data identifies the FER and CRKL tyrosine kinases as new regulators of the mitogenic ERK-dependent pathways in transformed cells. BMC Genomics 2014; 15:1169. [PMID: 25540073 PMCID: PMC4367906 DOI: 10.1186/1471-2164-15-1169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell proliferation is a hallmark of cancer and depends on complex signaling networks that are chiefly supported by protein kinase activities. Therapeutic strategies have been used to target specific kinases but new methods are required to identify combined targets and improve treatment. Here, we propose a small interfering RNA genetic screen and an integrative approach to identify kinase networks involved in the proliferation of cancer cells. RESULTS The functional siRNA screen of 714 kinases in HeLa cells identified 91 kinases implicated in the regulation of cell growth, most of them never being reported in previous whole-genome siRNA screens. Based on gene ontology annotations, we have further discriminated between two classes of kinases that, when suppressed, result in alterations of the mitotic index and provoke cell-cycle arrest. Extinguished kinases that lead to a low mitotic index mostly include kinases implicated in cytosolic signaling. In contrast, extinguished kinases that result in a high mitotic index mostly include kinases implicated in cell division. By mapping hit kinases in the PhosphPOINT phosphoprotein database, we generated scale-free networks consisting of 449 and 661 protein-protein interactions for kinases from low MI and high MI groups, respectively. Further analyses of the kinase interactomes revealed specific modules such as FER- and CRKL-containing modules that connect three members of the epidermal growth factor receptor (EGFR) family, suggesting a tight control of the mitogenic EGF-dependent pathway. Based on experimental studies, we confirm the involvement of these two kinases in the regulation of tumor cell growth. CONCLUSION Based on a combined approach of large kinome-wide siRNA screens and ontology annotations, our study identifies for the first time two kinase groups differentially implicated in the control of cell proliferation. We further demonstrate that integrative analysis of the kinase interactome provides key information which can be used to facilitate or optimize target design for new therapeutic strategies. The complete list of protein-protein interactions from the two functional kinase groups will provide a useful database for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nathalie Théret
- INSERM UMR1085, Institut de Recherche sur la Santé l'Environnement et le Travail IRSET, Université Rennes 1, SFR Biosit, Rennes, France.
| |
Collapse
|
39
|
Wang YD, Huang SJ, Chou HN, Liao WL, Gong HY, Chen JY. Transcriptome analysis of the effect of Vibrio alginolyticus infection on the innate immunity-related complement pathway in Epinephelus coioides. BMC Genomics 2014; 15:1102. [PMID: 25496447 PMCID: PMC4407539 DOI: 10.1186/1471-2164-15-1102] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
Background Orange-spotted grouper (Epinephelus coioides) with protogynous hermaphroditic features are one of the most economically important aquaculture species in Taiwan. However, larvae stage grouper are susceptible to infection by the bacterial pathogen Vibrio alginolyticus. To better understand the molecular mechanisms of the immune response to V. alginolyticus in Epinephelus coioides larvae, we used high-throughput deep sequencing technology to study the effect of infection on gene expression. Results A total of 114,851,002 reads were assembled, consisting of 9,687,355,560 nucleotides; these were further assembled into 209,082 contigs with a mean length of 372 bp. Gene ontology (GO) analysis of the transcriptome revealed 12 cellular component subcategories, 16 molecular function subcategories, and 42 biological process subcategories (P value <0.05). A total of 32664 Epinephelus coioides genes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG); 1504 differentially expressed genes (DEGs) were subsequently identified, in 12 categories (P value <0.05). Vibrio infection affected the expression of genes involved in complementation, coagulation cascades, pathogen (Staphylococcus aureus) infection, phagosome activity, antigen processing, and the antigen presentation pathway. Conclusion We conclude that the complement pathway of innate immunity and the hepicidin antimicrobial peptide may play important roles in the defense of Epinephelus coioides larvae against V. alginolyticus, and the immune response may activate at 4 h after bacterial infection. These results implicate the complement pathway signal pathway in immunity during V. alginolyticus infection at early developmental stages, enhancing our understanding of the mechanisms underlying the immune response to Vibrio infection in Epinephelus coioides. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1102) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyh-Yih Chen
- Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road, Sec, 4, Taipei 106, Taiwan.
| |
Collapse
|
40
|
Techapiesancharoenkij N, Fiala JLA, Navasumrit P, Croy RG, Wogan GN, Groopman JD, Ruchirawat M, Essigmann JM. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1. Toxicol Appl Pharmacol 2014; 282:52-60. [PMID: 25450479 DOI: 10.1016/j.taap.2014.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 12/31/2022]
Abstract
Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer.
