1
|
Rossel S, Peters J, Charzinski N, Eichsteller A, Laakmann S, Neumann H, Martínez Arbizu P. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci Rep 2024; 14:1280. [PMID: 38218969 PMCID: PMC10787734 DOI: 10.1038/s41598-024-51235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany.
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, 20146, Hamburg, Germany
| | - Nele Charzinski
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Hermann Neumann
- Institute for Sea Fisheries, Thuenen Institute, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
2
|
Benyahia H, Parola P, Almeras L. Evolution of MALDI-TOF MS Profiles from Lice and Fleas Preserved in Alcohol over Time. INSECTS 2023; 14:825. [PMID: 37887837 PMCID: PMC10607003 DOI: 10.3390/insects14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
3
|
Rossel S, Peters J, Laakmann S, Martínez Arbizu P, Holst S. Potential of MALDI-TOF MS-based proteomic fingerprinting for species identification of Cnidaria across classes, species, regions and developmental stages. Mol Ecol Resour 2023; 23:1620-1631. [PMID: 37417794 DOI: 10.1111/1755-0998.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Janna Peters
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| |
Collapse
|
4
|
M'madi Saidou A, Diarra AZ, Almeras L, Parola P. Identification of ticks from an old collection by MALDI-TOF MS. J Proteomics 2022; 264:104623. [PMID: 35623553 DOI: 10.1016/j.jprot.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Objective of this study is to find the optimal conditions for preparing the samples, resulting in quality, reproducible and specific MS spectra of the ticks, with a shelf life in 70% ethanol of more than ten years. Amblyomma (Am.) variegatum species which had been stored in alcohol for more than twenty years and for which numerous specimens were available were used to compare the performance of four protocols tested. Spectra of insufficient quality were obtained from Am. variegatum legs preserved in alcohol for long periods with the reference protocol, named DO that we had set up years ago. The same observation was made on the spectra from Am. variegatum legs from dry (evaporated alcohol, DO-mod protocol). With new protocols named ReDO and PReDO the spectra were of good quality with high intensities (> 3000 a.u.). Blind testing showed that 94%, and 93% of the spectra were correctly identified with relevant log score values (LSVs ≥1.8), respectively for ReDO and PReDO protocols. All soft ticks treated in this study by PReDO protocol exhibited low intensity spectra with background noise. This study revealed that MALDI-TOF MS is able to identify hard ticks stored during decades in alcohol or dry (evaporated alcohol). SIGNIFICANCE OF THE STUDY: The correct identification of ticks, including vectors responsible for the transmission of infectious diseases in humans and animals is essential for their control. MALDI-TOF MS, a proteomic tool that has emerged in recent years, has become an innovative, accurate and alternative tool for the identification of arthropods, including ticks. However, previous studies reported that preservation of arthropods in alcohol modified the MS spectra obtained from specimens of the same species freshly collected or frozenly stored. In this study, a standard protocol was established for the identification of tick collections which had been stored for more than ten years in alcohol. Four different protocols were assessed. The analysis of the results showed that among the four protocols tested, two protocols named ReDO (Rehydration and incubation of the legs in 40 μl of HPLC water for 12 h in a dry bath at 37°) and PreDO (Drying of the legs for 12 h in a dry bath at 37 °C followed by rehydration and incubation in 40 μl of HPLC water for 12 h.) seem to be more appropriate for the MALDI-TOF MS identification of ticks from old collections preserved in alcohol or dry. This study is promising for the future, as it will make it possible to create a MALDI-TOF MS database from a wide range of ticks which have been stored for a long time in alcohol or which are dry stored in laboratories and museums around the world.
