1
|
Shrestha S, Taib N, Gribaldo S, Shen A. Analyses of cell wall synthesis in Clostridioides difficile reveal a diversification in cell division mechanisms in endospore-forming bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552200. [PMID: 37609260 PMCID: PMC10441361 DOI: 10.1101/2023.08.06.552200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Current models of bacterial cell division assume that the core synthases of the multiprotein divisome complex, FtsW-FtsI, are the primary drivers of septal peptidoglycan (PG) synthesis. These enzymes are typically encoded in the highly conserved division and cell wall (dcw) cluster and are considered to be universally essential for cell division. Here, we combine bioinformatics analyses with functional characterization in the pathogen Clostridioides difficile to show that dcw-encoded PG synthases have undergone a surprising specialization in the sole endospore-forming phylum, Firmicutes, to fulfill sporulation-specific roles. We describe a novel role for these enzymes in synthesizing septal PG during the sporulation-specific mode of cell division in C. difficile. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are unexpectedly dispensable for cell division during normal growth. Instead, C. difficile uses its sole bifunctional class A penicillin-binding protein (aPBP) to drive cell division, revealing a previously unreported role for this class of PG synthases as the core divisome enzyme. Collectively, our findings reveal how the emergence of endosporulation in the Firmicutes phylum was a key driver for the functional repurposing of an otherwise universally conserved cellular process such as cell division. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a divisome that differs markedly from previously studied bacteria, thus representing an attractive, unique target for therapeutic purposes.
Collapse
Affiliation(s)
- Shailab Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Najwa Taib
- Institut Pasteur, Université de Paris, Unit Evolutionary Biology of the Microbial Cell, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Gogoi A, Rossmann SL, Lysøe E, Stensvand A, Brurberg MB. Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry. Front Microbiol 2023; 14:1214924. [PMID: 37465018 PMCID: PMC10351607 DOI: 10.3389/fmicb.2023.1214924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon L. Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
3
|
Clin P, Grognard F, Andrivon D, Mailleret L, Hamelin FM. The proportion of resistant hosts in mixtures should be biased towards the resistance with the lowest breaking cost. PLoS Comput Biol 2023; 19:e1011146. [PMID: 37228168 DOI: 10.1371/journal.pcbi.1011146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Current agricultural practices facilitate emergence and spread of plant diseases through the wide use of monocultures. Host mixtures are a promising alternative for sustainable plant disease control. Their effectiveness can be partly explained by priming-induced cross-protection among plants. Priming occurs when plants are challenged with non-infective pathogen genotypes, resulting in increased resistance to subsequent infections by infective pathogen genotypes. We developed an epidemiological model to explore how mixing two distinct resistant varieties can reduce disease prevalence. We considered a pathogen population composed of three genotypes infecting either one or both varieties. We found that host mixtures should not contain an equal proportion of resistant plants, but a biased ratio (e.g. 80 : 20) to minimize disease prevalence. Counter-intuitively, the optimal ratio of resistant varieties should contain a lower proportion of the costliest resistance for the pathogen to break. This benefit is amplified by priming. This strategy also prevents the invasion of pathogens breaking all resistances.
Collapse
Affiliation(s)
- Pauline Clin
- Institut Agro, Univ Rennes, INRAE, IGEPP, Rennes, France
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Frédéric Grognard
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore, Sophia-Antipolis, France
| | | | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore, Sophia-Antipolis, France
| | | |
Collapse
|
4
|
Clin P, Grognard F, Andrivon D, Mailleret L, Hamelin FM. Host mixtures for plant disease control: Benefits from pathogen selection and immune priming. Evol Appl 2022; 15:967-975. [PMID: 35782013 PMCID: PMC9234633 DOI: 10.1111/eva.13386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Multiline and cultivar mixtures are highly effective methods for agroecological plant disease control. Priming-induced cross protection, occurring when plants are challenged by avirulent pathogen genotypes and resulting in increased resistance to subsequent infection by virulent ones, is one critical key to their lasting performance against polymorphic pathogen populations. Strikingly, this mechanism was until recently absent from mathematical models aiming at designing optimal host mixtures. We developed an epidemiological model to explore the effect of host mixtures composed of variable numbers of single-resistance cultivars on the equilibrium prevalence of the disease caused by pathogen populations polymorphic for virulence complexity. This model shows that a relatively large amount of resistance genes must be deployed to achieve low disease prevalence, as pathogen competition in mixtures tends to select for intermediate virulence complexity. By contrast, priming significantly reduces the number of plant genotypes needed to drop disease prevalence below an acceptable threshold. Given the limited availability of resistance genes in cultivars, this mechanism of plant immunity should be assessed when designing host mixtures.
Collapse
Affiliation(s)
- Pauline Clin
- Institut Agro, INRAE, IGEPPUniv RennesRennesFrance
- INRAE, CNRS, ISAUniversité Côte d’AzurNiceFrance
| | - Frédéric Grognard
- Inria, INRAE, CNRS, Sorbonne Université, BiocoreUniversité Côte d’AzurNiceFrance
| | | | - Ludovic Mailleret
- INRAE, CNRS, ISAUniversité Côte d’AzurNiceFrance
- Inria, INRAE, CNRS, Sorbonne Université, BiocoreUniversité Côte d’AzurNiceFrance
| | | |
Collapse
|
5
|
Host Diversification May Split Epidemic Spread into Two Successive Fronts Advancing at Different Speeds. Bull Math Biol 2022; 84:68. [DOI: 10.1007/s11538-022-01023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
|
6
|
Puidet B, Mabon R, Guibert M, Kiiker R, Soonvald L, Le VH, Eikemo H, Dewaegeneire P, Saubeau G, Chatot C, Aurousseau F, Cooke DEL, Lees AK, Abuley IK, Hansen JG, Corbière R, Leclerc M, Andrivon D. Examining Phenotypic Traits Contributing to the Spread in Northern European Potato Crops of EU_41_A2, a New Clonal Lineage of Phytophthora infestans. PHYTOPATHOLOGY 2022; 112:414-421. [PMID: 34080915 DOI: 10.1094/phyto-12-20-0542-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Until recently, genotypes of Phytophthora infestans were regionally distributed in Europe, with populations in western Europe being dominated by clonal lineages and those in northern Europe being genetically diverse because of frequent sexual reproduction. However, since 2013 a new clonal lineage (EU_41_A2) has successfully established itself and expanded in the sexually recombining P. infestans populations of northern Europe. The objective of this study was to study phenotypic traits of the new clonal lineage of P. infestans, which may explain its successful establishment and expansion within sexually recombining populations. Fungicide sensitivity, aggressiveness, and virulence profiles of isolates of EU_41_A2 were analyzed and compared with those of the local sexual populations from Denmark, Norway, and Estonia. None of the phenotypic data obtained from the isolates collected from Denmark, Estonia, and Norway independently explained the invasive success of EU_41_A2 within sexual Nordic populations. Therefore, we hypothesize that the expansion of this new genotype could result from a combination of fitness traits and more favorable environmental conditions that have emerged in response to climate change.
