1
|
Chanket W, Pipatthana M, Sangphukieo A, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T, Phanchana M. The complete catalog of antimicrobial resistance secondary active transporters in Clostridioides difficile: evolution and drug resistance perspective. Comput Struct Biotechnol J 2024; 23:2358-2374. [PMID: 38873647 PMCID: PMC11170357 DOI: 10.1016/j.csbj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
Collapse
Affiliation(s)
- Wannarat Chanket
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Methinee Pipatthana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Scoffone VC, Barbieri G, Irudal S, Trespidi G, Buroni S. New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics (Basel) 2024; 13:71. [PMID: 38247630 PMCID: PMC10812592 DOI: 10.3390/antibiotics13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.B.); (S.I.); (G.T.)
| |
Collapse
|
3
|
Bodilis J, Simenel O, Michalet S, Brothier E, Meyer T, Favre-Bonté S, Nazaret S. HME, NFE, and HAE-1 efflux pumps in Gram-negative bacteria: a comprehensive phylogenetic and ecological approach. ISME COMMUNICATIONS 2024; 4:ycad018. [PMID: 38371394 PMCID: PMC10872679 DOI: 10.1093/ismeco/ycad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
The three primary resistance-nodulation-cell division (RND) efflux pump families (heavy metal efflux [HME], nodulation factor exporter [NFE], and hydrophobe/amphiphile efflux-1 [HAE-1]) are almost exclusively found in Gram-negative bacteria and play a major role in resistance against metals and bacterial biocides, including antibiotics. Despite their significant societal interest, their evolutionary history and environmental functions are poorly understood. Here, we conducted a comprehensive phylogenetic and ecological study of the RND permease, the subunit responsible for the substrate specificity of these efflux pumps. From 920 representative genomes of Gram-negative bacteria, we identified 6205 genes encoding RND permeases with an average of 6.7 genes per genome. The HME family, which is involved in metal resistance, corresponds to a single clade (21.8% of all RND pumps), but the HAE-1 and NFE families had overlapping distributions among clades. We propose to restrict the HAE-1 family to two phylogenetic sister clades, representing 41.8% of all RND pumps and grouping most of the RND pumps involved in multidrug resistance. Metadata associated with genomes, analyses of previously published metagenomes, and quantitative Polymerase Chain Reaction (qPCR) analyses confirmed a significant increase in genes encoding HME permeases in metal-contaminated environments. Interestingly, and possibly related to their role in root colonization, genes encoding HAE-1 permeases were particularly abundant in the rhizosphere. In addition, we found that the genes encoding these HAE-1 permeases are significantly less abundant in marine environments, whereas permeases of a new proposed HAE-4 family are predominant in the genomes of marine strains. These findings emphasize the critical role of the RND pumps in bacterial resistance and adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Josselin Bodilis
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Olwen Simenel
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
- Université Rouen Normandie, LMSM EA4312, Evreux F-27000, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Elisabeth Brothier
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Thibault Meyer
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sabine Favre-Bonté
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sylvie Nazaret
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| |
Collapse
|
4
|
Buroni S, Samy RP. Editorial: Burkholderia spp.-transmission, pathogenesis, host-pathogen interaction, prevention and treatment. Front Microbiol 2023; 14:1226865. [PMID: 37346750 PMCID: PMC10280153 DOI: 10.3389/fmicb.2023.1226865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Ramar Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Zhu W, Lv Y, Zhang QD, Chang LM, Chen QH, Wang B, Jiang JP. Cascading effects of Pb on the environmental and symbiotic microbiota and tadpoles' physiology based on field data and laboratory validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160817. [PMID: 36502979 DOI: 10.1016/j.scitotenv.2022.160817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution poses a serious threat to ecosystems. Currently, there is a lack of field data that would enable us to gain a systematic understanding of the influences of heavy metals on aquatic ecosystems, especially the interactions between environments and animals. We studied the relationships between the variations in heavy metal