Collapse
Affiliation(s)
| | - Jeannette L A Fiala
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Robert G Croy
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerald N Wogan
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - John M Essigmann
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Wang K, Song H, Jin M, Xiao H, Zhao G, Zou H, Yu L. Chronic alcohol consumption from adolescence to adulthood in mice--hypothalamic gene expression changes in insulin-signaling pathway. Alcohol 2014; 48:571-8. [PMID: 25088817 DOI: 10.1016/j.alcohol.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adolescence is a developmental stage vulnerable to alcohol drinking-related problems, and alcohol exposure during adolescence may lead to long-lasting consequences. The hypothalamus is a key brain region for food and water intake regulation as well as weight control, and is one of the alcohol-sensitive brain regions. However, it is not known what the alcohol effect is on the hypothalamus following adolescent alcohol intake, chronically over adolescent development, at moderate levels. We employed a model of chronic moderate alcohol intake from adolescence to adulthood in mice, and analyzed the effect of alcohol on growth and weight gain, as well as hypothalamic gene expression patterns. The results indicated that chronic alcohol consumption during adolescence, even at moderate levels, led to both a reduction in weight gain in mice, and considerable gene expression changes in the hypothalamus. Pathway analysis and real-time PCR identified the type II diabetes mellitus and the insulin-signaling pathways as being the hypothalamic pathways affected by chronic alcohol. Our findings from the mouse alcohol consumption study therefore serve as a potential warning against alcohol consumption during adolescence, such as in teens and college students.
Collapse
Affiliation(s)
- Ke Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China; Department of Cardiothoracic Surgery, Shu Guang Hospital Affiliated with the Shanghai Traditional Medicine University, Shanghai, China
| | - Huaiguang Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China
| | - Meilei Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huasheng Xiao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China
| | - Guoping Zhao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China; Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| | - Hong Zou
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Lei Yu
- Department of Genetics & Center of Alcohol Studies, Rutgers University, 607 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Vallejo G, La Greca AD, Tarifa-Reischle IC, Mestre-Citrinovitz AC, Ballaré C, Beato M, Saragüeta P. CDC2 mediates progestin initiated endometrial stromal cell proliferation: a PR signaling to gene expression independently of its binding to chromatin. PLoS One 2014; 9:e97311. [PMID: 24859236 PMCID: PMC4032247 DOI: 10.1371/journal.pone.0097311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets.
Collapse
Affiliation(s)
- Griselda Vallejo
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| | - Alejandro D. La Greca
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| | | | | | | | - Miguel Beato
- Centre de Regulació Genòmica, (CRG), Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| |
Collapse
|
43
|
Chronic alcohol consumption from adolescence-to-adulthood in mice--hypothalamic gene expression changes in the dilated cardiomyopathy signaling pathway. BMC Neurosci 2014; 15:61. [PMID: 24884436 PMCID: PMC4027996 DOI: 10.1186/1471-2202-15-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/23/2014] [Indexed: 12/17/2022] Open
Abstract
Background Adolescence is a developmental stage vulnerable to alcohol drinking-related problems and the onset of alcoholism. Hypothalamus is a key brain region for food and water intake regulation, and is one of the alcohol-sensitive brain regions. However, it is not known what would be the alcohol effect on hypothalamus following adolescent alcohol intake, chronically over the adolescent development, at moderate levels. Results We employed a paradigm of chronic moderate alcohol intake from adolescence-to-adulthood in mice, and analyzed the alcohol effect on both behavioral and hypothalamic gene expression changes. A total of 751 genes were found and subjected to pathway analysis. The dilated cardiomyopathy (DCM) pathway was identified. The changes of ten genes under this pathway were further verified using RT-PCR. Chronic alcohol consumption during adolescence, even at moderate levels, led to a decrease of motor activity in mice, and also a concerted down regulation of signaling pathway initiating factor (SPIF) genes in the DCM signaling pathway, including β1-adrenergic receptor (Adrb1), Gs protein (Gnas), adenylyl cyclase 1 (Adcy1), and dihydropyridine receptor/L-type calcium channel (Cacna1d). Conclusions These findings suggest that adolescent alcohol intake may trigger gene expression changes in the CNS that parallel those found in the dilated cardiomyopathy signaling pathway. If such effects also take place in humans, our findings would serve as a warning against alcohol intake in youth, such as by teens and/or college students.
