1
|
Yasuda T, Morita R, Shigeta Y, Harada R. Ribosome Tunnel Environment Drives the Formation of α-Helix during Cotranslational Folding. J Chem Inf Model 2024; 64:6610-6622. [PMID: 39150098 PMCID: PMC11351022 DOI: 10.1021/acs.jcim.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Protein conformations in cells are not solely determined by amino acid sequences; they also depend on cellular environments. For instance, the ribosome tunnel induces its specific α-helix formation during cotranslational folding. Owing to the link between these temporally α-helix and biological functions, the mechanism of α-helix formation inside the ribosome tunnel has been previously explored. Consequently, the conformational restrictions of the tunnel were considered one of the driving forces of α-helix formation. Conversely, the ribosomal tunnel environment, including its chemical properties, appears to influence the α-helix formation. However, a comprehensive analysis of the ribosome tunnel environment's impact on the α-helix formation has not been conducted yet due to challenges in experimentally controlling it. Therefore, as a new computational approach, we proposed a ribosome environment-mimicking model (REMM) based on the radius and components of the experimentally determined ribosome tunnel structures. Using REMM, we assessed the impact of the ribosome tunnel environment on α-helix formation. Herein, we employed carbon nanotubes (CNT) as a reference model alongside REMM because CNT reproduce conformational restrictions rather than the ribosome tunnel environment. Quantitatively, the ability to reproduce the α-helix of nascent peptides in the experimental structure was compared between the CNT and REMM using enhanced all-atom molecular dynamics simulations. Consequently, the REMM more accurately reproduced the α-helix of the nascent peptides than the CNT, highlighting the significance of the ribosome tunnel environment in α-helix formation. Additionally, we analyzed the properties of the peptide inside each model to reveal the mechanism of ribosome tunnel-specific α-helix formation. Consequently, we revealed that the chemical diversities of the tunnel are essential for the formation of backbone-to-backbone hydrogen bonds in the peptides. In conclusion, the ribosome tunnel environment, with the diverse chemical properties, drives its specific α-helix formation. By proposing REMM, we newly provide the technical basis for investigating the protein conformations in various cellular environments.
Collapse
Affiliation(s)
- Takunori Yasuda
- Doctoral
Program in Biology, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Rikuri Morita
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Duart G, Graña-Montes R, Pastor-Cantizano N, Mingarro I. Experimental and computational approaches for membrane protein insertion and topology determination. Methods 2024; 226:102-119. [PMID: 38604415 DOI: 10.1016/j.ymeth.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.
Collapse
Affiliation(s)
- Gerard Duart
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ricardo Graña-Montes
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Noelia Pastor-Cantizano
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain.
| |
Collapse
|
3
|
Masse MM, Guzman-Luna V, Varela AE, Mahfuza Shapla U, Hutchinson RB, Srivastava A, Wei W, Fuchs AM, Cavagnero S. Nascent chains derived from a foldable protein sequence interact with specific ribosomal surface sites near the exit tunnel. Sci Rep 2024; 14:12324. [PMID: 38811604 PMCID: PMC11137106 DOI: 10.1038/s41598-024-61274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.
Collapse
Affiliation(s)
- Meranda M Masse
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ummay Mahfuza Shapla
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aniruddha Srivastava
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McGaw Medical Center, Northwestern University, Chicago, IL, 60611, USA
| | - Wanting Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Whitley P, Grau B, Gumbart JC, Martínez-Gil L, Mingarro I. Folding and Insertion of Transmembrane Helices at the ER. Int J Mol Sci 2021; 22:ijms222312778. [PMID: 34884581 PMCID: PMC8657811 DOI: 10.3390/ijms222312778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation. These stretches are typically around 20 amino acids long and are known as transmembrane (TM) helices. In this review, we will consider how transmembrane helices achieve membrane integration. We will address questions such as: Where do the stretches of amino acids fold into a helical conformation? What is/are the route/routes that these stretches take from synthesis at the ribosome to integration through the ER translocon? How do these stretches ‘know’ to integrate and in which orientation? How do marginally hydrophobic stretches of amino acids integrate and survive as transmembrane helices?
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, UK;
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - James C. Gumbart
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
- Correspondence: ; Tel.: +34-963543796
| |
Collapse
|
5
|
Bañó-Polo M, Baeza-Delgado C, Tamborero S, Hazel A, Grau B, Nilsson I, Whitley P, Gumbart JC, von Heijne G, Mingarro I. Transmembrane but not soluble helices fold inside the ribosome tunnel. Nat Commun 2018; 9:5246. [PMID: 30531789 PMCID: PMC6286305 DOI: 10.1038/s41467-018-07554-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosome. Using in vitro translation of truncated nascent chains trapped within the ribosome tunnel and molecular dynamics simulations, we show that folding in the ribosome is attained for TM helices but not for soluble helices, presumably facilitating SRP (signal recognition particle) recognition and/or a favourable conformation for membrane integration upon translocon entry.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Carlos Baeza-Delgado
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Silvia Tamborero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Anthony Hazel
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brayan Grau
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, BA2 7AY, UK
| | - James C Gumbart
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ismael Mingarro
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain.
| |
Collapse
|
6
|
Gonsberg A, Jung S, Ulbrich S, Origi A, Ziska A, Baier M, Koch HG, Zimmermann R, Winklhofer KF, Tatzelt J. The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. J Biol Chem 2017; 292:21383-21396. [PMID: 29084847 DOI: 10.1074/jbc.m117.788067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
About one-quarter to nearly one-third of the proteins synthesized in the cytosol of eukaryotic cells are integrated into the plasma membrane or are secreted. Translocation of secretory proteins into the lumen of the endoplasmic reticulum or the periplasm of bacteria is mediated by a highly conserved heterotrimeric membrane protein complex denoted Sec61 in eukaryotes and SecYEG in bacteria. To evaluate a possible modulation of the translocation efficiency by secondary structures of the nascent peptide chain, we performed a comparative analysis in bacteria, yeast, and mammalian cells. Strikingly, neither the bacterial SecY nor the eukaryotic Sec61 translocon was able to efficiently transport proteins entirely composed of intrinsically disordered domains (IDDs) or β-strands. However, translocation could be restored by α-helical domains in a position- and organism-dependent manner. In bacteria, we found that the α-helical domains have to precede the IDD or β-strands, whereas in mammalian cells, C-terminally located α-helical domains are sufficient to promote translocation. Our study reveals an evolutionarily conserved deficiency of the Sec61/SecY complex to translocate IDDs and β-strands in the absence of α-helical domains. Moreover, our results may suggest that adaptive pathways co-evolved with the expansion of IDDs in the proteome of eukaryotic cells to increase the transport capacity of the Sec61 translocon.