concentrations (10 species including Pb in sediments and surface water), the community structure of environmental and symbiotic microbiota, and the gut traits of Bufo gargarizans tadpoles across 16 sampling sites on the Chengdu Plain through rigorous statistical analysis and laboratory validation. The results show that heavy metal concentrations, especially the Pb concentration of the sediment, are linked to the variations in sediment and tadpoles' gut microbiomes but not to water microbiota. For the sediment microbiota, Pb causes a trade-off between the proportions of Burkholderiales and Verrucomicrobiae and affects the methane, sulfide, and nitrate metabolisms. For tadpoles, a high sediment Pb content leads to a low abundance of gut aerobic bacteria and a large relative gut weight under both field and laboratory conditions. In addition, Pb promotes the growth of B. gargarizans tadpoles under laboratory conditions. These effects seem to be beneficial to tadpoles. However, a high Pb content leads to a low abundance of probiotic bacteria (e.g., Verrucomicrobiae, Eubacteriaceae, and Cetobacterium) and a high abundance of pathogenic bacteria in the gut and environment, suggesting potential health risks posed by Pb. Interestingly, there is a causal relationship between Pb-induced variations in sediment and symbiotic microbiotas, and the latter is further linked to the variation in relative gut weight of tadpoles. This suggests a cascading effect of Pb on the ecosystem. In conclusion, our results indicate that among the heavy metals, the Pb in sediment is a critical factor affecting the aquatic ecosystem through an environment-gut-physiology pathway mediated by microbiota.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yan Lv
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Qun-De Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qi-Heng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
7
|
Gamalero E, Bona E, Novello G, Boatti L, Mignone F, Massa N, Cesaro P, Berta G, Lingua G. Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard. Sci Rep 2020; 10:6453. [PMID: 32296119 PMCID: PMC7160115 DOI: 10.1038/s41598-020-63154-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
The structure of the bacteriome associated with grapevine roots can affect plant development, health and grape quality. We previously investigated the bacterial biodiversity of the Vitis vinifera cv. Pinot Noir rhizosphere in a vineyard subjected to integrated pest management. The aim of this work is to characterize the bacteriome of V. vinifera cv. Pinot Noir in a conventionally managed vineyard using a metabarcoding approach. Comparisons between the microbial community structure in bulk soil and rhizosphere (variable space) were performed and shifts of bacteriome according to two sampling times (variable time) were characterized. Bacterial biodiversity was higher at the second than at the first sampling and did not differ according to the variable space. Actinobacteria was the dominant class, with Gaiella as the most represented genus in all the samples. Among Proteobacteria, the most represented classes were Alpha, Beta and Gamma-Proteobacteria, with higher abundance at the second than at the first sampling time. Bradyrhizobium was the most frequent genus among Alpha-Proteobacteria, while Burkholderia was the predominant Beta-Proteobacteria. Among Firmicutes, the frequency of Staphylococcus was higher than 60% in bulk soil and rhizosphere. Finally, the sampling time can be considered as one of the drivers responsible for the bacteriome variations assessed.
Collapse
Affiliation(s)
- Elisa Gamalero
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Elisa Bona
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Piazza San Eusebio 5, 13100, Vercelli, Italy
| | - Giorgia Novello
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Lara Boatti
- SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Flavio Mignone
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy.,SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Nadia Massa
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Patrizia Cesaro
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy.
| | - Graziella Berta
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Guido Lingua
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
8
|