Collapse
Affiliation(s)
- Britt Puidet
- Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | | | - Riinu Kiiker
- Estonian University of Life Sciences, 51006 Tartu, Estonia
- Estonian Crop Research Institute, 48309 Jõgeva, Estonia
| | - Liina Soonvald
- Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Vinh Hong Le
- Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Håvard Eikemo
- Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Pauline Dewaegeneire
- Sipre and FN3PT-inov3PT, 76110 Bretteville Du Grand Caux and 62217 Achicourt, France
| | | | - Catherine Chatot
- Florimond Desprez Veuve & Fils, 59242 Cappelle-en-Pévèle, France
- Germicopa Breeding, 29520 Châteauneuf du Faou, France
| | - Frédérique Aurousseau
- Sipre and FN3PT-inov3PT, 76110 Bretteville Du Grand Caux and 62217 Achicourt, France
| | - David E L Cooke
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Alison K Lees
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Isaac K Abuley
- Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | - Jens G Hansen
- Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
7
|
Fabre F, Burie J, Ducrot A, Lion S, Richard Q, Djidjou‐Demasse R. An epi-evolutionary model for predicting the adaptation of spore-producing pathogens to quantitative resistance in heterogeneous environments. Evol Appl 2022; 15:95-110. [PMID: 35126650 PMCID: PMC8792485 DOI: 10.1111/eva.13328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
We have modeled the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age structure and genetic composition of the pathogen population. Each strain is characterized by pathogenicity traits determining its infection efficiency and a time-varying sporulation curve taking into account lesion aging. We first derived a general expression of the basic reproduction number R 0 for fungal pathogens in heterogeneous environments. We show that the evolutionary attractors of the model coincide with local maxima of R 0 only if the infection efficiency is the same on all host types. We then studied the contribution of three basic resistance characteristics (the pathogenicity trait targeted, resistance effectiveness, and adaptation cost), in interaction with the deployment strategy (proportion of fields sown with a resistant cultivar), to (i) pathogen diversification at equilibrium and (ii) the shaping of transient dynamics from evolutionary and epidemiological perspectives. We show that quantitative resistance affecting only the sporulation curve will always lead to a monomorphic population, whereas dimorphism (i.e., pathogen diversification) can occur if resistance alters infection efficiency, notably with high adaptation costs and proportions of the resistant cultivar. Accordingly, the choice of the quantitative resistance genes operated by plant breeders is a driver of pathogen diversification. From an evolutionary perspective, the time to emergence of the evolutionary attractor best adapted to the resistant cultivar tends to be shorter when resistance affects infection efficiency than when it affects sporulation. Conversely, from an epidemiological perspective, epidemiological control is always greater when the resistance affects infection efficiency. This highlights the difficulty of defining deployment strategies for quantitative resistance simultaneously maximizing epidemiological and evolutionary outcomes.
Collapse
Affiliation(s)
- Frédéric Fabre
- INRAEBordeaux Sciences AgroISVVSAVEVillenave d’OrnonFrance
| | | | | | - Sébastien Lion
- CEFECNRSUniv. MontpellierEPHEIRDUniv. Montpellier 3 Paul‐ValéryMontpellierFrance
| | | | | |
Collapse
|
8
|
Genomic regions associated with virulence in Setosphaeria turcica identified by linkage mapping in a biparental population. Fungal Genet Biol 2021; 159:103655. [PMID: 34954385 DOI: 10.1016/j.fgb.2021.103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/19/2021] [Indexed: 01/06/2023]
Abstract
Northern corn leaf blight (NCLB) and sorghum leaf blight (SLB) are significant diseases of maize and sorghum, respectively, caused by the filamentous fungus Setosphaeria turcica. Strains of S. turcica are typically host-specific and infect either maize or sorghum. Host specificity in this pathogen is attributed to a single locus for maize and a second distinct locus for sorghum. To identify the genetic basis of host specificity in S. turcica, we generated a biparental population of S. turcica by crossing strains specific to maize and sorghum, phenotyped the population for leaf blight on sorghum and maize, genotyped the population to create a linkage map of S. turcica, and located candidate virulence regions. A total of 190 ascospores from 35 pseudothecia were isolated from the cross of maize and sorghum-specific strains. Greenhouse phenotyping of the biparental population (n = 144) showed independent inheritance of virulence, as indicated by a 1:1:1:1 segregation for virulence to maize, sorghum, both maize and sorghum, and avirulence to both crops. The population and host-specific parent strains were genotyped using genome skim sequencing on an Illumina NovaSeq 6000 platform resulting in over 780 million reads. A total of 32,635 variants including single nucleotide polymorphisms and indels were scored. There was evidence for a large deletion in the sorghum-specific strain of S. turcica. A genetic map consisting of 17 linkage groups spanning 3,069 centimorgans was constructed. Virulence to sorghum and maize mapped on distinct linkage groups with a significant QTL detected for virulence to maize. Furthermore, a single locus each for the in vitro traits hyphal growth rate and conidiation were identified and mapped onto two other linkage groups. In vitro traits did not correlate with in planta virulence complexity, suggesting that virulence on both hosts does not incur a fitness cost. Hyphal growth rate and conidiation were negatively correlated, indicating differences in hyphal growth versus dispersal ability for this pathogen. Identification of genetic regions underlying virulence specificity and saprotrophic growth traits in S. turcica provides a better understanding of the S. turcica- Andropogoneae pathosystem.
Collapse
|
9
|
Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa. mSystems 2021; 6:e0096121. [PMID: 34581603 PMCID: PMC8547473 DOI: 10.1128/msystems.00961-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the environmental factors that affect the production of virulence factors has major implications in evolution and medicine. While spatial structure is important in virulence factor production, observations of this relationship have occurred in undisturbed or continuously disturbed environments. However, natural environments are subject to periodic fluctuations, including changes in physical forces, which could alter the spatial structure of bacterial populations and impact virulence factor production. Using Pseudomonas aeruginosa PA14, we periodically applied a physical force to biofilms and examined production of pyoverdine. Intermediate frequencies of disturbance reduced the amount of pyoverdine produced compared to undisturbed or frequently disturbed conditions. To explore the generality of this finding, we examined how an intermediate disturbance frequency affected pyoverdine production in 21 different strains of P. aeruginosa. Periodic disturbance increased, decreased, or did not change the amount of pyoverdine produced relative to undisturbed populations. Mathematical modeling predicts that interactions between pyoverdine synthesis rate and biofilm density determine the amount of pyoverdine synthesized. When the pyoverdine synthesis rates are high, depletion of the biofilm due to disturbance reduces the accumulation of pyoverdine. At intermediate synthesis rates, production of pyoverdine increases during disturbance as bacteria dispersed into the planktonic state enjoy increased growth and pyoverdine production rates. At low synthesis rates, disturbance does not alter the amount of pyoverdine produced since disturbance-driven access to nutrients does not augment pyoverdine synthesis. Our results suggest that environmental conditions shape robustness in the production of virulence factors and may lead to novel approaches to treat infections. IMPORTANCE Virulence factors are required to cause infections. Previous work has shown that the spatial organization of a population, such as a biofilm, can increase the production of some virulence factors, including pyoverdine, which is produced by Pseudomonas aeruginosa. Pyoverdine is essential for the infection process, and reducing its production can limit infections. We have discovered that periodically changing the spatial structure of a biofilm of P. aeruginosa strain PA14 using a physical force can reduce the production of pyoverdine. A mathematical model suggests that this is due to the disruption of spatial organization. Using additional strains of P. aeruginosa isolated from patients and the environment, we use experiments and modeling to show that this reduction in pyoverdine is due to interactions between biofilm density and the synthesis rate of pyoverdine. Our results identify conditions where pyoverdine production is reduced and may lead to novel ways to treat infections.