Collapse
Affiliation(s)
- Anika Gonsberg
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Sebastian Jung
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Sarah Ulbrich
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Andrea Origi
- the Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Anke Ziska
- the Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany, and
| | - Michael Baier
- the Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, D-13353 Berlin, Germany
| | - Hans-Georg Koch
- the Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Richard Zimmermann
- the Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany, and
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Jörg Tatzelt
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| |
Collapse
|
7
|
Poms M, Ansorge P, Martinez-Gil L, Jurt S, Gottstein D, Fracchiolla KE, Cohen LS, Güntert P, Mingarro I, Naider F, Zerbe O. NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. J Biol Chem 2016; 291:27170-27186. [PMID: 27864365 DOI: 10.1074/jbc.m116.740985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.
Collapse
Affiliation(s)
- Martin Poms
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Philipp Ansorge
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luis Martinez-Gil
- the Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, E-46100 Burjassot, Spain
| | - Simon Jurt
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Gottstein
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Katrina E Fracchiolla
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Leah S Cohen
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Peter Güntert
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.,the Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Ismael Mingarro
- the Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, E-46100 Burjassot, Spain
| | - Fred Naider
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Oliver Zerbe
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland,
| |
Collapse
|
8
|
Multi-omic data integration enables discovery of hidden biological regularities. Nat Commun 2016; 7:13091. [PMID: 27782110 PMCID: PMC5095171 DOI: 10.1038/ncomms13091] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023] Open
Abstract
Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology. Translating omics data sets into biological insight is one of the great challenges of our time. Here, the authors make headway by synchronising pairs of omics data types via invariants across conditions and by integrating datasets into a genome-scale model of E. coli metabolism and gene expression.
Collapse
|
9
|
Gumbart JC, Chipot C. Decrypting protein insertion through the translocon with free-energy calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1663-71. [PMID: 26896694 DOI: 10.1016/j.bbamem.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Protein insertion into a membrane is a complex process involving numerous players. The most prominent of these players is the Sec translocon complex, a conserved protein-conducting channel present in the cytoplasmic membrane of bacteria and the membrane of the endoplasmic reticulum in eukaryotes. The last decade has seen tremendous leaps forward in our understanding of how insertion is managed by the translocon and its partners, coming from atomic-detailed structures, innovative experiments, and well-designed simulations. In this review, we discuss how experiments and simulations, hand-in-hand, teased out the secrets of the translocon-facilitated membrane insertion process. In particular, we focus on the role of free-energy calculations in elucidating membrane insertion. Amazingly, despite all its apparent complexity, protein insertion into membranes is primarily driven by simple thermodynamic and kinetic principles. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, Johansson M, Müller-Lucks A, Trovato F, Puglisi JD, O'Brien EP, Beckmann R, von Heijne G. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Rep 2015; 12:1533-40. [PMID: 26321634 PMCID: PMC4571824 DOI: 10.1016/j.celrep.2015.07.065] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. Cotranslational folding is studied by arrest-peptide-mediated force measurements Single-molecule measurements show that a pulling force prevents ribosome stalling A ribosome-tethered zinc-finger domain is visualized by cryo-EM (electron microscopy) The zinc-finger domain is shown to fold deep inside the ribosome exit tunnel
Collapse
Affiliation(s)
- Ola B Nilsson
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Rickard Hedman
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Jacopo Marino
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Stephan Wickles
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Lukas Bischoff
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Magnus Johansson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Annika Müller-Lucks
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden.
| |
Collapse
|
11
|
Abstract
Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large α-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.
Collapse
|
12
|
Martinez-Gil L, Mingarro I. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses 2015; 7:3462-82. [PMID: 26131957 PMCID: PMC4517110 DOI: 10.3390/v7072781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.
Collapse
Affiliation(s)
- Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain.
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
13
|
Sáenz A, Presto J, Lara P, Akinyi-Oloo L, García-Fojeda B, Nilsson I, Johansson J, Casals C. Folding and Intramembraneous BRICHOS Binding of the Prosurfactant Protein C Transmembrane Segment. J Biol Chem 2015; 290:17628-41. [PMID: 26041777 DOI: 10.1074/jbc.m114.630343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Indexed: 12/19/2022] Open
Abstract
Surfactant protein C (SP-C) is a novel amyloid protein found in the lung tissue of patients suffering from interstitial lung disease (ILD) due to mutations in the gene of the precursor protein pro-SP-C. SP-C is a small α-helical hydrophobic protein with an unusually high content of valine residues. SP-C is prone to convert into β-sheet aggregates, forming amyloid fibrils. Nature's way of solving this folding problem is to include a BRICHOS domain in pro-SP-C, which functions as a chaperone for SP-C during biosynthesis. Mutations in the pro-SP-C BRICHOS domain or linker region lead to amyloid formation of the SP-C protein and ILD. In this study, we used an in vitro transcription/translation system to study translocon-mediated folding of the WT pro-SP-C poly-Val and a designed poly-Leu transmembrane (TM) segment in the endoplasmic reticulum (ER) membrane. Furthermore, to understand how the pro-SP-C BRICHOS domain present in the ER lumen can interact with the TM segment of pro-SP-C, we studied the membrane insertion properties of the recombinant form of the pro-SP-C BRICHOS domain and two ILD-associated mutants. The results show that the co-translational folding of the WT pro-SP-C TM segment is inefficient, that the BRICHOS domain inserts into superficial parts of fluid membranes, and that BRICHOS membrane insertion is promoted by poly-Val peptides present in the membrane. In contrast, one BRICHOS and one non-BRICHOS ILD-associated mutant could not insert into membranes. These findings support a chaperone function of the BRICHOS domain, possibly together with the linker region, during pro-SP-C biosynthesis in the ER.