Chiarelli LR, Scoffone VC, Trespidi G, Barbieri G, Riabova O, Monakhova N, Porta A, Manina G, Riccardi G, Makarov V, Buroni S. Chemical, Metabolic, and Cellular Characterization of a FtsZ Inhibitor Effective Against Burkholderia cenocepacia. Front Microbiol 2020; 11:562. [PMID: 32318042 PMCID: PMC7154053 DOI: 10.3389/fmicb.2020.00562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need for new antimicrobials to treat the opportunistic Gram-negative Burkholderia cenocepacia, which represents a problematic challenge for cystic fibrosis patients. Recently, a benzothiadiazole derivative, C109, was shown to be effective against the infections caused by B. cenocepacia and other Gram-negative and-positive bacteria. C109 has a promising cellular target, the cell division protein FtsZ, and a recently developed PEGylated formulation make it an attractive molecule to counteract Burkholderia infections. However, the ability of efflux pumps to extrude it out of the cell represents a limitation for its use. Here, more than 50 derivatives of C109 were synthesized and tested against Gram-negative species and the Gram-positive Staphylococcus aureus. In addition, their activity was evaluated on the purified FtsZ protein. The chemical, metabolic and cellular stability of C109 has been assayed using different biological systems, including quantitative single-cell imaging. However, no further improvement on C109 was achieved, and the role of efflux in resistance was further confirmed. Also, a novel nitroreductase that can inactivate the compound was characterized, but it does not appear to play a role in natural resistance. All these data allowed a deep characterization of the compound, which will contribute to a further improvement of its properties.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia Monakhova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Alessio Porta
- Organic Chemistry Section, Department of Chemistry, University of Pavia, Pavia, Italy
| | - Giulia Manina
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Giovanna Riccardi
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Silvia Buroni
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Mehta‐Kolte MG, Stoeva MK, Mehra A, Redford SA, Youngblut MD, Zane G, Grégoire P, Carlson HK, Wall J, Coates JD. Adaptation ofDesulfovibrio alaskensisG20 to perchlorate, a specific inhibitor of sulfate reduction. Environ Microbiol 2019; 21:1395-1406. [DOI: 10.1111/1462-2920.14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Magdalena K. Stoeva
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| | - Anchal Mehra
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| | - Steven A. Redford
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | | | - Grant Zane
- Departments of Biochemistry and Molecular Microbiology and ImmunologyUniversity of Missouri—Columbia Columbia MO USA
| | - Patrick Grégoire
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | - Hans K. Carlson
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | - Judy Wall
- Departments of Biochemistry and Molecular Microbiology and ImmunologyUniversity of Missouri—Columbia Columbia MO USA
| | - John D. Coates
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| |
Collapse
|
10
|
Bodilis J, Denet E, Brothier E, Graindorge A, Favre-Bonté S, Nazaret S. Comparative Genomics of Environmental and Clinical Burkholderia cenocepacia Strains Closely Related to the Highly Transmissible Epidemic ET12 Lineage. Front Microbiol 2018; 9:383. [PMID: 29559964 PMCID: PMC5845691 DOI: 10.3389/fmicb.2018.00383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
The Burkholderia cenocepacia epidemic ET12 lineage belongs to the genomovar IIIA including the reference strain J2315, a highly transmissible epidemic B. cenocepacia lineage. Members of this lineage are able to cause lung infections in immunocompromised and cystic fibrosis patients. In this study, we describe the genome of F01, an environmental B. cenocepacia strain isolated from soil in Burkina Faso that is, to our knowledge, the most closely related strain to this epidemic lineage. A comparative genomic analysis was performed on this new isolate, in association with five clinical and one environmental B. cenocepacia strains whose genomes were previously sequenced. Antibiotic resistances, virulence phenotype, and genomic contents were compared and discussed with an emphasis on virulent and antibiotic determinants. Surprisingly, no significant differences in antibiotic resistance and virulence were found between clinical and environmental strains, while the most important genomic differences were related to the number of prophages identified in their genomes. The ET12 lineage strains showed a noticeable greater number of prophages (partial or full-length), especially compared to the phylogenetically related environmental F01 strain (i.e., 5–6 and 3 prophages, respectively). Data obtained suggest possible involvements of prophages in the clinical success of opportunistic pathogens.