Collapse
|
10
|
Clin P, Grognard F, Mailleret L, Val F, Andrivon D, Hamelin FM. Taking Advantage of Pathogen Diversity and Immune Priming to Minimize Disease Prevalence in Host Mixtures: A Model. PHYTOPATHOLOGY 2021; 111:1219-1227. [PMID: 33297731 DOI: 10.1094/phyto-09-20-0429-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Host mixtures are a promising method for agroecological plant disease control. Plant immunity is key to the success of host mixtures against polymorphic pathogen populations. This immunity results from priming-induced cross-protection, whereby plants able to resist infection by specific pathogen genotypes become more resistant to other pathogen genotypes. Strikingly, this phenomenon was absent from mathematical models aiming at designing host mixtures. We developed a model to specifically explore how priming affects the coexistence of two pathogen genotypes in host mixtures composed of two host genotypes and how it affects disease prevalence. The main effect of priming is to reduce the coexistence region in the parameter space (due to the cross-protection) and to generate a singular mixture of resistant and susceptible hosts corresponding to the maximal reduction disease prevalence (in absence of priming, a resistant pure stand is optimal). The epidemiological advantage of host mixtures over a resistant pure stand thus appears as a direct consequence of immune priming. We also showed that there is indirect cross-protection between host genotypes in a mixture. Moreover, the optimal mix prevents the emergence of a resistance-breaking pathogen genotype. Our results highlight the importance of considering immune priming to design optimal and sustainable host mixtures.
Collapse
Affiliation(s)
- Pauline Clin
- IGEPP, INRAE, Institut Agro, Université Rennes, 35000 Rennes, France
- Université Côte d'Azur, INRAE, CNRS, ISA, France
| | - Frédéric Grognard
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore, France
| | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISA, France
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore, France
| | - Florence Val
- IGEPP, INRAE, Institut Agro, Université Rennes, 35000 Rennes, France
| | - Didier Andrivon
- IGEPP, INRAE, Institut Agro, Université Rennes, 35000 Rennes, France
| | | |
Collapse
|
11
|
Askarian H, Akhavan A, Manolii VP, Cao T, Hwang SF, Strelkov SE. Virulence Spectrum of Single-Spore and Field Isolates of Plasmodiophora brassicae Able to Overcome Resistance in Canola ( Brassica napus). PLANT DISEASE 2021; 105:43-52. [PMID: 33107783 DOI: 10.1094/pdis-03-20-0471-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is an important disease of canola (Brassica napus L.) that is managed mainly by planting clubroot-resistant (CR) cultivars. Field isolates of P. brassicae can be heterogeneous mixtures of various pathotypes, making assessments of the genetics of host-pathogen interactions challenging. Thirty-four single-spore isolates were obtained from nine field isolates of the pathogen collected from CR canola cultivars. The virulence patterns of the single-spore and field isolates were assessed on the 13 host genotypes of the Canadian Clubroot Differential (CCD) set, which includes the differentials of Williams and Somé et al. Indices of disease (IDs) severity of 25, 33, and 50% (±95% confidence interval) were compared as potential thresholds to distinguish between resistant and susceptible reactions, with an ID of 50% giving the most consistent responses for pathotype classification purposes. With this threshold, 13 pathotypes could be distinguished based on the CCD system, 7 on the differentials of Williams, and 3 on the hosts of Somé et al. The highest correlations were observed among virulence matrices generated using the three threshold IDs on the CCD set. Genetically homogeneous single-spore isolates gave a clearer profile of the P. brassicae pathotype structure. Novel pathotypes, not reported in Canada previously, were identified among the isolates. This large collection of single-spore isolates can serve as a reference in screening and breeding for clubroot resistance.
Collapse
Affiliation(s)
- Homa Askarian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Alireza Akhavan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Victor P Manolii
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tiesen Cao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
12
|
Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, Strelkov SE, Manzanares-Dauleux MJ. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape ( Brassica napus) Are Controlled by Four Main QTLs. FRONTIERS IN PLANT SCIENCE 2020; 11:604527. [PMID: 33391316 PMCID: PMC7773761 DOI: 10.3389/fpls.2020.604527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 06/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.
Collapse
Affiliation(s)
- Andrea Botero-Ramírez
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Solenn Guichard
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Mélanie Jubault
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Antoine Gravot
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria J. Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
13
|
Watkinson-Powell B, Gilligan CA, Cunniffe NJ. When Does Spatial Diversification Usefully Maximize the Durability of Crop Disease Resistance? PHYTOPATHOLOGY 2020; 110:1808-1820. [PMID: 32500812 DOI: 10.1094/phyto-07-19-0261-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maximizing the durability of crop disease resistance genes in the face of pathogen evolution is a major challenge in modern agricultural epidemiology. Spatial diversification in the deployment of resistance genes, where susceptible and resistant fields are more closely intermixed, is predicted to drive lower epidemic intensities over evolutionary timescales. This is due to an increase in the strength of dilution effects, caused by pathogen inoculum challenging host tissue to which it is not well-specialized. The factors that interact with and determine the magnitude of this spatial suppressive effect are not currently well understood, however, leading to uncertainty over the pathosystems where such a strategy is most likely to be cost-effective. We model the effect on landscape scale disease dynamics of spatial heterogeneity in the arrangement of fields planted with either susceptible or resistant cultivars, and the way in which this effect depends on the parameters governing the pathosystem of interest. Our multiseason semidiscrete epidemiological model tracks spatial spread of wild-type and resistance-breaking pathogen strains, and incorporates a localized reservoir of inoculum, as well as the effects of within and between field transmission. The pathogen dispersal characteristics, any fitness cost(s) of the resistance-breaking trait, the efficacy of host resistance, and the length of the timeframe of interest all influence the strength of the spatial diversification effect. A key result is that spatial diversification has the strongest beneficial effect at intermediate fitness costs of the resistance-breaking trait, an effect driven by a complex set of nonlinear interactions. On the other hand, however, if the resistance-breaking strain is not fit enough to invade the landscape, then a partially effective resistance gene can result in spatial diversification actually worsening the epidemic. These results allow us to make general predictions of the types of system for which spatial diversification is most likely to be cost-effective, paving the way for potential economic modeling and pathosystem specific evaluation. These results highlight the importance of studying the effect of genetics on landscape scale spatial dynamics within host-pathogen disease systems.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Benjamin Watkinson-Powell
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, United Kingdom
| | - Christopher A Gilligan
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, United Kingdom
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
14
|
Nilusmas S, Mercat M, Perrot T, Djian‐Caporalino C, Castagnone‐Sereno P, Touzeau S, Calcagno V, Mailleret L. Multi-seasonal modelling of plant-nematode interactions reveals efficient plant resistance deployment strategies. Evol Appl 2020; 13:2206-2221. [PMID: 33005219 PMCID: PMC7513734 DOI: 10.1111/eva.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Root-knot nematodes, Meloidogyne spp., are soil-borne polyphagous pests with major impact on crop yield worldwide. Resistant crops efficiently control avirulent root-knot nematodes, but favour the emergence of virulent forms. Since virulence is associated with fitness costs, susceptible crops counter-select virulent root-knot nematodes. In this study, we identify optimal rotation strategies between susceptible and resistant crops to control root-knot nematodes and maximize crop yield. We developed an epidemiological model describing the within-season dynamics of avirulent and virulent root-knot nematodes on susceptible or resistant plant root-systems, and their between-season survival. The model was fitted to experimental data and used to predict yield-maximizing rotation strategies, with special attention to the impact of epidemic severity and genetic parameters. Crop rotations were found to be efficient under realistic parameter ranges. They were characterized by low ratios of resistant plants and were robust to parameter uncertainty. Rotations provide significant gain over resistant-only strategies, especially under intermediate fitness costs and severe epidemic contexts. Switching from the current general deployment of resistant crops to custom rotation strategies could not only maintain or increase crop yield, but also preserve the few and valuable R-genes available.