Collapse
|
44
|
Gancheva K, Postadjian A, Brazma D, Grace C, Chanalaris A, Nacheva E, Apostolova M. Copy Number Variants: Distribution in Patients with Coronary Atherosclerosis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
45
|
Semantic particularity measure for functional characterization of gene sets using gene ontology. PLoS One 2014; 9:e86525. [PMID: 24489737 PMCID: PMC3904913 DOI: 10.1371/journal.pone.0086525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity. RESULTS We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the term's distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure. CONCLUSION Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.
Collapse
|
46
|
Cao J, Zhang S. A Bayesian extension of the hypergeometric test for functional enrichment analysis. Biometrics 2013; 70:84-94. [PMID: 24320951 DOI: 10.1111/biom.12122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/01/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Functional enrichment analysis is conducted on high-throughput data to provide functional interpretation for a list of genes or proteins that share a common property, such as being differentially expressed (DE). The hypergeometric P-value has been widely used to investigate whether genes from pre-defined functional terms, for example, Gene Ontology (GO), are enriched in the DE genes. The hypergeometric P-value has three limitations: (1) computed independently for each term, thus neglecting biological dependence; (2) subject to a size constraint that leads to the tendency of selecting less-specific terms; (3) repeated use of information due to overlapping annotations by the true-path rule. We propose a Bayesian approach based on the non-central hypergeometric model. The GO dependence structure is incorporated through a prior on non-centrality parameters. The likelihood function does not include overlapping information. The inference about enrichment is based on posterior probabilities that do not have a size constraint. This method can detect moderate but consistent enrichment signals and identify sets of closely related and biologically meaningful functional terms rather than isolated terms. We also describe the basic ideas of assumption and implementation of different methods to provide some theoretical insights, which are demonstrated via a simulation study. A real application is presented.
Collapse
Affiliation(s)
- Jing Cao
- Department of Statistical Science, Southern Methodist University, Dallas, Texas 75275, U.S.A
| | | |
Collapse
|
47
|
da Silva SD, Alaoui-Jamali MA, Soares FA, Carraro DM, Brentani HP, Hier M, Rogatto SR, Kowalski LP. TWIST1 is a molecular marker for a poor prognosis in oral cancer and represents a potential therapeutic target. Cancer 2013; 120:352-62. [PMID: 24150986 DOI: 10.1002/cncr.28404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Locoregional recurrence and distant metastases are ominous events in patients with advanced oral squamous cell carcinoma (OSCC). The objective of this study was to identify functional biomarkers that are predictive of OSCC progression to metastasis. METHODS The expression profile of a network of epithelial-mesenchymal transition (EMT) genes was investigated in a large cohort of patients with progressive OSCC using a complimentary DNA microarray platform coupled to quantitative reverse transcriptase-polymerase chain reaction and immunohistochemical analyses. Therapeutic potential was investigated in vitro and in vivo using an orthotopic mouse model of metastatic OSCC growing in the tongue microenvironment. RESULTS Among deregulated EMT genes, the Twist-related protein 1 (TWIST1) transcription factor and several of its regulated genes were significantly overexpressed across advanced stages of OSCC. This result was corroborated by the clinical observation that Twist1 up-regulation predicted the occurrence of lymph node and lung metastases as well as poor patient survival. In support of Twist1 as a driver of OSCC progression, the up-regulation of Twist1 was observed in cells isolated from patients with metastatic OSCC. The inhibition of Twist1 in these metastatic cells induced a potent inhibition of cell invasiveness in vitro as well as progression in vivo. CONCLUSIONS The current results provide evidence for the prognostic value and therapeutic potential of a network of Twist genes in patients with advanced OSCC.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center, São Paulo, Brazil; Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada; Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:452948. [PMID: 23983781 PMCID: PMC3745865 DOI: 10.1155/2013/452948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022]
Abstract
Adult neural stem cells (NSCs) persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS) injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.