Collapse
Affiliation(s)
- Josselin Bodilis
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France.,EA 4312 Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Mont-Saint-Aignan, France
| | - Elodie Denet
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Elisabeth Brothier
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Arnault Graindorge
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sabine Favre-Bonté
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sylvie Nazaret
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| |
Collapse
|
11
|
Perrin E, Maggini V, Maida I, Gallo E, Lombardo K, Madarena MP, Buroni S, Scoffone VC, Firenzuoli F, Mengoni A, Fani R. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: insights into mechanism(s) of action. Future Microbiol 2018; 13:59-67. [DOI: 10.2217/fmb-2017-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the activity and mechanisms of action of six essential oils (EOs) against Burkholderia cepacia complex, opportunistic human pathogens highly resistant to antibiotics. Materials & methods: Minimal inhibitory concentration of EOs alone, plus antibiotics or efflux pump inhibitors was determined. Results: Origanum vulgare, Thymus vulgaris and Eugenia caryophyllata EOs resulted to be more active than the other EOs. EOs did not enhance antibiotic activity against the model strain B. cenocepacia J2315. EOs resulted more active in the presence of an efflux pump inhibitor acting on Resistance-Nodulation Cell Division efflux pumps and against B. cenocepacia J2315 Resistance-Nodulation Cell Division knocked-out mutants. Conclusion: EOs showed intracellular mechanisms of action and, thus, the efflux pumps inhibitor addition could boost their activity.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Valentina Maggini
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Isabel Maida
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Eugenia Gallo
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Katia Lombardo
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Maria Pia Madarena
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Fabio Firenzuoli
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| |
Collapse
|
12
|
Perrin E, Fondi M, Bosi E, Mengoni A, Buroni S, Scoffone VC, Valvano M, Fani R. Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance. BMC Genomics 2017; 18:834. [PMID: 29084524 PMCID: PMC5663151 DOI: 10.1186/s12864-017-4222-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023] Open
Abstract
Background Antibiotic resistance is a major problem for human health. Multidrug resistance efflux pumps, especially those of the Resistance-Nodulation-Cell Division (RND) family, are major contributors to high-level antibiotic resistance in Gram-negative bacteria. Most bacterial genomes contain several copies of the different classes of multidrug resistance efflux pumps. Gene duplication and gain of function by the duplicate copies of multidrug resistance efflux pump genes plays a key role in the expansion and diversification of drug-resistance mechanisms. Results We used two members of the Burkholderia RND superfamily as models to understand how duplication events affect the antibiotic resistance of these strains. First, we analyzed the conservation and distribution of these two RND systems and their regulators across the Burkholderia genus. Through genetic manipulations, we identified both the exact substrate range of these transporters and their eventual interchangeability. We also performed a directed evolution experiment, combined with next generation sequencing, to evaluate the role of antibiotics in the activation of the expression of these systems. Together, our results indicate that the first step to diversify the functions of these pumps arises from changes in their regulation (subfunctionalization) instead of functional mutations. Further, these pumps could rewire their regulation to respond to antibiotics, thus maintaining high genomic plasticity. Conclusions Studying the regulatory network that controls the expression of the RND pumps will help understand and eventually control the development and expansion of drug resistance. Electronic supplementary material The online version of this article (10.1186/s12864-017-4222-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Emanuele Bosi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Miguel Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
13
|
Zhang XC, Liu M, Han L. Energy coupling mechanisms of AcrB-like RND transporters. BIOPHYSICS REPORTS 2017; 3:73-84. [PMID: 29238744 PMCID: PMC5719797 DOI: 10.1007/s41048-017-0042-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prokaryotic AcrB-like proteins belong to a family of transporters of the RND superfamily, and as main contributing factor to multidrug resistance pose a tremendous threat to future human health. A unique feature of AcrB transporters is the presence of two separate domains responsible for carrying substrate and generating energy. Significant progress has been made in elucidating the three-dimensional structures of the homo-trimer complexes of AcrB-like transporters, and a three-step functional rotation was identified for this class of transporters. However, the detailed mechanisms for the transduction of the substrate binding signal, as well as the energy coupling processes between the functionally distinct domains remain to be established. Here, we propose a model for the interdomain communication in AcrB that explains how the substrate binding signal from the substrate-carrier domain triggers protonation in the transmembrane domain. Our model further provides a plausible mechanism that explains how protonation induces conformational changes in the substrate-carrier domain. We summarize the thermodynamic principles that govern the functional cycle of the AcrB trimer complex.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
14
|
Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, Gamboa da Costa G, LiPuma JJ, Hussong D, Marasa BS, Cerniglia CE. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016; 7:e01716-16. [PMID: 27879334 PMCID: PMC5120141 DOI: 10.1128/mbio.01716-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread. IMPORTANCE Benzyldimethylalkylammonium chloride is commonly used as an antiseptic in the United States. Several recent microbial outbreaks were linked to antiseptics that were found to contain strains of the Burkholderia cepacia complex. Burkholderia species survived in antiseptics, possibly because of the degradation of antiseptic molecules or regulation of relevant gene expression. In this study, we assessed the efflux pump and the potential of B. cepacia complex bacteria to degrade benzyldimethylalkylammonium chloride and improved our understanding of the resistance mechanisms, by using proteomic and metabolic information. To our knowledge, this is the first systematic report of the intrinsic mechanisms of B. cepacia complex strain resistance to benzyldimethylalkylammonium chloride, based on the metabolic and proteomic evidence for efflux pumps and the complete biodegradation of benzyldimethylalkylammonium chloride.