Collapse
Affiliation(s)
- Samuel Nilusmas
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | - Mathilde Mercat
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | - Thomas Perrot
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | | | | | - Suzanne Touzeau
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | | | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| |
Collapse
|
15
|
Saville A, Ristaino JB. Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of Phytophthora infestans. PHYTOPATHOLOGY 2019; 109:1614-1627. [PMID: 31066347 DOI: 10.1094/phyto-09-18-0357-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.
Collapse
Affiliation(s)
- Amanda Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
16
|
Abstract
This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. What are the costs and benefits for microbes of having the capacity for virulence? Our exploration of this topic leads us to conclude that virulence confers very few benefits for microbes, unless disease is necessary for microbial survival through host-to-host spread. In fact, the capacity for virulence is often fraught with risk for microbes, including host dependence and the threat of extinction. The costs of virulence may explain why, relative to their enormous numbers in nature, very few microbes are actually associated with human and animal disease.
Collapse
|
17
|
Mariette N, Kröner A, Mabon R, Montarry J, Marquer B, Corbière R, Androdias A, Andrivon D. A Trade-Off Between Sporangia Size and Number Exists in the Potato Late Blight Pathogen Phytophthora infestans, and Is Not Altered by Biotic and Abiotic Factors. FRONTIERS IN PLANT SCIENCE 2018; 9:1841. [PMID: 30619410 PMCID: PMC6305756 DOI: 10.3389/fpls.2018.01841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The negative relationship between offspring size and number is a classic example of trade-off between life-history traits, reported many times in animal and plant species. Here, we wanted to ascertain whether such a trade-off occurred in the oomycete Phytophthora infestans, and whether it was impacted by biotic and abiotic factors. We thus conducted three infection experiments under controlled conditions and measured the number and the size of sporangia (asexual propagules) produced on potato by different P. infestans isolates. In all experiments, we observed a negative relationship between sporangia size and number, demonstrating the existence of a trade-off. Moreover, although the potato host cultivar, temperature and host of origin (tomato or potato) all affected sporangia number, sporangia size or both, none of these biotic and abiotic factors did change the trade-off. Therefore, the trade-off between sporangia size and number could maintain the polyphenism for these traits in P. infestans populations, and favors the coexistence of distinct reproductive strategies within this species. Our results emphasize the relevance to focus on the relationship between offspring size and number in other fungal plant pathogens, as well as to study the impact of offspring size on fitness-linked traits (virulence and disease lesion development) in these organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Didier Andrivon
- INRA, UMR1349 Institute for Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
18
|
Carolan K, Helps J, van den Berg F, Bain R, Paveley N, van den Bosch F. Extending the durability of cultivar resistance by limiting epidemic growth rates. Proc Biol Sci 2018; 284:rspb.2017.0828. [PMID: 28931732 DOI: 10.1098/rspb.2017.0828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/10/2017] [Indexed: 11/12/2022] Open
Abstract
Cultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice. We present a general technique to maintain the effectiveness of cultivar resistance. Derived from classical population genetics theory; any factor that reduces the population growth rates of both the virulent and avirulent strains will reduce selection. We model the specific example of fungicide application to reduce the growth rates of virulent and avirulent strains of a pathogen, demonstrating that appropriate use of fungicides reduces selection for virulence, prolonging cultivar resistance. This specific example of chemical control illustrates a general principle for the development of techniques to manage the evolution of virulence by slowing epidemic growth rates.
Collapse
Affiliation(s)
| | - Joe Helps
- Rothamsted Research, Harpenden AL5 5LS, UK
| | | | | | - Neil Paveley
- ADAS, High Mowthorpe, Malton, North Yorkshire YO17 8BP, UK
| | | |
Collapse
|
19
|
Kröner A, Mabon R, Corbière R, Montarry J, Andrivon D. The coexistence of generalist and specialist clonal lineages in natural populations of the Irish Famine pathogen Phytophthora infestans explains local adaptation to potato and tomato. Mol Ecol 2017; 26:1891-1901. [PMID: 28052487 DOI: 10.1111/mec.14004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
Phytophthora infestans, causing late blight on Solanaceae, is a serious threat to potato and tomato crops worldwide. P. infestans populations sampled on either potato or tomato differ in genotypes and pathogenicity, suggesting niche exclusion in the field. We hypothesized that such niche separation can reflect differential host exploitation by different P. infestans genotypes. We thus compared genotypes and phenotypes in 21 isolates sampled on potato (n = 11) or tomato (n = 10). Typing at 12 microsatellite loci assigned potato isolates to the 13_A2, 6_A1 and 1_A1 lineages, and tomato isolates to the 23_A1, 2_A1 and unclassified multilocus genotypes. Cross-inoculations on potato and tomato leaflets showed that all isolates were pathogenic on both hosts. However, tomato isolates performed much better on tomato than did potato isolates, which performed better on potato than did tomato isolates, thus revealing a clear pattern of local adaptation. Potato isolates were significantly fitter on potato than on tomato, and are best described as potato specialists; tomato isolates appear to be generalists, with similar pathogenicity on both hosts. Niche separation in the field may thus result mainly from the large fitness gap on tomato between generalists and unadapted potato specialists, while the small, but significant fitness difference on potato between both types of isolates may prevent population invasion by generalists. Extreme specialization to potato seems very costly relative to performance loss on the alternative host. This study therefore shows that local adaptation and niche separation, commonly expected to involve and generate specialists, can occur with generalists.
Collapse
|
20
|
Persoons A, Hayden KJ, Fabre B, Frey P, De Mita S, Tellier A, Halkett F. The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust. Mol Ecol 2017; 26:1902-1918. [PMID: 28012228 DOI: 10.1111/mec.13980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Abstract
Host-parasite systems provide convincing examples of Red Queen co-evolutionary dynamics. Yet, a key process underscored in Van Valen's theory - that arms race dynamics can result in extinction - has never been documented. One reason for this may be that most sampling designs lack the breadth needed to illuminate the rapid pace of adaptation by pathogen populations. In this study, we used a 25-year temporal sampling to decipher the demographic history of a plant pathogen: the poplar rust fungus, Melampsora larici-populina. A major adaptive event occurred in 1994 with the breakdown of R7 resistance carried by several poplar cultivars widely planted in Western Europe since 1982. The corresponding virulence rapidly spread in M. larici-populina populations and nearly reached fixation in northern France, even on susceptible hosts. Using both temporal records of virulence profiles and temporal population genetic data, our analyses revealed that (i) R7 resistance breakdown resulted in the emergence of a unique and homogeneous genetic group, the so-called cultivated population, which predominated in northern France for about 20 years, (ii) selection for Vir7 individuals brought with it multiple other virulence types via hitchhiking, resulting in an overall increase in the population-wide number of virulence types and (iii) - above all - the emergence of the cultivated population superseded the initial population which predominated at the same place before R7 resistance breakdown. Our temporal analysis illustrates how antagonistic co-evolution can lead to population extinction and replacement, hence providing direct evidence for the escalation process which is at the core of Red Queen dynamics.