Collapse
Affiliation(s)
- Ahamada M'madi Saidou
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
5
|
Marien A, Sedefoglu H, Dubois B, Maljean J, Francis F, Berben G, Guillet S, Morin JF, Fumière O, Debode F. Detection of Alphitobius diaperinus by Real-Time Polymerase Chain Reaction With a Single-Copy Gene Target. Front Vet Sci 2022; 9:718806. [PMID: 35356786 PMCID: PMC8959938 DOI: 10.3389/fvets.2022.718806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/10/2022] [Indexed: 01/06/2023] Open
Abstract
Use of edible insects as an alternative source of proteins in food and feed is increasing. These last years, numerous companies in Europe have started producing insects for food and feed purposes. In the European Union, the use of edible insects for human consumption falls within Regulation (EU) No. 2015/2283 on novel foods. For feed, Commission Regulation (EU) 2017/893 authorizes seven insect species as processed animal proteins for aquaculture. Methods of authentication are required to check the conformity of the products. In this study, we propose a real-time polymerase chain reaction (PCR) method for the specific detection of the lesser mealworm (Alphitobius diaperinus), one of the species included in the shortlist of authorized insects. The selected target is the cadherin gene with a single-copy (per haploid genome) illustrated by our experimental evidence. The PCR test amplified a 134-bp fragment of the cadherin gene. The qualitative method was assessed toward several performance criteria. Specificity was checked against 54 insect species next to other animal and plant species. The sensitivity, efficiency, robustness, and transferability of the PCR assay were also successfully tested. Finally, the applicability of the test was assessed on real-life processed samples (industrial meals) of A. diaperinus. The study also showed that there seems to be a huge confusion on the correct labeling of the marketed mealworms. We did not succeed to get Alphitobius laevigatus samples. They all appeared to belong to the A. diaperinus taxon.
Collapse
Affiliation(s)
- Aline Marien
- Quality and Authentication of Agricultural Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Gembloux, Belgium
- *Correspondence: Aline Marien
| | - Hamza Sedefoglu
- Haute Ecole Louvain-en-Hainaut, Montignies-sur-Sambre, Belgium
| | - Benjamin Dubois
- Quality and Authentication of Agricultural Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Julien Maljean
- Quality and Authentication of Agricultural Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, ULiège, Gembloux, Belgium
| | - Gilbert Berben
- Quality and Authentication of Agricultural Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| | | | | | - Olivier Fumière
- Quality and Authentication of Agricultural Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Frédéric Debode
- Biological Engineering Unit, Life Sciences Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| |
Collapse
|
6
|
Novel attempt at discrimination of a bullet-shaped siphonophore (Family Diphyidae) using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF MS). Sci Rep 2021; 11:19077. [PMID: 34561535 PMCID: PMC8463557 DOI: 10.1038/s41598-021-98724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
One major difficulty in identifying the gelatinous bodied bullet-shaped Siphonophore, Diphyids, is that their shape is deformed following ethanol fixation. Ethanol often is preferred over other fixatives, since samples fixed in ethanol can be used for molecular studies that can supplement morphological findings. To overcome this problem, we obtained protein mass spectra of ten species of Diphyidae found in the waters of the Kuroshio Current (Northwest Pacific and South Coast of South Korea) to test whether MALDI-ToF MS could be used as a methodology for species identification. In addition, a number of morphological characteristics that can be used with ethanol-treated samples was summarized. Concatenated phylogenetic analysis was also performed to determine the phylogenetic relationship by obtaining partial sequences of four genes (mtCOI, 16S rRNA, 18S rRNA, and ITS regions). Based on our integrative analysis, MALDI-ToF MS was evaluated as a potentially fast, inexpensive, and accurate tool for species identification along with conventional morphological and DNA barcoding for Diphyidae.