Collapse
Affiliation(s)
- Alejandra Sáenz
- From the Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040 Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jenny Presto
- the Center for Alzheimer Research, NVS (Neurobiology, Care Sciences, and Society) Department, Karolinska Institutet, S-141 57 Huddinge, Sweden, and
| | - Patricia Lara
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Laura Akinyi-Oloo
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Belén García-Fojeda
- the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - IngMarie Nilsson
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Jan Johansson
- the Center for Alzheimer Research, NVS (Neurobiology, Care Sciences, and Society) Department, Karolinska Institutet, S-141 57 Huddinge, Sweden, and
| | - Cristina Casals
- From the Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040 Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain,
| |
Collapse
|
14
|
Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol 2013; 426:185-98. [PMID: 24055377 DOI: 10.1016/j.jmb.2013.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
Abstract
Folding of membrane proteins begins in the ribosome as the peptide is elongated. During this process, the nascent peptide navigates along 100Å of tunnel from the peptidyltransferase center to the exit port. Proximal to the exit port is a "folding vestibule" that permits the nascent peptide to compact and explore conformational space for potential tertiary folding partners. The latter occurs for cytosolic subdomains but has not yet been shown for transmembrane segments. We now demonstrate, using an accessibility assay and an improved intramolecular crosslinking assay, that the helical transmembrane S3b-S4 hairpin ("paddle") of a voltage-gated potassium (Kv) channel, a critical region of the Kv voltage sensor, forms in the vestibule. S3-S4 hairpin interactions are detected at an early stage of Kv biogenesis. Moreover, this vestibule hairpin is consistent with a closed-state conformation of the Kv channel in the plasma membrane.
Collapse
|
15
|
Dirndorfer D, Seidel RP, Nimrod G, Miesbauer M, Ben-Tal N, Engelhard M, Zimmermann R, Winklhofer KF, Tatzelt J. The α-helical structure of prodomains promotes translocation of intrinsically disordered neuropeptide hormones into the endoplasmic reticulum. J Biol Chem 2013; 288:13961-13973. [PMID: 23532840 DOI: 10.1074/jbc.m112.430264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation.
Collapse
Affiliation(s)
- Daniela Dirndorfer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Ralf P Seidel
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Guy Nimrod
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Margit Miesbauer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Nir Ben-Tal
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Martin Engelhard
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University Homburg, 66421 Homburg/Saar, Germany
| | - Konstanze F Winklhofer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany.
| |
Collapse
|
16
|
Pfeiffer NV, Dirndorfer D, Lang S, Resenberger UK, Restelli LM, Hemion C, Miesbauer M, Frank S, Neutzner A, Zimmermann R, Winklhofer KF, Tatzelt J. Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria. EMBO J 2013; 32:1036-51. [PMID: 23481258 DOI: 10.1038/emboj.2013.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/01/2013] [Indexed: 01/23/2023] Open
Abstract
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N-terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein-like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α-helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.
Collapse
Affiliation(s)
- Natalie V Pfeiffer
- Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. J Mol Biol 2013; 425:830-40. [DOI: 10.1016/j.jmb.2012.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 12/02/2012] [Indexed: 11/21/2022]
|
18
|
A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 2012; 19:1018-22. [PMID: 23001004 DOI: 10.1038/nsmb.2376] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/07/2012] [Indexed: 11/08/2022]
Abstract
Membrane proteins destined for insertion into the inner membrane of bacteria or the endoplasmic reticulum membrane in eukaryotic cells are synthesized by ribosomes bound to the bacterial SecYEG or the homologous eukaryotic Sec61 translocon. During co-translational membrane integration, transmembrane α-helical segments in the nascent chain exit the translocon through a lateral gate that opens toward the surrounding membrane, but the mechanism of lateral exit is not well understood. In particular, little is known about how a transmembrane helix behaves when entering and exiting the translocon. Using translation-arrest peptides from bacterial SecM proteins and from the mammalian Xbp1 protein as force sensors, we show that substantial force is exerted on a transmembrane helix at two distinct points during its transit through the translocon channel, providing direct insight into the dynamics of membrane integration.
Collapse
|
19
|
High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proc Natl Acad Sci U S A 2012; 109:2325-9. [PMID: 22308375 DOI: 10.1073/pnas.1114740109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.1 Å crystal structure of the human proSP-C BRICHOS domain, which, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry, reveals how BRICHOS domains may mediate chaperone activity. Observation of amyloid deposits composed of mature SP-C in lung tissue samples from ILD patients with mutations in the BRICHOS domain or in its peptide-binding linker region supports the in vivo relevance of the proposed mechanism. The results indicate that ILD mutations interfering with proSP-C BRICHOS activity cause amyloid disease secondary to intramolecular chaperone malfunction.