Collapse
Affiliation(s)
- Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jeong Myeong Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Kellie Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - John J LiPuma
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - David Hussong
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bernard S Marasa
- Division of Microbiology Assessment, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
15
|
Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol 2015; 6:305. [PMID: 25926825 PMCID: PMC4396416 DOI: 10.3389/fmicb.2015.00305] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022] Open
Abstract
Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.
Collapse
Affiliation(s)
- Nicole L Podnecky
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA
| | - Katherine A Rhodes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| |
Collapse
|
16
|
|
17
|
Tseng SP, Tsai WC, Liang CY, Lin YS, Huang JW, Chang CY, Tyan YC, Lu PL. The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity. PLoS One 2014; 9:e104986. [PMID: 25153194 PMCID: PMC4143217 DOI: 10.1371/journal.pone.0104986] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
Due to the limited information of the contribution of various antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates, Antibiotic resistance mechanisms, including integron analysis, identification of quinolone resistance-determining region mutations, measurement of efflux pump activity, and sequence analysis of efflux pump regulators, were investigated in 66 clinical B. cepacia complex isolates. Species were identified via recA-RFLP and MALDI-TOF. Four genomovars were identified by recA-RFLP. B. cenocepacia (genomovar III) was the most prevalent genomovar (90.1%). Most isolates (60/66, 90.9%) were correctly identified by MALDI-TOF analysis. Clonal relatedness determined by PFGE analysis revealed 30 pulsotypes, including two major pulsotypes that comprised 22.7% and 18.2% of the isolates, respectively. Seventeen (25.8%) isolates harboured class 1 integron with various combinations of resistance genes. Among six levofloxacin-resistant isolates, five had single-base substitutions in the gyrA gene and three demonstrated efflux pump activities. Among the 42 isolates exhibiting resistance to at least one antimicrobial agent, 94.4% ceftazidime-resistant isolates (17/18) and 72.7% chloramphenicol-resistant isolates (16/22) demonstrated efflux pump activity. Quantitation of efflux pump RNA level and sequence analysis revealed that over-expression of the RND-3 efflux pump was attributable to specific mutations in the RND-3 efflux pump regulator gene. In conclusion, high-level expression of efflux pumps is prevalent in B. cepacia complex isolates. Mutations in the RND-3 efflux pump regulator gene are the major cause of efflux pump activity, resulting in the resistance to antibiotics in clinical B. cepacia complex isolates.
Collapse
Affiliation(s)
- Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chih-Yuan Liang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yin-Shiou Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jun-Wei Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chung-Yu Chang
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan, ROC
- * E-mail:
| |
Collapse
|
18
|
Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:573518. [PMID: 24701243 PMCID: PMC3950482 DOI: 10.1155/2014/573518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
Abstract
In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections.
Collapse
|
19
|
Orlandini V, Maida I, Fondi M, Perrin E, Papaleo MC, Bosi E, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R. Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 2013; 169:593-601. [PMID: 24231161 DOI: 10.1016/j.micres.2013.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
In this work we analyzed the ability of three Arthrobacter strains (namely TB23, TB26 and CAL618), which were isolated from the Antarctic sponges Haliclonissa verrucosa and Lyssodendrix nobilis, to specifically inhibit the growth of a panel of 40 Burkholderia cepacia complex strains, representing a major cause of infections in patients that are affected by Cystic Fibrosis. The inhibitory activity was due to the synthesis of antimicrobial compounds, very likely volatile organic compounds (VOCs), and was partially dependent on the growth media that were used for Antarctic strains growth. The phylogenetic analysis revealed that two of them (i.e. CAL 618 and TB23) were very close and very likely belonged to the same Arthrobacter species, whereas the strain TB26 was placed in a distant branch. The genome of the strains TB26 and CAL618 was also sequenced and compared with that of the strain TB23. The analysis revealed that TB23 and CAL618 shared more genomic properties (GC content, genome size, number of genes) than with TB26. Since the three strains exhibited very similar inhibition pattern vs Bcc strains, it is quite possible that genes involved in the biosynthesis of antimicrobial compounds very likely belong to the core genome.