Collapse
Affiliation(s)
| | | | | | - Pascal Frey
- UMR IAM, INRA, Université de Lorraine, 54000, Nancy, France
| | | | - Aurélien Tellier
- Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Fabien Halkett
- UMR IAM, INRA, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
21
|
Delmas CEL, Dussert Y, Delière L, Couture C, Mazet ID, Richart Cervera S, Delmotte F. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Mol Ecol 2017; 26:1936-1951. [DOI: 10.1111/mec.14006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023]
Affiliation(s)
| | - Yann Dussert
- SAVE; Bordeaux Sciences Agro; INRA; 33140 Villenave d'Ornon France
| | - Laurent Delière
- SAVE; Bordeaux Sciences Agro; INRA; 33140 Villenave d'Ornon France
| | - Carole Couture
- SAVE; Bordeaux Sciences Agro; INRA; 33140 Villenave d'Ornon France
| | | | | | | |
Collapse
|
22
|
Liao J, Huang H, Meusnier I, Adreit H, Ducasse A, Bonnot F, Pan L, He X, Kroj T, Fournier E, Tharreau D, Gladieux P, Morel JB. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. eLife 2016; 5. [PMID: 28008850 PMCID: PMC5182064 DOI: 10.7554/elife.19377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/01/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice. DOI:http://dx.doi.org/10.7554/eLife.19377.001 Microbes that cause diseases in plants are a threat to food security. For example, the rice blast fungus Magnaporthe oryzae causes the loss of enough rice to feed 60 million people each year. Disease-causing microbes must overcome the plant’s first line of defense, which includes preformed barriers and antimicrobial responses that are triggered by characteristic molecules found in many different microbes. The microbes that can overcome this first line of defense typically do so with an arsenal of proteins called effectors that interfere with specific biological processes in the plant. To counteract this interference, some plants have evolved genes that encode proteins that detect these effectors and trigger stronger antimicrobial responses. For centuries, farmers and plant breeders have selected for these resistance genes when trying to breed crops that are more resistant to disease. However, over time, disease-causing microbes have lost effectors, which means that several resistance genes have rapidly become ineffective. Some researchers predicted that growing a mixture of varieties of a given crop together might be a better way of protecting crop yields. Over 16 years ago, this idea was proved successful against the rice blast fungus for rice plants grown in China. However, the exact reasons why this strategy worked and its effects on the fungus were not clear. Now Liao, Huang et al. have taken another look at rice varieties grown via the traditional method of terraces of rice paddies in Yuanyang. Some of these varieties had a strong first line of defense and few resistance genes, while others relied much more on resistance genes to protect themselves again the rice blast fungus. Liao, Huang et al. found that growing rice varieties with such different immune systems forces some of the rice blast fungi to accumulate effector proteins to combat the first line of defense, whereas other fungi had to get rid of these effectors to avoid being recognized by the major resistance genes. These two forces led to the evolution of two specialized populations of fungi that can infect specific rice varieties but not others. This means that the fungi cannot spread in the landscape, and so the fields of rice become resistant as a whole. These new findings demonstrate the importance of diversity in rice for sustainable crop protection. The next challenge will be to demonstrate if a similar approach can also protect other major crops grown in different agricultural settings. DOI:http://dx.doi.org/10.7554/eLife.19377.002
Collapse
Affiliation(s)
- Jingjing Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Isabelle Meusnier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Henri Adreit
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Aurélie Ducasse
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - François Bonnot
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Lei Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Thomas Kroj
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Elisabeth Fournier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Didier Tharreau
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Pierre Gladieux
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Jean-Benoit Morel
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
23
|
Croll D, McDonald BA. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol Ecol 2016; 26:2027-2040. [DOI: 10.1111/mec.13870] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel Croll
- Plant Pathology; Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Bruce A. McDonald
- Plant Pathology; Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
24
|
Mariette N, Androdias A, Mabon R, Corbière R, Marquer B, Montarry J, Andrivon D. Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans. Ecol Evol 2016; 6:6320-31. [PMID: 27648246 PMCID: PMC5016652 DOI: 10.1002/ece3.2282] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/08/2016] [Accepted: 05/27/2016] [Indexed: 01/14/2023] Open
Abstract
Environmental factors such as temperature strongly impact microbial communities. In the current context of global warming, it is therefore crucial to understand the effects of these factors on human, animal, or plant pathogens. Here, we used a common-garden experiment to analyze the thermal responses of three life-history traits (latent period, lesion growth, spore number) in isolates of the potato late blight pathogen Phytophthora infestans from different climatic zones. We also used a fitness index (FI) aggregating these traits into a single parameter. The experiments revealed patterns of local adaptation to temperature for several traits and for the FI, both between populations and within clonal lineages. Local adaptation to temperature could result from selection for increased survival between epidemics, when isolates are exposed to more extreme climatic conditions than during epidemics. We also showed different thermal responses among two clonal lineages sympatric in western Europe, with lower performances of lineage 13_A2 compared to 6_A1, especially at low temperatures. These data therefore stress the importance of thermal adaptation in a widespread, invasive pathogen, where adaptation is usually considered almost exclusively with respect to host plants. This must now be taken into account to explain, and possibly predict, the global distribution of specific lineages and their epidemic potential.
Collapse
Affiliation(s)
- Nicolas Mariette
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Annabelle Androdias
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Romain Mabon
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Roselyne Corbière
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Bruno Marquer
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Josselin Montarry
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| | - Didier Andrivon
- INRAUMR IGEPP (Institute for Genetics, Environment and Plant Protection)35653Le Rheu CedexFrance
| |
Collapse
|
25
|
Dorrance AE, Kurle J, Robertson AE, Bradley CA, Giesler L, Wise K, Concibido VC. Pathotype Diversity of Phytophthora sojae in Eleven States in the United States. PLANT DISEASE 2016; 100:1429-1437. [PMID: 30686193 DOI: 10.1094/pdis-08-15-0879-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pathotype diversity of Phytophthora sojae was assessed in 11 states in the United States during 2012 and 2013. Isolates of P. sojae were recovered from 202 fields, either from soil samples using a soybean seedling bioassay or by isolation from symptomatic plants. Each isolate was inoculated directly onto 12 soybean differentials; no Rps gene or Rps 1a, 1b, 1c, 1k, 3a, 3b, 3c, 4, 6, 7, or 8. There were 213 unique virulence pathotypes identified among the 873 isolates collected. None of the Rps genes were effective against all the isolates collected but Rps6 and Rps8 were effective against the majority of isolates collected in the northern regions of the sampled area. Virulence toward Rps1a, 1b, 1c, and 1k ranged from 36 to 100% of isolates collected in each state, while virulence to Rps6 and Rps8 was less than 36 and 10%, respectively. Depending on the state, the effectiveness of Rps3a ranged from totally effective to susceptible to more than 40% of the isolates. Pathotype complexity has increased in populations of P. sojae in the United States, emphasizing the increasing importance of stacked Rps genes in combination with high partial resistance as a means of limiting losses to P. sojae.
Collapse
Affiliation(s)
- A E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691
| | - J Kurle
- Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - A E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - C A Bradley
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - L Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln 68583
| | - K Wise
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47097
| | | |
Collapse
|
26
|
Mikaberidze A, Mundt CC, Bonhoeffer S. Invasiveness of plant pathogens depends on the spatial scale of host distribution. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1238-1248. [PMID: 27509761 DOI: 10.1890/15-0807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant diseases often cause serious yield losses in agriculture. A pathogen's invasiveness can be quantified by the basic reproductive number, R₀. Since pathogen transmission between host plants depends on the spatial separation between them, R₀ is strongly influenced by the spatial scale of the host distribution. We present a proof of principle of a novel approach to estimate the basic reproductivenumber, R₀, of plant pathogens as a function of the size of a field planted with crops and its aspect ratio. This general approach is based on a spatially explicit population dynamical model. The basic reproductive number was found to increase with the field size at small field sizes and to saturate to a constant value at large field sizes. It reaches amaximum in square fields and decreases as the field becomes elongated. This pattern appears to be quite general: it holds for dispersal kernels that decrease exponentially or faster, as well as for fat-tailed dispersal kernels that decrease slower than exponential (i.e., power-law kernels). We used this approach to estimate R₀ in wheat stripe rust(an important disease caused by Puccinia striiformis), where we inferred both the transmission rates and the dispersal kernels from the measurements of disease gradients. For the two largest datasets, we estimated R₀ of P. striiformis in the limit of large fields to be of the order of 30. We found that the spatial extent over which R₀ changes strongly is quite fine-scaled (about 30 m of the linear extension of the field). Our results indicate that in order to optimize the spatial scale of deployment of fungicides or host resistances, the adjustments should be made at a fine spatial scale. We also demonstrated how the knowledge of the spatial dependence of R₀ can improve recommendations with regard to fungicide treatment.