Collapse
|
7
|
Renz J, Markhaseva EL, Laakmann S, Rossel S, Martinez Arbizu P, Peters J. Proteomic fingerprinting facilitates biodiversity assessments in understudied ecosystems: A case study on integrated taxonomy of deep sea copepods. Mol Ecol Resour 2021; 21:1936-1951. [PMID: 33900025 DOI: 10.1111/1755-0998.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Accurate and reliable biodiversity estimates of marine zooplankton are a prerequisite to understand how changes in diversity can affect whole ecosystems. Species identification in the deep sea is significantly impeded by high numbers of new species and decreasing numbers of taxonomic experts, hampering any assessment of biodiversity. We used in parallel morphological, genetic, and proteomic characteristics of specimens of calanoid copepods from the abyssal South Atlantic to test if proteomic fingerprinting can accelerate estimating biodiversity. We cross-validated the respective molecular discrimination methods with morphological identifications to establish COI and proteomic reference libraries, as they are a pre-requisite to assign taxonomic information to the identified molecular species clusters. Due to the high number of new species only 37% of the individuals could be assigned to species or genus level morphologically. COI sequencing was successful for 70% of the specimens analysed, while proteomic fingerprinting was successful for all specimens examined. Predicted species richness based on morphological and molecular methods was 42 morphospecies, 56 molecular operational taxonomic units (MOTUs) and 79 proteomic operational taxonomic units (POTUs), respectively. Species diversity was predicted based on proteomic profiles using hierarchical cluster analysis followed by application of the variance ratio criterion for identification of species clusters. It was comparable to species diversity calculated based on COI sequence distances. Less than 7% of specimens were misidentified by proteomic profiles when compared with COI derived MOTUs, indicating that unsupervised machine learning using solely proteomic data could be used for quickly assessing species diversity.
Collapse
Affiliation(s)
- Jasmin Renz
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Elena L Markhaseva
- Laboratory of Marine Research, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Sven Rossel
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany.,Marine Biodiversity Research, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany.,Marine Biodiversity Research, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|
8
|
Leni G, Prandi B, Varani M, Faccini A, Caligiani A, Sforza S. Peptide fingerprinting of Hermetia illucens and Alphitobius diaperinus: Identification of insect species-specific marker peptides for authentication in food and feed. Food Chem 2020; 320:126681. [PMID: 32247168 DOI: 10.1016/j.foodchem.2020.126681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/15/2020] [Accepted: 03/21/2020] [Indexed: 02/08/2023]
Abstract
Insects have been proposed as new source of proteins to meet the growing demand connected to the increasing world population. In the EU the inclusion of insect proteins in feed and food is strictly regulated. Hence, analytical methods able to discriminate and identify different insect species in food and feed are a necessity. In this work, a peptidomic approach was applied to determine peptide biomarkers for two edible insect species: lesser mealworm and black soldier fly. Three species specific peptide biomarkers were identified using LC-MS/MS. The two insects were mixed with fish standard feed at different concentrations, to evaluate the feasibility of their use as markers in complex matrices. The detection of marker peptides was confirmed down to 1% insect amount. The data here reported constitutes the first proof of concept for the potential application of the peptide marker approach for the identification and quantification of insect ingredients.
Collapse
Affiliation(s)
- Giulia Leni
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Martina Varani
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrea Faccini
- Centro Interdipartimentale Misure "Giuseppe Casnati", Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Rakotonirina A, Pol M, Kainiu M, Barsac E, Tutagata J, Kilama S, O'Connor O, Tarantola A, Colot J, Dupont-Rouzeyrol M, Richard V, Pocquet N. MALDI-TOF MS: optimization for future uses in entomological surveillance and identification of mosquitoes from New Caledonia. Parasit Vectors 2020; 13:359. [PMID: 32690083 PMCID: PMC7372833 DOI: 10.1186/s13071-020-04234-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 12/05/2022] Open
Abstract
Background Mosquito vectors cause a significant human public health burden through the transmission of pathogens. Due to the expansion of international travel and trade, the dispersal of these mosquito vectors and the pathogens they carry is on the rise. Entomological surveillance is therefore required which relies on accurate mosquito species identification. This study aimed to optimize the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for mosquito identification. Methods Aedes aegypti of the Bora-Bora strain and 11 field-sampled mosquito species were used in this study. Analyses were performed to study the impact of the trapping duration on mosquito identification with MALDI-TOF MS. The best preservation methods to use for short, medium and long-term preservation before MALDI-TOF MS analysis were also assessed. In addition, the number of specimens per species required for MALDI-TOF MS database creation was determined. The first MALDI-TOF database of New Caledonian mosquitoes was assembled and the optimal threshold for mosquito species identification according to the sensitivity and specificity of this technique was determined. Results This study showed that the identification scores decreased as the trapping duration increased. High identification scores were obtained for mosquitoes preserved on silica gel and cotton at room temperature and those frozen at − 20 °C, even after two months of preservation. In addition, the results showed that the scores increased according to the number of main spectrum patterns (MSPs) used until they reached a plateau at 5 MSPs for Ae. aegypti. Mosquitoes (n = 67) belonging to 11 species were used to create the MALDI-TOF reference database. During blind test analysis, 96% of mosquitoes tested (n = 224) were correctly identified. Finally, based on MALDI-TOF MS sensitivity and specificity, the threshold value of 1.8 was retained for a secure identification score. Conclusions MALDI-TOF MS allows accurate species identification with high sensitivity and specificity and is a promising tool in public health for mosquito vector surveillance.![]()
Collapse
Affiliation(s)
- Antsa Rakotonirina
- Institut Pasteur de Nouvelle-Calédonie, URE-Entomologie Médicale, Nouméa, 98845, New Caledonia.