Collapse
|
20
|
Patrick AE, Karamyshev AL, Millen L, Thomas PJ. Alteration of CFTR transmembrane span integration by disease-causing mutations. Mol Biol Cell 2011; 22:4461-71. [PMID: 21998193 PMCID: PMC3226467 DOI: 10.1091/mbc.e11-05-0396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/26/2011] [Accepted: 10/04/2011] [Indexed: 01/09/2023] Open
Abstract
Many missense mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) result in its misfolding, endoplasmic reticulum (ER) accumulation, and, thus, cystic fibrosis. A number of these mutations are located in the predicted CFTR transmembrane (TM) spans and have been projected to alter span integration. However, the boundaries of the spans have not been precisely defined experimentally. In this study, the ER luminal integration profiles of TM1 and TM2 were determined using the ER glycosylation machinery, and the effects of the CF-causing mutations G85E and G91R thereon were assessed. The mutations either destabilize the integrated conformation or alter the TM1 ER integration profile. G85E misfolding is based in TM1 destabilization by glutamic acid and loss of glycine and correlates with the temperature-insensitive ER accumulation of immature full-length CFTR harboring the mutation. By contrast, temperature-dependent misfolding owing to the G91R mutation depends on the introduction of the basic side chain rather than the loss of the glycine. This work demonstrates that CF-causing mutations predicted to have similar effects on CFTR structure actually result in disparate molecular perturbations that underlie ER accumulation and the pathology of CF.
Collapse
Affiliation(s)
- Anna E. Patrick
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Andrey L. Karamyshev
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Linda Millen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Philip J. Thomas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
21
|
Lin PJ, Jongsma CG, Pool MR, Johnson AE. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. ACTA ACUST UNITED AC 2011; 195:55-70. [PMID: 21949410 PMCID: PMC3187706 DOI: 10.1083/jcb.201103118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multi-spanning membrane protein loops are directed alternately into the cytosol or ER lumen during cotranslational integration. Nascent chain exposure is switched after a newly synthesized transmembrane segment (TMS) enters the ribosomal tunnel. FRET measurements revealed that each TMS is initially extended, but folds into a compact conformation after moving 6-7 residues from the peptidyltransferase center, irrespective of loop size. The ribosome-induced folding of each TMS coincided with its photocrosslinking to ribosomal protein L17 and an inversion of compartmental exposure. This correlation indicates that successive TMSs fold and bind at a specific ribosomal tunnel site that includes L17, thereby triggering structural rearrangements of multiple components in and on both sides of the ER membrane, most likely via TMS-dependent L17 and/or rRNA conformational changes transmitted to the surface. Thus, cyclical changes at the membrane during integration are initiated by TMS folding, even though nascent chain conformation and location vary dynamically in the ribosome tunnel. Nascent chains therefore control their own trafficking.
Collapse
Affiliation(s)
- Pen-Jen Lin
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
22
|
Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 2011; 146:134-47. [PMID: 21729785 DOI: 10.1016/j.cell.2011.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/28/2011] [Accepted: 06/02/2011] [Indexed: 01/21/2023]
Abstract
In eukaryotic cells, the ribosome-Sec61 translocon complex (RTC) establishes membrane protein topology by cotranslationally partitioning nascent polypeptides into the cytosol, ER lumen, and lipid bilayer. Using photocrosslinking, collisional quenching, cysteine accessibility, and protease protection, we show that a canonical type II signal anchor (SA) acquires its topology through four tightly coupled and mechanistically distinct steps: (1) head-first insertion into Sec61α, (2) nascent chain accumulation within the RTC, (3) inversion from type I to type II topology, and (4) stable translocation of C-terminal flanking residues. Progression through each stage is induced by incremental increases in chain length and involves abrupt changes in the molecular environment of the SA. Importantly, type II SA inversion deviates from a type I SA at an unstable intermediate whose topology is controlled by dynamic interactions between the ribosome and translocon. Thus, the RTC coordinates SA topogenesis within a protected environment via sequential energetic transitions of the TM segment.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
23
|
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 2011; 21:274-82. [PMID: 21316217 DOI: 10.1016/j.sbi.2011.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/16/2010] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit and emerges at the solvent side where protein folding occurs. Despite the universality and conservation of dimensions of the ribosomal tunnel, a functional role for the ribosomal tunnel is only beginning to emerge: Rather than a passive conduit for the nascent chain, accumulating evidence indicates that the tunnel plays a more active role. In this article, we discuss recent structural insights into the role of the tunnel environment, and its implications for protein folding, co-translational targeting and translation regulation.
Collapse
|
24
|
BRICHOS domain associated with lung fibrosis, dementia and cancer - a chaperone that prevents amyloid fibril formation? FEBS J 2011; 278:3893-904. [DOI: 10.1111/j.1742-4658.2011.08209.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. Membrane protein integration into the endoplasmic reticulum. FEBS J 2011; 278:3846-58. [PMID: 21592307 DOI: 10.1111/j.1742-4658.2011.08185.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
26
|
Gumbart J, Chipot C, Schulten K, Qian MX, Wang RQ, Lu SZ, Liu J, Li GH, Chen YD. Free energy of nascent-chain folding in the translocon. J Am Chem Soc 2011; 133:7602-7. [PMID: 21524073 DOI: 10.1021/ja2019299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During their synthesis, many water-soluble proteins and nearly all membrane proteins transit through a protein-conducting channel in the membrane, the Sec translocon, from where they are inserted into the lipid bilayer. Increasing evidence indicates that folding of the nascent protein begins already within the ribosomal exit tunnel in a sequence- and environment-dependent fashion. To examine the effects of the translocon on the nascent-chain folding, we have calculated the potential of mean force for α-helix formation of a 10-alanine oligopeptide as a function of its position within the translocon channel. We find that the predominant conformational states, α-helical and extended, reflect those found for the peptide in water. However, the translocon, via its surface properties and its variable diameter, shifts the equilibrium in favor of the α-helical state. Thus, we suggest that the translocon facilitates not only the insertion of membrane proteins into the bilayer but also their folding.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jamaluddin MFB, Bailey UM, Tan NYJ, Stark AP, Schulz BL. Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p. Protein Sci 2011; 20:849-55. [PMID: 21384453 DOI: 10.1002/pro.610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 12/15/2022]
Abstract
Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.