Collapse
|
49
|
A snapshot of gene expression signatures generated using microarray datasets associated with excessive scarring. Am J Dermatopathol 2013; 35:64-73. [PMID: 22785331 DOI: 10.1097/dad.0b013e31825ba13f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to examine the gene expression signatures of 2 types of excessive scarring, keloid and hypertrophic scar (HS), through the integrated bioinformatics analysis of multiple published gene expression profile datasets. METHODS A literature search of microarray data published in focusing on keloid and HS was performed. The microarray data were reanalyzed to identify the common significantly dysregulated (CSD) genes. The experimental and statistical parameters of the studies were systematically evaluated to reveal any influences on the consensus findings among the studies. Overrepresentation analysis of gene ontology (GO) categories and pathways was used to explore the significantly dysregulated genes functionally associated with the pathogenesis of excessive scarring. RESULTS Seven published microarray studies on keloid and 4 studies on HS were identified. A total of 64 CSD genes were identified in keloid; 9 upregulated CSD genes were identified in HS. The 48 consistently dysregulated genes that overlapped in least 1 keloid study and 1 HS study were defined as the CSD genes in excessive scarring. The differences in the variables associated with the study protocols and data management were systematically documented and evaluated. Activated GO categories and pathways related to skeletal development, binding, extracellular matrix-receptor interaction, and adhesion were found to have significance in excessive scarring, implying a common pathological basis for keloid and HS formation. Notably, the GO categories related to cancer and the TGF-beta signaling pathway were significantly enriched in keloids. CONCLUSIONS As gene signatures and molecular markers of excessive scarring, the identified CSD genes may be particularly relevant to disease pathogenesis and serve as new therapeutic targets.
Collapse
|
50
|
Braoudaki M, Lambrou GI, Vougas K, Karamolegou K, Tsangaris GT, Tzortzatou-Stathopoulou F. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol 2013; 6:52. [PMID: 23849470 PMCID: PMC3717072 DOI: 10.1186/1756-8722-6-52] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022] Open
Abstract
The current study evaluated the differential expression detected in the proteomic profiles of low risk- and high risk- ALL pediatric patients to characterize candidate biomarkers related to diagnosis, prognosis and patient targeted therapy. Bone marrow and peripheral blood plasma and cell lysates samples were obtained from pediatric patients with low- (LR) and high-risk (HR) ALL at diagnosis. As controls, non-leukemic pediatric patients were studied. Cytogenetic analysis was carried out by G- banding and interphase fluorescent in situ hybridization. Differential proteomic analysis was performed using two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The differential expression of certain proteins was confirmed by Western blot analysis. The obtained data revealed that CLUS, CERU, APOE, APOA4, APOA1, GELS, S10A9, AMBP, ACTB, CATA and AFAM proteins play a significant role in leukemia prognosis, potentially serving as distinctive biomarkers for leukemia aggressiveness, or as suppressor proteins in HR-ALL cases. In addition, vitronectin and plasminogen probably contributed to leukemogenesis, whilst bicaudal D-related protein 1 could afford a significant biomarker for pediatric ALL therapeutics.
Collapse
Affiliation(s)
- Maria Braoudaki
- First Department of Pediatrics, University of Athens Medical School, Choremeio Research Laboratory, Thivon & Levadias 11527 Goudi-Athens, Greece
| | | | | | | | | | | |
Collapse
|