| | - Morgane Pol
- Institut Pasteur de Nouvelle-Calédonie, URE-Entomologie Médicale, Nouméa, 98845, New Caledonia
| | - Malia Kainiu
- Institut Pasteur de Nouvelle-Calédonie, Groupe de Recherche en Bactériologie Expérimentale, Nouméa, 98845, New Caledonia
| | - Emilie Barsac
- Institut Pasteur de Nouvelle-Calédonie, Groupe de Recherche en Bactériologie Expérimentale, Nouméa, 98845, New Caledonia
| | - Jordan Tutagata
- Institut Pasteur de Nouvelle-Calédonie, URE-Entomologie Médicale, Nouméa, 98845, New Caledonia
| | - Sosiasi Kilama
- Institut Pasteur de Nouvelle-Calédonie, URE-Entomologie Médicale, Nouméa, 98845, New Caledonia
| | - Olivia O'Connor
- Institut Pasteur de Nouvelle-Calédonie, URE-Dengue et autres Arboviroses, Nouméa, 98845, New Caledonia
| | - Arnaud Tarantola
- Institut Pasteur de Nouvelle-Calédonie, URE-Epidémiologie, Nouméa, 98845, New Caledonia
| | - Julien Colot
- Institut Pasteur de Nouvelle-Calédonie, Groupe de Recherche en Bactériologie Expérimentale, Nouméa, 98845, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- Institut Pasteur de Nouvelle-Calédonie, URE-Dengue et autres Arboviroses, Nouméa, 98845, New Caledonia
| | - Vincent Richard
- Institut Pasteur, Direction internationale, Paris, 75015, France
| | - Nicolas Pocquet
- Institut Pasteur de Nouvelle-Calédonie, URE-Entomologie Médicale, Nouméa, 98845, New Caledonia
| |
Collapse
|
10
|
Testing the Applicability of MALDI-TOF MS as an Alternative Stock Identification Method in a Cryptic Species Complex. Molecules 2020; 25:molecules25143214. [PMID: 32674457 PMCID: PMC7397217 DOI: 10.3390/molecules25143214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Knowledge of intraspecific variability of a certain species is essential for their long-term survival and for the development of conservation plans. Nowadays, molecular/genetic methods are the most frequently used for this purpose. Although, the Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) technique has become a promising alternative tool to specify intraspecific variability, there is a lack of information about the limitations of this method, and some methodological issues need to be resolved. Towards this goal, we tested the sensitivity of this method on an intraspecific level, using genetically identified individuals of a cryptic fish species complex collected from five distinct populations. Additionally, some methodologic issues, such as the effect of (1) delayed sample preparation, (2) clove oil anaesthetization, and (3) different tissue types (muscle, and brain) were investigated using the MS analysis results. Our results show that the delayed sample preparation has a fundamental effect on the result of MS analysis, while at the same time the clove oil did not affect the results considerably. Both the brain and muscle samples were usable for cryptic species identification, but in our opinion this method has limited applicability for population-level segregation. The application of MALDI-TOF MS to the exploitable toolkit of phylogenetic and taxonomic researches could be used to broaden conclusions.