Collapse
Affiliation(s)
- M Fairuz B Jamaluddin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Xu X, Cao D. Thermodynamic stability of polypeptides folding within modeled ribosomal exit tunnel: a density functional study. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 32:307-318. [PMID: 20617452 DOI: 10.1140/epje/i2010-10634-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
The mechanism of polypeptide folding, especially for the formation of tertiary structures, within the ribosomal exit tunnel, remains one of the most important unsolved problems in biophysical chemistry and molecular biology. In this work, we use a density functional theory (DFT) to explore the polypeptide folding within a modified nanopore, which mimics the confined environment of ribosomal exit tunnel. Results indicate that too long polypeptides (N>100 cannot fold into a helix state within the nanopore, and the helix polypeptides favor folding into a negative coiled coil rather than a positive one, because the negative coiled coil has a lower grand potential than the positive one, and the polypeptide folding into the negative coiled coil therefore needs less driving force than the positive one. To fold into the positive coiled coil, the helix polypeptides must have a small minor radius or a short chain length, which provides helpful insights into the design of nanodevices for manipulating the positive coiled coil. In the presence of attractive interaction, helices need more driving force to fold into coiled coil. Importantly, we have also proposed a scaling relation to understand the folding behavior. The scaling relation gives a good estimate for the computational results, and provides a reasonable explanation for the folding behavior. In summary, it is expected that the proposed DFT approach and the scaling relation provide alternative means for the investigation of polypeptide folding in confined environment, and these impressive results could give useful insights into nascent polypeptide folding.
Collapse
Affiliation(s)
- Xiaofei Xu
- Division of Molecular and Materials Simulation, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, PR China
| | | |
Collapse
|
30
|
Fujita H, Kida Y, Hagiwara M, Morimoto F, Sakaguchi M. Positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon. Mol Biol Cell 2010; 21:2045-56. [PMID: 20427573 PMCID: PMC2883948 DOI: 10.1091/mbc.e09-12-1060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Positive charges of nascent chain facilitate membrane spanning of a marginally hydrophobic segment, even when separated by 70 residues from the segment. The segment is exposed to the lumen and then slides back into the membrane. They not only fix the hydrophobic segment in the membrane, but exert a much more dynamic action than previously realized. Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized.
Collapse
Affiliation(s)
- Hidenobu Fujita
- Graduate School of Life Science, University of Hyogo, Kouto Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | |
Collapse
|
31
|
α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat Struct Mol Biol 2010; 17:313-7. [DOI: 10.1038/nsmb.1756] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/02/2009] [Indexed: 11/08/2022]
|
32
|
Tu LW, Deutsch C. A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation. J Mol Biol 2010; 396:1346-60. [PMID: 20060838 DOI: 10.1016/j.jmb.2009.12.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 11/29/2022]
Abstract
Although it is now clear that protein secondary structure can be acquired early, while the nascent peptide resides within the ribosomal exit tunnel, the principles governing folding of native polytopic proteins have not yet been elucidated. We now report an extensive investigation of native Kv1.3, a voltage-gated K(+) channel, including transmembrane and linker segments synthesized in sequence. These native segments form helices vectorially (N- to C-terminus) only in a permissive vestibule located in the last 20 A of the tunnel. Native linker sequences similarly fold in this vestibule. Finally, secondary structure acquired in the ribosome is retained in the translocon. These findings emerge from accessibility studies of a diversity of native transmembrane and linker sequences and may therefore be applicable to protein biogenesis in general.
Collapse
Affiliation(s)
- Li Wei Tu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
33
|
Pearse BR, Hebert DN. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:684-93. [PMID: 19891995 DOI: 10.1016/j.bbamcr.2009.10.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/09/2009] [Accepted: 10/20/2009] [Indexed: 02/06/2023]
Abstract
Eukaryotic secretory pathway cargo fold to their native structures within the confines of the endoplasmic reticulum (ER). To ensure a high degree of folding fidelity, a multitude of covalent and noncovalent constraints are imparted upon nascent proteins. These constraints come in the form of topological restrictions or membrane tethers, covalent modifications, and interactions with a series of molecular chaperones. N-linked glycosylation provides inherent benefits to proper folding and creates a platform for interactions with specific chaperones and Cys modifying enzymes. Recent insights into this timeline of protein maturation have revealed mechanisms for protein glycosylation and iterative targeting of incomplete folding intermediates, which provides nurturing interactions with molecular chaperones that assist in the efficient maturation of proteins in the eukaryotic secretory pathway.
Collapse
Affiliation(s)
- Bradley R Pearse
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
34
|
Johansson H, Eriksson M, Nordling K, Presto J, Johansson J. The Brichos domain of prosurfactant protein C can hold and fold a transmembrane segment. Protein Sci 2009; 18:1175-82. [PMID: 19472327 DOI: 10.1002/pro.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prosurfactant protein C (proSP-C) is a 197-residue integral membrane protein, in which the C-terminal domain (CTC, positions 59-197) is localized in the endoplasmic reticulum (ER) lumen and contains a Brichos domain (positions 94-197). Mature SP-C corresponds largely to the transmembrane (TM) region of proSP-C. CTC binds to SP-C, provided that it is in nonhelical conformation, and can prevent formation of intracellular amyloid-like inclusions of proSP-C that harbor mutations linked to interstitial lung disease (ILD). Herein it is shown that expression of proSP-C (1-58), that is, the N-terminal propeptide and the TM region, in HEK293 cells results in virtually no detectable protein, while coexpression of CTC in trans yields SDS-soluble monomeric proSP-C (1-58). Recombinant human (rh) CTC binds to cellulose-bound peptides derived from the nonpolar TM region, but not the polar cytosolic part, of proSP-C, and requires >/=5-residues for maximal binding. Binding of rhCTC to a nonhelical peptide derived from SP-C results in alpha-helix formation provided that it contains a long TM segment. Finally, rhCTC and rhCTC Brichos domain shows very similar substrate specificities, but rhCTC(L188Q), a mutation linked to ILD is unable to bind all peptides analyzed. These data indicate that the Brichos domain of proSP-C is a chaperone that induces alpha-helix formation of an aggregation-prone TM region.