Collapse
|
27
|
Wu EJ, Yang LN, Zhu W, Chen XM, Shang LP, Zhan J. Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China. Sci Rep 2016; 6:26182. [PMID: 27193142 PMCID: PMC4872137 DOI: 10.1038/srep26182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/27/2016] [Indexed: 01/23/2023] Open
Abstract
Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen.
Collapse
Affiliation(s)
- E-Jiao Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Li-Na Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Wen Zhu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Xiao-Mei Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Li-Ping Shang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
28
|
Chappell TM, Rausher MD. Evolution of host range in Coleosporium ipomoeae, a plant pathogen with multiple hosts. Proc Natl Acad Sci U S A 2016; 113:5346-51. [PMID: 27114547 PMCID: PMC4868424 DOI: 10.1073/pnas.1522997113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plants and their pathogens coevolve locally. Previous investigations of one host-one pathogen systems have demonstrated that natural selection favors pathogen genotypes that are virulent on a broad range of host genotypes. In the present study, we examine a system consisting of one pathogen species that infects three host species in the morning glory genus Ipomoea. We show that many pathogen genotypes can infect two or three of the host species when tested on plants from nonlocal communities. By contrast, pathogen genotypes are highly host-specific, infecting only one host species, when tested on host species from the local community. This pattern indicates that within-community evolution narrows the host breadth of pathogen genotypes. Possible evolutionary mechanisms include direct selection for narrow host breadth due to costs of virulence and evolution of ipomoea resistance in the host species.
Collapse
Affiliation(s)
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
29
|
Fournet S, Eoche-Bosy D, Renault L, Hamelin FM, Montarry J. Adaptation to resistant hosts increases fitness on susceptible hosts in the plant parasitic nematode Globodera pallida. Ecol Evol 2016; 6:2559-68. [PMID: 27066239 PMCID: PMC4797161 DOI: 10.1002/ece3.2079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/30/2022] Open
Abstract
Trade-offs between virulence (defined as the ability to infect a resistant host) and life-history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life-history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations.
Collapse
Affiliation(s)
- Sylvain Fournet
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Delphine Eoche-Bosy
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Lionel Renault
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Frédéric M Hamelin
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Josselin Montarry
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| |
Collapse
|
30
|
Delmas CEL, Fabre F, Jolivet J, Mazet ID, Richart Cervera S, Delière L, Delmotte F. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evol Appl 2016; 9:709-25. [PMID: 27247621 PMCID: PMC4869412 DOI: 10.1111/eva.12368] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 01/29/2023] Open
Abstract
An understanding of the evolution of pathogen quantitative traits in response to host selective pressures is essential for the development of durable management strategies for resistant crops. However, we still lack experimental data on the effects of partial host resistance on multiple phenotypic traits (aggressiveness) and evolutionary strategies in pathogens. We performed a cross‐inoculation experiment with four grapevine hosts and 103 isolates of grapevine downy mildew (Plasmopara viticola) sampled from susceptible and partially resistant grapevine varieties. We analysed the neutral and adaptive genetic differentiation of five quantitative traits relating to pathogen transmission. Isolates from resistant hosts were more aggressive than isolates from susceptible hosts, as they had a shorter latency period and higher levels of spore production. This pattern of adaptation contrasted with the lack of neutral genetic differentiation, providing evidence for directional selection. No specificity for a particular host variety was detected. Adapted isolates had traits that were advantageous on all resistant varieties. There was no fitness cost associated with this genetic adaptation, but several trade‐offs between pathogen traits were observed. These results should improve the accuracy of prediction of fitness trajectories for this biotrophic pathogen, an essential element for the modelling of durable deployment strategies for resistant varieties.
Collapse
Affiliation(s)
- Chloé E L Delmas
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Frédéric Fabre
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Jérôme Jolivet
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Isabelle D Mazet
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Sylvie Richart Cervera
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Laurent Delière
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - François Delmotte
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| |
Collapse
|
31
|
Thrall PH, Barrett LG, Dodds PN, Burdon JJ. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. FRONTIERS IN PLANT SCIENCE 2016; 6:1084. [PMID: 26779200 PMCID: PMC4703789 DOI: 10.3389/fpls.2015.01084] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/19/2015] [Indexed: 05/30/2023]
Abstract
Gene-for-gene (GFG) and matching-allele (MA) models are qualitatively different paradigms for describing the outcome of genetic interactions between hosts and pathogens. The GFG paradigm was largely built on the foundations of Flor's early work on the flax-flax rust interaction and is based on the concept of genetic recognition leading to incompatible disease outcomes, typical of host immune recognition. In contrast, the MA model is based on the assumption that genetic recognition leads to compatible interactions, which can result when pathogens require specific host factors to cause infection. Results from classical MA and GFG models have led to important predictions regarding various coevolutionary phenomena, including the role of fitness costs associated with resistance and infectivity, the distribution of resistance genes in wild populations, patterns of local adaptation and the evolution and maintenance of sexual reproduction. Empirical evidence (which we review briefly here), particularly from recent molecular advances in understanding of the mechanisms that determine the outcome of host-pathogen encounters, suggests considerable variation in specific details of the functioning of interactions between hosts and pathogens, which may contain elements of both models. In this regard, GFG and MA scenarios likely represent endpoints of a continuum of potentially more complex interactions that occur in nature. Increasingly, this has been recognized in theoretical studies of coevolutionary processes in plant host-pathogen and animal host-parasite associations (e.g., departures from strict GFG/MA assumptions, diploid genetics, multi-step infection processes). However, few studies have explored how different genetic assumptions about host resistance and pathogen infectivity might impact on disease epidemiology or pathogen persistence within and among populations. Here, we use spatially explicit simulations of the basic MA and GFG scenarios to highlight qualitative differences between these scenarios with regard to patterns of disease and impacts on host demography. Given that such impacts drive evolutionary trajectories, future theoretical advances that aim to capture more complex genetic scenarios should explicitly address the interaction between epidemiology and different models of host-pathogen interaction genetics.
Collapse
|
32
|
Castagnone-Sereno P, Mulet K, Iachia C. Tracking changes in life-history traits related to unnecessary virulence in a plant-parasitic nematode. Ecol Evol 2015; 5:3677-86. [PMID: 26380696 PMCID: PMC4567871 DOI: 10.1002/ece3.1643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life-history traits directly linked to the establishment of plant-nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi-1.2 resistance gene. Virulent and avirulent near-isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade-off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism.
Collapse
Affiliation(s)
- Philippe Castagnone-Sereno
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Karine Mulet
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Cathy Iachia
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| |
Collapse
|
33
|
Vasanthakrishnan RB, de Las Heras A, Scortti M, Deshayes C, Colegrave N, Vázquez-Boland JA. PrfA regulation offsets the cost of Listeria virulence outside the host. Environ Microbiol 2015; 17:4566-79. [PMID: 26178789 PMCID: PMC4737189 DOI: 10.1111/1462-2920.12980] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022]
Abstract
Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA‐regulated genes are activated intracellularly (PrfA ‘ON’) but shut down outside the host (PrfA ‘OFF’). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA‐controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (μ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA‐regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*‐associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA‐regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L. monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host.