Collapse
|
11
|
Bredtmann CM, Krücken J, Murugaiyan J, Balard A, Hofer H, Kuzmina TA, von Samson-Himmelstjerna G. Concurrent Proteomic Fingerprinting and Molecular Analysis of Cyathostomins. Proteomics 2020; 19:e1800290. [PMID: 30786147 DOI: 10.1002/pmic.201800290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Rapid, cost-effective, efficient, and reliable helminth species identification is of considerable importance to understand host-parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI-TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches. A simple and robust protocol for protein extraction and subsequent DNA isolation allowing molecular confirmation of proteomic findings is developed, showing that MALDI-TOF MS can discriminate adult stages of the two closely related cyathostomin species Cylicostephanus longibursatus and Cylicostephanus minutus. Intraspecific variability of proteomic profiles within morphospecies demonstrated an identification of morphospecies with an accuracy of close to 100%. In contrast, three genospecies within C. minutus and sex-specific profiles within both morphospecies could not be reliably discriminated using MALDI-TOF MS. In conclusion, MALDI-TOF MS complemented by the molecular protocol is a reliable and efficient approach for cyathostomin species identification.
Collapse
Affiliation(s)
- Christina Maria Bredtmann
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.,Department of Biotechnology, SRM University AP, 522502, Amaravati, India
| | - Alice Balard
- Ecology and Evolution of Molecular Parasite Host Interactions, Molecular Parasitology, Institute for Biology, Humboldt University Berlin, 10115, Berlin, Germany.,Ecology and Evolution of Molecular Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Heribert Hofer
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.,Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Tetiana A Kuzmina
- Department of Parasitology, I. I. Schmalhausen Institute of Zoology, 01030, Kiev, Ukraine
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
12
|
Southey BR, Rodriguez-Zas SL, Rhodes JS, Sweedler JV. Characterization of the prohormone complement in Amphiprion and related fish species integrating genome and transcriptome assemblies. PLoS One 2020; 15:e0228562. [PMID: 32163422 PMCID: PMC7067429 DOI: 10.1371/journal.pone.0228562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Amphiprion (anemonefish or clownfish) family of teleost fish, which is not a common model species, exhibits multiple unique characteristics, including social control of body size and protandrous sex change. The social changes in sex and body size are modulated by neuropeptide signaling pathways. These neuropeptides are formed from complex processing from larger prohormone proteins; understanding the neuropeptide complement requires information on complete prohormones sequences. Genome and transcriptome information within and across 22 teleost fish species, including 11 Amphiprion species, were assembled and integrated to achieve the first comprehensive survey of their prohormone genes. This information enabled the identification of 175 prohormone isoforms from 159 prohormone proteins across all species. This included identification of 9 CART prepropeptide genes and the loss of insulin-like 5B and tachykinin precursor 1B genes in Pomacentridae species. Transcriptome assemblies generally detected most prohormone genes but provided fewer prohormone genes than genome assemblies due to the lack of expression of prohormone genes or specific isoforms and tissue sampled. Comparisons between duplicate genes indicated that subfunctionalization, degradation, and neofunctionalization may be occurring between all copies. Characterization of the prohormone complement lays the foundation for future peptidomic investigation of the molecular basis of social physiology and behavior in the teleost fish.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justin S. Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Psychology, University of Illinois at Urbana−Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
13
|
Schulz A, Karger A, Bettin B, Eisenbarth A, Sas MA, Silaghi C, Groschup MH. Molecular discrimination of Hyalomma tick species serving as reservoirs and vectors for Crimean-Congo hemorrhagic fever virus in sub-Saharan Africa. Ticks Tick Borne Dis 2020; 11:101382. [PMID: 32008996 DOI: 10.1016/j.ttbdis.2020.101382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