Collapse
Affiliation(s)
- Hanna Johansson
- Department of Anatomy, Physiology and Biochemistry, SLU, The Biomedical Centre, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
35
|
Miesbauer M, Pfeiffer NV, Rambold AS, Müller V, Kiachopoulos S, Winklhofer KF, Tatzelt J. alpha-Helical domains promote translocation of intrinsically disordered polypeptides into the endoplasmic reticulum. J Biol Chem 2009; 284:24384-93. [PMID: 19561072 DOI: 10.1074/jbc.m109.023135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-translational import into the endoplasmic reticulum (ER) is primarily controlled by N-terminal signal sequences that mediate targeting of the ribosome-nascent chain complex to the Sec61/translocon and initiate the translocation process. Here we show that after targeting to the translocon the secondary structure of the nascent polypeptide chain can significantly modulate translocation efficiency. ER-targeted polypeptides dominated by unstructured domains failed to efficiently translocate into the ER lumen and were subjected to proteasomal degradation via a co-translocational/preemptive pathway. Productive ER import could be reinstated by increasing the amount of alpha-helical domains, whereas more effective ER signal sequences had only a minor effect on ER import efficiency of unstructured polypeptides. ER stress and overexpression of p58(IPK) promoted the co-translocational degradation pathway. Moreover polypeptides with unstructured domains at their N terminus were specifically targeted to proteasomal degradation under these conditions. Our study indicates that extended unstructured domains are signals to dispose ER-targeted proteins via a co-translocational, preemptive quality control pathway.
Collapse
Affiliation(s)
- Margit Miesbauer
- Neurobiochemistry, Deutsches Zentrum für Neurodegenerative Erkrankungen and Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol 2009; 16:405-11. [PMID: 19270700 PMCID: PMC2670549 DOI: 10.1038/nsmb.1571] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 01/30/2009] [Indexed: 11/21/2022]
Abstract
Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units within the tunnel. To probe this possibility, we used a β-hairpin as well as an α-helical hairpin from the cytosolic N-terminus of a voltage-gated potassium channel and determined a probability of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures can form near the exit port of the tunnel, a region that provides an entropic window for initial exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold sequentially, but not independently, during translation. These studies offer an approach for diagnosing the molecular basis for folding defects that lead to protein malfunction and provide insight into the role of the ribosome during early potassium channel biogenesis.
Collapse
|
37
|
Saurí A, Tamborero S, Martínez-Gil L, Johnson AE, Mingarro I. Viral Membrane Protein Topology Is Dictated by Multiple Determinants in Its Sequence. J Mol Biol 2009; 387:113-28. [DOI: 10.1016/j.jmb.2009.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
38
|
Mutations linked to interstitial lung disease can abrogate anti-amyloid function of prosurfactant protein C. Biochem J 2008; 416:201-9. [PMID: 18643778 DOI: 10.1042/bj20080981] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The newly synthesized proSP-C (surfactant protein C precursor) is an integral ER (endoplasmic reticulum) membrane protein with a single metastable polyvaline alpha-helical transmembrane domain that comprises two-thirds of the mature peptide. More than 20 mutations in the ER-lumenal CTC (C-terminal domain of proSP-C), are associated with ILD (interstitial lung disease), and some of the mutations cause intracellular accumulation of cytotoxic protein aggregates and a corresponding decrease in mature SP-C. In the present study, we showed that: (i) human embryonic kidney cells expressing the ILD-associated mutants proSP-C(L188Q) and proSP-C(DeltaExon4) accumulate Congo Red-positive amyloid-like inclusions, whereas cells transfected with the mutant proSP-C(I73T) do not; (ii) transfection of CTC into cells expressing proSP-C(L188Q) results in a stable CTC-proSP-C(L188Q) complex, increased proSP-C(L188Q) half-life and reduced formation of Congo Red-positive deposits; (iii) replacement of the metastable polyvaline transmembrane segment with a stable polyleucine transmembrane segment likewise prevents formation of amyloid-like proSP-C(L188Q) aggregates; and (iv) binding of recombinant CTC to non-helical SP-C blocks SP-C amyloid fibril formation. These results suggest that CTC can prevent the polyvaline segment of proSP-C from promoting formation of amyloid-like deposits during biosynthesis, by binding to non-helical conformations. Mutations in the Brichos domain of proSP-C may lead to ILD via loss of CTC chaperone function.
Collapse
|
39
|
Electrostatics in the ribosomal tunnel modulate chain elongation rates. J Mol Biol 2008; 384:73-86. [PMID: 18822297 DOI: 10.1016/j.jmb.2008.08.089] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 11/24/2022]
Abstract
Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.
Collapse
|
40
|
Daniel CJ, Conti B, Johnson AE, Skach WR. Control of translocation through the Sec61 translocon by nascent polypeptide structure within the ribosome. J Biol Chem 2008; 283:20864-73. [PMID: 18480044 PMCID: PMC2475691 DOI: 10.1074/jbc.m803517200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Indexed: 12/21/2022] Open
Abstract
During polytopic protein biogenesis, multiple transmembrane segments (TMs) must pass through the ribosome exit tunnel and into the Sec61 translocon prior to insertion into the endoplasmic reticulum membrane. To investigate how movement of a newly synthesized TM along this integration pathway might be influenced by synthesis of a second TM, we used photocross-linking probes to detect the proximity of ribosome-bound nascent polypeptides to Sec61alpha. Probes were inserted at sequential sites within TM2 of the aquaporin-1 water channel by in vitro translation of truncated mRNAs. TM2 first contacted Sec61alpha when the probe was positioned approximately 38 residues from the ribosome peptidyltransferase center, and TM2-Sec61alpha photoadducts decreased markedly when the probe was >80 residues from the peptidyltransferase center. Unexpectedly, as nascent chain length was gradually extended, photocross-linking at multiple sites within TM2 abruptly and transiently decreased, indicating that TM2 initially entered, withdrew, and then re-entered Sec61alpha. This brief reduction in TM2 photocross-linking coincided with TM3 synthesis. Replacement of TM3 with a secretory reporter domain or introduction of proline residues into TM3 changed the TM2 cross-linking profile and this biphasic behavior. These findings demonstrate that the primary and likely secondary structure of the nascent polypeptide within the ribosome exit tunnel can influence the timing with which topogenic determinants contact, enter, and pass through the translocon.