Collapse
Affiliation(s)
- Radhakrishnan B Vasanthakrishnan
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aitor de Las Heras
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mariela Scortti
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Caroline Deshayes
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nick Colegrave
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - José A Vázquez-Boland
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,The Roslin Institute, University of Edinburgh, Edinburgh, UK.,Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK.,Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
| |
Collapse
|
34
|
Johnson AJ, Shukle RH, Chen MS, Srivastava S, Subramanyam S, Schemerhorn BJ, Weintraub PG, Abdel Moniem HEM, Flanders KL, Buntin GD, Williams CE. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor. INSECT MOLECULAR BIOLOGY 2015; 24:191-202. [PMID: 25528896 PMCID: PMC4406158 DOI: 10.1111/imb.12148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions.
Collapse
Affiliation(s)
- A J Johnson
- USDA-ARS, Crop Production and Pest Control Research Unit, West Lafayette, IN, USA; Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review takes an evolutionary view of breeding crops for durable resistance to disease. An understanding of coevolution between hosts and parasites leads to predictors of potentially durable resistance, such as corresponding virulence having a high fitness cost to the pathogen or resistance being common in natural populations. High partial resistance can also promote durability. Whether or not resistance is actually durable, however, depends on ecological and epidemiological processes that stabilize genetic polymorphism, many of which are absent from intensive agriculture. There continues to be no biological, genetic, or economic model for durable resistance. The analogy between plant breeding and natural selection indicates that the basic requirements are genetic variation in potentially durable resistance, effective and consistent selection for resistance, and an efficient breeding process in which trials of disease resistance are integrated with other traits. Knowledge about genetics and mechanisms can support breeding for durable resistance once these fundamentals are in place.
Collapse
|
36
|
Bruns E, Carson ML, May G. The jack of all trades is master of none: a pathogen's ability to infect a greater number of host genotypes comes at a cost of delayed reproduction. Evolution 2014; 68:2453-66. [PMID: 24890322 DOI: 10.1111/evo.12461] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/20/2014] [Indexed: 01/16/2023]
Abstract
A trade-off between a pathogen's ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade-offs. Here, we test the hypothesis for a trade-off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life-history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade-off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade-offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long-term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.
Collapse
Affiliation(s)
- Emily Bruns
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108; Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.
| | | | | |
Collapse
|
37
|
Abstract
Antivirulence drugs are a new type of therapeutic drug that target virulence factors, potentially revitalising the drug-development pipeline with new targets. As antivirulence drugs disarm the pathogen, rather than kill or halt pathogen growth, it has been hypothesized that they will generate much weaker selection for resistance than traditional antibiotics. However, recent studies have shown that mechanisms of resistance to antivirulence drugs exist, seemingly damaging the 'evolution-proof' claim. In this Opinion article, we highlight a crucial distinction between whether resistance can emerge and whether it will spread to a high frequency under drug selection. We argue that selection for resistance can be reduced, or even reversed, using appropriate combinations of target and treatment environment, opening a path towards the development of evolutionarily robust novel therapeutics.
Collapse
|
38
|
Fraile A, Hily JM, Pagán I, Pacios LF, García-Arenal F. Host resistance selects for traits unrelated to resistance-breaking that affect fitness in a plant virus. Mol Biol Evol 2014; 31:928-39. [PMID: 24441034 DOI: 10.1093/molbev/msu045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The acquisition by parasites of the capacity to infect resistant host genotypes, that is, resistance-breaking, is predicted to be hindered by across-host fitness trade-offs. All analyses of costs of resistance-breaking in plant viruses have focused on within-host multiplication without considering other fitness components, which may limit understanding of virus evolution. We have reported that host range expansion of tobamoviruses on L-gene resistant pepper genotypes was associated with severe within-host multiplication penalties. Here, we analyze whether resistance-breaking costs might affect virus survival in the environment by comparing tobamovirus pathotypes differing in infectivity on L-gene resistance alleles. We predicted particle stability from structural models, analyzed particle stability in vitro, and quantified virus accumulation in different plant organs and virus survival in the soil. Survival in the soil differed among tobamovirus pathotypes and depended on differential stability of virus particles. Structure model analyses showed that amino acid changes in the virus coat protein (CP) responsible for resistance-breaking affected the strength of the axial interactions among CP subunits in the rod-shaped particle, thus determining its stability and survival. Pathotypes ranked differently for particle stability/survival and for within-host accumulation. Resistance-breaking costs in survival add to, or subtract from, costs in multiplication according to pathotype. Hence, differential pathotype survival should be considered along with differential multiplication to understand the evolution of the virus populations. Results also show that plant resistance, in addition to selecting for resistance-breaking and for decreased multiplication, also selects for changes in survival, a trait unrelated to the host-pathogen interaction that may condition host range expansion.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Glais I, Montarry J, Corbière R, Pasco C, Marquer B, Magalon H, Andrivon D. Long-distance gene flow outweighs a century of local selection and prevents local adaptation in the Irish famine pathogen Phytophthora infestans. Evol Appl 2014; 7:442-52. [PMID: 24822079 PMCID: PMC4001443 DOI: 10.1111/eva.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022] Open
Abstract
Sustainably managing plant resistance to epidemic pathogens implies controlling the genetic and demographic changes in pathogen populations faced with resistant hosts. Resistance management thus depends upon the dynamics of local adaptation, mainly driven by the balance between selection and gene flow. This dynamics is best investigated with populations from locally dominant hosts in islands with long histories of local selection. We used the unique case of the potato late blight pathosystem on Jersey, where a monoculture of potato cultivar ‘Jersey Royal’ has been in place for over a century. We also sampled populations from the coasts of Brittany and Normandy, as likely sources for gene flow. The isolation by distance pattern and the absence of genetic differentiation between Jersey and the closest French sites revealed gene flow at that spatial scale. Microsatellite allele frequencies revealed no evidence of recombination in the populations, but admixture of two genotypic clusters. No local adaptation in Jersey was detected from pathogenicity tests on Jersey Royal and on French cultivars. These data suggest that long-distance gene flow (∼ 50/100 km) prevents local adaptation in Jersey despite a century of local selection by a single host cultivar and emphasize the need for regional rather than local management of resistance gene deployment.
Collapse
Affiliation(s)
- Isabelle Glais
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Roselyne Corbière
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Claudine Pasco
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Bruno Marquer
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Hélène Magalon
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France ; Laboratory of Marine Ecology, University of La Réunion St Denis Messag Cedex 09, La Réunion, F-97715, France
| | - Didier Andrivon
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| |
Collapse
|
40
|
Leroy T, Le Cam B, Lemaire C. When virulence originates from non-agricultural hosts: new insights into plant breeding. INFECTION GENETICS AND EVOLUTION 2014; 27:521-9. [PMID: 24412509 DOI: 10.1016/j.meegid.2013.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/11/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
Abstract
Monogenic plant resistance breakdown is a model for testing evolution in action in pathogens. As a rule, plant pathologists argue that virulence - the allele that allows pathogens to overcome resistance - is due to a new mutation at the avirulence locus within the native/endemic population that infects susceptible crops. In this article, we develop an alternative and neglected scenario where a given virulence pre-exists in a non-agricultural host and might be accidentally released or introduced on the matching resistant cultivar in the field. The main difference between the two scenarios is the divergence time expected between the avirulent and the virulent populations. As a consequence, population genetic approaches such as genome scans and Approximate Bayesian Computation methods allow explicit testing of the two scenarios by timing the divergence. This review then explores the fundamental implications of this alternative scenario for plant breeding, including the invasion of virulence or the evolution of more aggressive hybrids, and proposes concrete solutions to achieve a sustainable resistance.