Collapse
Affiliation(s)
- Valerio Orlandini
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy; Institute of Protein Biochemistry, National Research Council, Via P. Castellino, 111, I-80134 Naples, Italy
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Maria Cristiana Papaleo
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Emanuele Bosi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino, 111, I-80134 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; School of Biotechnological Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, I-80126 Naples, Italy
| | - Luigi Michaud
- Department of Biological and Environmental Sciences (DiSBA-CIBAN), University of Messina, Viale Ferdinando Stagno d'Alcontrès 31, I-98166 Messina, Italy
| | - Angelina Lo Giudice
- Department of Biological and Environmental Sciences (DiSBA-CIBAN), University of Messina, Viale Ferdinando Stagno d'Alcontrès 31, I-98166 Messina, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
20
|
Perrin E, Fondi M, Papaleo MC, Maida I, Emiliani G, Buroni S, Pasca MR, Riccardi G, Fani R. A census of RND superfamily proteins in the Burkholderia genus. Future Microbiol 2013; 8:923-37. [DOI: 10.2217/fmb.13.50] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: The aim of this work was to analyze the eight resistance–nodulation–cell division (RND) families (a group of proteins mainly involved in multidrug resistance of Gram-negative bacteria) in 26 Burkholderia genomes in order to gain knowledge regarding their presence and distribution, to obtain a platform for future experimental tests aimed to identify new molecular targets to be used in antimicrobial therapy against Burkholderia species and to refine the annotation of RND-like sequences in these genomes. Materials & methods: A total of 417 coding sequences were retrieved and analyzed using different bioinformatics tools. Results & conclusion: A complex pattern of RND presence and distribution in the different Burkholderia species was disclosed and a core of proteins represented in all 26 genomes was identified. These ‘core’ proteins might represent useful targets of new synthetic antimicrobial compounds. Furthermore, the annotation of RND-like sequences in Burkholderia was refined.
Collapse
Affiliation(s)
- Elena Perrin
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Marco Fondi
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - Maria Cristiana Papaleo
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Isabel Maida
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Giovanni Emiliani
- Trees & Timber Institute, National Research Council, via Madonna del Piano, 10, 50019 Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Renato Fani
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
21
|
Gamberi T, Gamberi T, Magherini F, Citti L, Buroni S, Bazzini S, Udine C, Perrin E, Modesti A, Fani R, Rocchiccioli S, Papaleo MC. RND-4 efflux transporter gene deletion in Burkholderia cenocepacia J2315: a proteomic analysis. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-2273-2-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, Celik N, Ramm G, Lovering A, Sockett RE, Smit J, Jacobs-Wagner C, Lithgow T. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol Microbiol 2012; 84:832-44. [PMID: 22524202 PMCID: PMC3359395 DOI: 10.1111/j.1365-2958.2012.08059.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-barrel assembly machine (BAM) complex is an essential feature of all bacteria with an outer membrane. The core subunit of the BAM complex is BamA and, in Escherichia coli, four lipoprotein subunits: BamB, BamC, BamD and BamE, also function in the BAM complex. Hidden Markov model analysis was used to comprehensively assess the distribution of subunits of the BAM lipoproteins across all subclasses of proteobacteria. A patchwork distribution was detected which is readily reconciled with the evolution of the α-, β-, γ-, δ- and ε-proteobacteria. Our findings lead to a proposal that the ancestral BAM complex was composed of two subunits: BamA and BamD, and that BamB, BamC and BamE evolved later in a distinct sequence of events. Furthermore, in some lineages novel lipoproteins have evolved instead of the lipoproteins found in E. coli. As an example of this concept, we show that no known species of α-proteobacteria has a homologue of BamC. However, purification of the BAM complex from the model α-proteobacterium Caulobacter crescentus identified a novel subunit we refer to as BamF, which has a conserved sequence motif related to sequences found in BamC. BamF and BamD can be eluted from the BAM complex under similar conditions, mirroring the BamC:D module seen in the BAM complex of γ-proteobacteria such as E. coli.