Collapse
Affiliation(s)
- Colin J Daniel
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
41
|
Abstract
This is a review of prion replication in the context of the cell biology of membrane proteins especially folding quality control in the endoplasmic reticulum (ER). Transmissible spongiform encephalopathies, such as scrapie and BSE, are infectious lethal diseases of mammalian neurons characterised by conversion of the normal membrane protein PrPC to the disease-associated conformational isomer called PrPSc. PrPSc, apparently responsible for infectivity, forms a number of different conformations and specific N-glycosylation site occupancies that correlate with TSE strain differences. Dimerisation and specific binding of PrPc and PrPSc seems critical in PrPSc biosynthesis and is influenced by N-glycosylation and disulfide bond formation. PrPsc can be amplified in vitro but new glycosylation cannot occur in cell free environments without the special conditions of microsome mediated in vitro translation, thus strain specific glycosylation of PrPSc formed in vitro in the absence of these conditions must take place by imprintation of PrPc from existing glycosylation site-occupancies. PrPSc formed in cell free homogenates is not infectious pointing to events necessary for infectivity that only occur in intact cells. Such events may include glycosylation site occupancy and ER folding chaperone activity. In the biosynthetic pathway of PrPSc, early acquisition of sensitivity of the GPI anchor to phospholipase C can be distinguished from the later acquisition of protease resistance and detergent insolubility. By analogy to the co-translational formation of the MHC I loading complex, it is postulated that PrPSc or its specific peptides could imprint nascent PrPc chains thereby ensuring its own folds and the observed glycosylation site occupancy ratios of strains.
Collapse
Affiliation(s)
- P H Atkinson
- AgResearch Wallaceville, PO Box 40063, Upper Hutt, New Zealand.
| |
Collapse
|
42
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
43
|
Shimizu Y, Hendershot LM. Organization of the Functions and Components of the Endoplasmic Reticulum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:37-46. [PMID: 17205673 DOI: 10.1007/978-0-387-39975-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The endoplasmic reticulum is the site of entry into the secretory pathway and represents a major and particularly crowded site of protein biosynthesis. In addition to the complexity of protein folding in any organelle, the ER environment poses further dangers and constraints to the process. A quality control apparatus exists to monitor the maturation of proteins in the ER. Nascent polypeptide chains are specifically prevented from traveling further along the secretory pathway until they have completed their folding or assembly. Proteins that cannot achieve a proper conformation are recognized and removed from the ER for degradation by the 26S proteasome. Finally, the homeostasis of the ER is vigilantly monitored and changes that impinge upon the proper maturation of proteins in this organelle lead to the activation of a signal transduction cascade that serves to restore balance to the ER. Recent studies suggest that some of these diverse functions may be achieved due to the organization of the ER into functional and perhaps even physical sub-domains.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale Memphis, Tennessee 38105, USA
| | | |
Collapse
|
44
|
Abstract
In the model derived from the crystal structure of Kv1.2, a six-transmembrane voltage-gated potassium channel, the linker between a cytosolic tetramerization domain, T1, and the first transmembrane segment, S1, is projected radially outward from the channel's central axis. This T1-S1 linker was modeled as two polyglycine helices to accommodate the residues between T1 and S1 [Long et al. (2005) Science 309, 897-903]; however, the structure of this linker is not known. Here, we investigate whether a compact secondary structure of the T1-S1 linker exists at an early stage of Kv channel biogenesis. We have used a mass-tagging accessibility assay to report the biogenesis of secondary structure for three consecutive regions of Kv1.3, a highly homologous isoform of Kv1.2. The three regions include the T1-S1 linker and its two flanking regions, alpha5 of the T1 domain and S1. Both alpha5 and S1 manifest compact structures (helical) inside the ribosomal exit tunnel, whereas the T1-S1 linker does not. Moreover, the location of the peptide in the tunnel influences compaction.
Collapse
Affiliation(s)
- LiWei Tu
- Department of Physiology, University of Pennsylvania, Philadelpha, Pennsylvania 19104-6085, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
46
|
Harant H, Wolff B, Schreiner EP, Oberhauser B, Hofer L, Lettner N, Maier S, de Vries JE, Lindley IJ. Inhibition of Vascular Endothelial Growth Factor Cotranslational Translocation by the Cyclopeptolide CAM741. Mol Pharmacol 2007; 71:1657-65. [PMID: 17369307 DOI: 10.1124/mol.107.034249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cyclopeptolide CAM741 inhibits cotranslational translocation of vascular cell adhesion molecule 1 (VCAM1), which is dependent on its signal peptide. We now describe the identification of the signal peptide of vascular endothelial growth factor (VEGF) as the second target of CAM741. The mechanism by which the compound inhibits translocation of VEGF is very similar or identical to that of VCAM1, although the signal peptides share no obvious sequence similarities. By mutagenesis of the VEGF signal peptide, two important regions, located in the N-terminal and hydrophobic segments, were identified as critical for compound sensitivity. CAM741 alters positioning of the VEGF signal peptide at the translocon, and increasing hydrophobicity in the h-region reduces compound sensitivity and causes a different, possibly more efficient, interaction with the translocon. Although CAM741 is effective against translocation of both VEGF and VCAM1, the derivative NFI028 is able to inhibit only VCAM1, suggesting that chemical derivatization can alter not only potency, but also the specificity of the compounds.