Collapse
Affiliation(s)
- Thibault Leroy
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France
| | - Bruno Le Cam
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France
| | - Christophe Lemaire
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France.
| |
Collapse
|
41
|
Restrepo S, Tabima JF, Mideros MF, Grünwald NJ, Matute DR. Speciation in fungal and oomycete plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:289-316. [PMID: 24906125 DOI: 10.1146/annurev-phyto-102313-050056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.
Collapse
Affiliation(s)
- Silvia Restrepo
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
42
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
43
|
Chakraborty S. Migrate or evolve: options for plant pathogens under climate change. GLOBAL CHANGE BIOLOGY 2013; 19:1985-2000. [PMID: 23554235 DOI: 10.1111/gcb.12205] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 05/21/2023]
Abstract
Findings on climate change influence on plant pathogens are often inconsistent and context dependent. Knowledge of pathogens affecting agricultural crops and natural plant communities remains fragmented along disciplinary lines. By broadening the perspective beyond agriculture, this review integrates cross-disciplinary knowledge to show that at scales relevant to climate change, accelerated evolution and changing geographic distribution will be the main implications for pathogens. New races may evolve rapidly under elevated temperature and CO2 , as evolutionary forces act on massive pathogen populations boosted by a combination of increased fecundity and infection cycles under favourable microclimate within enlarged canopy. Changing geographic distribution will bring together diverse lineages/genotypes that do not share common ecological niche, potentially increasing pathogen diversity. However, the uncertainty of model predictions and a lack of synthesis of fragmented knowledge remain as major deficiencies in knowledge. The review contends that the failure to consider scale and human intervention through new technology are major sources of uncertainty. Recognizing that improved biophysical models alone will not reduce uncertainty, it proposes a generic framework to increase focus and outlines ways to integrate biophysical elements and technology change with human intervention scenarios to minimize uncertainty. To synthesize knowledge of pathogen biology and life history, the review borrows the concept of 'fitness' from population biology as a comprehensive measure of pathogen strengths and vulnerabilities, and explores the implications of pathogen mode of nutrition to fitness and its interactions with plants suffering chronic abiotic stress under climate change. Current and future disease management options can then be judged for their ability to impair pathogenic and saprophytic fitness. The review pinpoints improving confidence in model prediction by minimizing uncertainty, developing management strategies to reduce overall pathogen fitness, and finding new sources of data to trawl for climate signatures on pathogens as important challenges for future research.
Collapse
Affiliation(s)
- Sukumar Chakraborty
- CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, Australia.
| |
Collapse
|
44
|
Clément JAJ, Baldwin TK, Magalon H, Glais I, Gracianne C, Andrivon D, Jacquot E. Specific detection and quantification of virulent/avirulent Phytophthora infestans isolates using a real-time PCR assay that targets polymorphisms of the Avr3a gene. Lett Appl Microbiol 2013; 56:322-32. [PMID: 23350602 DOI: 10.1111/lam.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Molecular tools that allow intraspecific quantification and discrimination of pathogen isolates are useful to assess fitness of competitors during mixed infections. However, methods that were developed for quantifying Phytophthora infestans are only specific at the species level. Here, we reported a TaqMan-based real-time PCR assay allowing, according to the specificity of the used probes, an accurate quantification of different proportions of two genetically distinct clones of P. infestans in mixed fractions. Indeed, in addition to a primer specific to P. infestans, two primers and two TaqMan(®) probes that target single-nucleotide polymorphisms located in the Avr3a/avr3a virulence gene sequence were designed. The reliability of the method was tested on serially diluted fractions containing plasmid DNA with either the Avr3a or the avr3a sequences at concentrations ranging from 10(2) to 10(8) copies per μl. Based on its specificity, sensitivity and repeatability, the proposed assay allowed a quantification of the targeted DNA sequence in fractions with a Avr3a/avr3a ratio in the range 1/99 to 99/1. The reliability of the test was also checked for counting zoospores. Applications for future research in P. infestans/host quantitative interactions were also discussed.
Collapse
|
45
|
Zhan J, McDonald BA. Experimental measures of pathogen competition and relative fitness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:131-53. [PMID: 23767846 DOI: 10.1146/annurev-phyto-082712-102302] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Competition among pathogen strains for limited host resources can have a profound effect on pathogen evolution. A better understanding of the principles and consequences of competition can be useful in designing more sustainable disease management strategies. The competitive ability and relative fitness of a pathogen strain are determined by its intrinsic biological properties, the resistance and heterogeneity of the corresponding host population, the population density and genetic relatedness of the competing strains, and the physical environment. Competitive ability can be inferred indirectly from fitness components, such as basic reproduction rate or transmission rate. However, pathogen strains that exhibit higher fitness components when they infect a host alone may not exhibit a competitive advantage when they co-infect the same host. The most comprehensive measures of competitive ability and relative fitness come from calculating selection coefficients in a mixed infection in a field setting. Mark-release-recapture experiments can be used to estimate fitness costs associated with unnecessary virulence and fungicide resistance.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | | |
Collapse
|
46
|
Sakr N. Diversity in Plasmopara halstedii,the Causal Agent of Sunflower Downy Mildew. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss4.2012.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Zhan J, Yang L, Zhu W, Shang L, Newton AC. Pathogen populations evolve to greater race complexity in agricultural systems--evidence from analysis of Rhynchosporium secalis virulence data. PLoS One 2012; 7:e38611. [PMID: 22723870 PMCID: PMC3377678 DOI: 10.1371/journal.pone.0038611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ≈ 1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r(20) = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
48
|
Lannou C. Variation and selection of quantitative traits in plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:319-38. [PMID: 22702351 DOI: 10.1146/annurev-phyto-081211-173031] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first section presents the quantitative traits of pathogenicity that are most commonly measured by plant pathologists, how the expression of those traits is influenced by environmental factors, and why the traits must be taken into account for understanding pathogen evolution in agricultural systems. Particular attention is given to the shared genetic control of these traits by the host and the pathogen. Next, the review discusses how quantitative traits account for epidemic development and how they can be related to pathogen fitness. The main constraints that influence the evolution of quantitative traits in pathogen populations are detailed. Finally, possible directions for research on the management of pathogen virulence (as defined by evolutionists) and host quantitative resistance are presented. The review evaluates how the theoretical corpus developed by epidemiologists and evolutionists may apply to plant pathogens in the context of agriculture. The review also analyzes theoretical papers and compares the modeling hypotheses to the biological characteristics of plant pathogens.
Collapse
|
49
|
Tellier A, Brown JKM. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions. BMC Evol Biol 2011; 11:319. [PMID: 22044632 PMCID: PMC3273489 DOI: 10.1186/1471-2148-11-319] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes). It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. RESULTS Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur. CONCLUSIONS Our theoretical results confirm the importance of empirical studies for measuring the environmental heterogeneity for genetic costs of resistance and virulence alleles. We suggest that such studies should be developed to investigate the generality of this mechanism for the long-term maintenance of genetic diversity at host and parasite genes.
Collapse
Affiliation(s)
- Aurélien Tellier
- Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
50
|
Brown JKM, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:345-67. [PMID: 21513455 DOI: 10.1146/annurev-phyto-072910-095301] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors.
Collapse
Affiliation(s)
- James K M Brown
- Department of Disease and Stress Biology, John Innes Center, Colney, Norwich, NR4 7UH, United Kingdom.
| | | |
Collapse
|