Collapse
Affiliation(s)
- Khatira Anwari
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J Microbiol 2011; 49:867-76. [DOI: 10.1007/s12275-011-1127-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/08/2011] [Indexed: 01/11/2023]
|
24
|
Molecular approaches to pathogenesis study of Burkholderia cenocepacia, an important cystic fibrosis opportunistic bacterium. Appl Microbiol Biotechnol 2011; 92:887-95. [PMID: 21997606 DOI: 10.1007/s00253-011-3616-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/08/2011] [Accepted: 09/28/2011] [Indexed: 10/15/2022]
Abstract
Burkholderia cenocepacia is a Gram-negative opportunistic pathogen belonging to the Burkholderia cepacia complex (Bcc). It is spread in a wide range of ecological niches, and in cystic fibrosis patients, it is responsible for serious infections. Its eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. One of the main resistance mechanisms in clinical isolates is represented by efflux systems that are able to extrude a variety of molecules, such as antibiotics, out of the cell. Resistance-Nodulation-Cell Division (RND) efflux pumps are known to be mediators of multidrug resistance in Gram-negative bacteria. Since now, the significance of the RND efflux systems in B. cenocepacia has been partially determined. However, the analysis of the completely sequenced genome of B. cenocepacia J2315 allowed the identification of 16 operons coding for these transporters. We focused our attention on the role of these pumps through the construction of several deletion mutants. Since manipulating B. cenocepacia J2315 genome is difficult, we used a peculiar inactivation system, which enables different deletions in the same strain. The characterization of our mutants through transcriptome and phenotype microarray analysis suggested that RND efflux pumps can be involved not only in drug resistance but also in pathways important for the pathogenesis of this microorganism. The aim of this review is an updated overview on host-pathogen interactions and drug resistance, particularly focused on RND-mediated efflux mechanisms, highlighting the importance of molecular techniques in the study of B. cenocepacia.
Collapse
|
25
|
Bazzini S, Udine C, Sass A, Pasca MR, Longo F, Emiliani G, Fondi M, Perrin E, Decorosi F, Viti C, Giovannetti L, Leoni L, Fani R, Riccardi G, Mahenthiralingam E, Buroni S. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS One 2011; 6:e18902. [PMID: 21526150 PMCID: PMC3079749 DOI: 10.1371/journal.pone.0018902] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/11/2011] [Indexed: 12/02/2022] Open
Abstract
Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF) pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division) efflux pumps are known to be among the mediators of multidrug resistance in Gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16) has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9), and a double-mutant in both efflux pumps (named D4-D9), were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4–D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.
Collapse
Affiliation(s)
- Silvia Bazzini
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
| | - Claudia Udine
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
| | - Andrea Sass
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Maria Rosalia Pasca
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
| | | | - Giovanni Emiliani
- Trees and Timber Institute – National Research Council, San Michele all'Adige, Italy
| | - Marco Fondi
- Department of Evolutionary Biology, University of Florence, Firenze, Italy
| | - Elena Perrin
- Department of Evolutionary Biology, University of Florence, Firenze, Italy
| | - Francesca Decorosi
- Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Carlo Viti
- Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Luciana Giovannetti
- Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Livia Leoni
- Dipartimento di Biologia, Università Roma Tre, Roma, Italy
| | - Renato Fani
- Department of Evolutionary Biology, University of Florence, Firenze, Italy
| | - Giovanna Riccardi
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
| | | | - Silvia Buroni
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
26
|
Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol 2011; 77:2855-62. [PMID: 21398477 DOI: 10.1128/aem.02858-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The contributions of multicomponent-type multidrug efflux pumps to antimicrobial resistance and nodulation ability in Sinorhizobium meliloti were comprehensively analyzed. Computational searches identified genes in the S. meliloti strain 1021 genome encoding 1 pump from the ATP-binding cassette family, 3 pumps from the major facilitator superfamily, and 10 pumps from the resistance-nodulation-cell division family, and subsequently, these genes were deleted either individually or simultaneously. Antimicrobial susceptibility tests demonstrated that deletion of the smeAB pump genes resulted in increased susceptibility to a range of antibiotics, dyes, detergents, and plant-derived compounds and, further, that specific deletion of the smeCD or smeEF genes in a ΔsmeAB background caused a further increase in susceptibility to certain antibiotics. Competitive nodulation experiments revealed that the smeAB mutant was defective in competing with the wild-type strain for nodulation. The introduction of a plasmid carrying smeAB into the smeAB mutant restored antimicrobial resistance and nodulation competitiveness. These findings suggest that the SmeAB pump, which is a major multidrug efflux system of S. meliloti, plays an important role in nodulation competitiveness by mediating resistance toward antimicrobial compounds produced by the host plant.
Collapse
|