Collapse
Affiliation(s)
- Hanna Harant
- Novartis Institutes for BioMedical Research, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pitonzo D, Skach WR. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:976-88. [PMID: 16782047 DOI: 10.1016/j.bbamem.2006.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/27/2006] [Accepted: 04/14/2006] [Indexed: 11/29/2022]
Abstract
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways.
Collapse
Affiliation(s)
- David Pitonzo
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland, Oregon, 3181 SW Sam Jackson Park Rd L-224 Portland, Oregon 97239, USA
| | | |
Collapse
|
48
|
Johansson H, Nordling K, Weaver TE, Johansson J. The Brichos Domain-containing C-terminal Part of Pro-surfactant Protein C Binds to an Unfolded Poly-Val Transmembrane Segment. J Biol Chem 2006; 281:21032-21039. [PMID: 16709565 DOI: 10.1074/jbc.m603001200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Native lung surfactant protein C (SP-C) is a 4.2-kDa acylpeptide that associates with alveolar surfactant phospholipids via a transmembrane alpha-helix. This helix contains mainly Val, although poly-Val is inefficient in helix formation, and helical SP-C can spontaneously convert to beta-sheet aggregates and amyloid-like fibrils. SP-C is cleaved out from a 21-kDa integral membrane protein, proSP-C, in the alveolar type II cell. Recently several mutations localized in the endoplasmic reticulum-lumenal (C-terminal) part of proSP-C (CTproSP-C) have been associated with intracellular accumulation of toxic forms of proSP-C, low levels of mature SP-C, and development of interstitial lung disease. CTproSP-C contains a approximately 100-residue Brichos domain of unknown function that is also found in other membrane proteins associated with amyloid formation, dementia, and cancer. Here we find that recombinant CTproSP-C binds lipid-associated SP-C, which is in beta-strand conformation, and that this interaction results in an increased helical content. In contrast, CTproSP-C does not bind alpha-helical SP-C. Recombinant CTproSP-C(L188Q), a mutation associated with interstitial lung disease, shows secondary and quaternary structures similar to those of wild type CTproSP-C but is unable to bind lipid-associated beta-strand SP-C. Transfection of CTproSP-C into HEK293 cells that express proSP-C(L188Q) increases the amount of proSP-C protein, whereas no effect is seen on cells expressing wild type proSP-C. These findings suggest that CTproSP-C binds nonhelical SP-C and thereby prevents beta-sheet aggregation and that mutations in CTproSP-C can interfere with this function.
Collapse
Affiliation(s)
- Hanna Johansson
- Department of Molecular Biosciences, Swedish University of Agricultural Sciences, The Biomedical Centre, S-751 23 Uppsala, Sweden
| | - Kerstin Nordling
- Department of Molecular Biosciences, Swedish University of Agricultural Sciences, The Biomedical Centre, S-751 23 Uppsala, Sweden
| | - Timothy E Weaver
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229-3039
| | - Jan Johansson
- Department of Molecular Biosciences, Swedish University of Agricultural Sciences, The Biomedical Centre, S-751 23 Uppsala, Sweden.
| |
Collapse
|
49
|
Contreras Martínez LM, Martínez-Veracoechea FJ, Pohkarel P, Stroock AD, Escobedo FA, DeLisa MP. Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study. Biotechnol Bioeng 2006; 94:105-17. [PMID: 16528757 DOI: 10.1002/bit.20832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compaction of a nascent polypeptide chain inside the ribosomal exit tunnel, before it leaves the ribosome, has been proposed to accelerate the folding of newly synthesized proteins following their release from the ribosome. Thus, we used Kinetic Monte Carlo simulations of a minimalist on-lattice model to explore the effect that polypeptide translocation through a variety of channels has on protein folding kinetics. Our results demonstrate that tunnel confinement promotes faster folding of a well-designed protein relative to its folding in free space by displacing the unfolded state towards more compact structures that are closer to the transition state. Since the tunnel only forbids rarely visited, extended configurations, it has little effect on a "poorly designed" protein whose unfolded state is largely composed of low-energy, compact, misfolded configurations. The beneficial effect of the tunnel depends on its width; for example, a too-narrow tunnel enforces unfolded states with limited or no access to the transition state, while a too-wide tunnel has no effect on the unfolded state entropy. We speculate that such effects are likely to play an important role in the folding of some proteins or protein domains in the cellular environment and might dictate whether a protein folds co-translationally or post-translationally.
Collapse
|
50
|
Ziv G, Haran G, Thirumalai D. Ribosome exit tunnel can entropically stabilize alpha-helices. Proc Natl Acad Sci U S A 2005; 102:18956-61. [PMID: 16357202 PMCID: PMC1323178 DOI: 10.1073/pnas.0508234102] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several experiments have suggested that newly synthesized polypeptide chains can adopt helical structures deep within the ribosome exit tunnel. We hypothesize that confinement in the roughly cylindrical tunnel can entropically stabilize alpha-helices. The hypothesis is validated by using theory and simulations of coarse-grained off-lattice models. The model helix, which is unstable in the bulk, is stabilized in a cylindrical cavity provided the diameter (D) of the cylinder exceeds a critical value D*. When D < D* both the helical content and the helix-coil transition temperature (T(f)) decrease abruptly. Surprisingly, we find that the stability of the alpha-helix depends on the number (N) of amino acid residues. Entropic stabilization, as measured by changes in T(f), increases nonlinearly as N increases. The simulation results are in quantitative agreement with a standard helix-coil theory that takes into account entropy cost of confining a polypeptide chain in a cylinder. The results of this work are in qualitative accord with most of the findings of a recent experiment in which N-dependent ribosome-induced helix stabilization of transmembrane sequences was measured by fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Guy Ziv
- Department of Chemical Physics, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel
| | | | | |
Collapse
|