The species identification of tick vectors of Crimean-Congo hemorrhagic fever virus (CCHFV), especially Hyalomma (H.) species, is a prerequisite to understand the eco-epidemiology of this disease and to reveal vector and virus reservoir species. However, the morphologic species discrimination can be difficult for damaged or blood-fed ticks and in case of species intercrosses. Therefore, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and restriction fragment length polymorphism (RFLP) analysis to distinguish the most common Hyalomma species from sub-Saharan Africa (H. truncatum, H. rufipes and H. dromedarii). Within the last years, MALDI-TOF MS analysis based on tick leg proteins has been shown to be a reliable method to distinguish several tick species. For this purpose, a reference spectral library of several European, American and African tick species was established. In this study, six different Hyalomma species were tested, all of which were all clearly distinguishable by mass spectrometric analyses. Moreover, MALDI TOF- MS was able to confirm morphologic findings where sequencing provided ambiguous results. In addition, a polymerase chain reaction (PCR) based on the CO1 gene amplification of ticks has been developed for the unequivocal species identification by amplicon sequencing and specific restriction endonuclease cleavage pattern analysis. RFLP proved to be a feasible auxiliary discrimination tool for selected Hyalomma species when access to sequencing methods is not available, as for instance during field studies.
Collapse
Affiliation(s)
- A Schulz
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - A Karger
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - B Bettin
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - A Eisenbarth
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M A Sas
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - C Silaghi
- Friedrich-Loeffler-Institut, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Rossel S, Martínez Arbizu P. Revealing higher than expected diversity of Harpacticoida (Crustacea:Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci Rep 2019; 9:9182. [PMID: 31235850 PMCID: PMC6591307 DOI: 10.1038/s41598-019-45718-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
The North Sea is one of the most extensively studied marine regions of the world. Hence, large amounts of molecular data for species identification are available in public repositories, and expectations to find numerous new species in this well-known region are rather low. However, molecular reference data for harpacticoid copepods from this area in particular but also for this group in general is scarce. By assessing COI barcodes and MALDI-TOF mass spectra for this group of small crustaceans, it was discovered that there is a huge unknown diversity in this area. In total, COI sequences for 548 specimens from 115 species of harpacticoid copepods are presented. Over 19% of these were new to science and ten MOTUs were found to be part of cryptic species complexes. MALDI-TOF mass spectra were assessed for 622 specimens from 75 species. Because results were in concordance with species delimitation by COI barcoding and also enabled recognition of possible cryptic species, the discriminative power of this technique for biodiversity assessments is highlighted. Findings imply, species diversity in this group may be largely underestimated and total species number can be expected to be much higher than previously assumed.
Collapse
Affiliation(s)
- S Rossel
- Senckenberg Research Institute, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany. .,Marine Biodiversity Research, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - P Martínez Arbizu
- Senckenberg Research Institute, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany.,Marine Biodiversity Research, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Zurita A, Djeghar R, Callejón R, Cutillas C, Parola P, Laroche M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a useful tool for the rapid identification of wild flea vectors preserved in alcohol. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:185-194. [PMID: 30516832 DOI: 10.1111/mve.12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/18/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
Flea identification is a significant issue because some species are considered as important vectors of several human pathogens that have emerged or re-emerged recently, such as Bartonella henselae (Rhizobiales: Bartonellaceae) and Rickettsia felis (Rickettsiales: Rickettsiaceae). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated in recent years for the identification of multicellular organisms, including arthropods. A preliminary study corroborated the usefulness of this technique for the rapid identification of fleas, creating a preliminary database containing the spectra of five species of flea. However, longterm flea preservation in ethanol did not appear to be an adequate method of storage in the context of specimen identification by MALDI-TOF MS profiling. The goal of the present work was to assess the performance of MALDI-TOF MS in the identification of seven flea species [Ctenocephalides felis (Siphonaptera: Pulicidae), Ctenocephalides canis, Pulex irritans (Siphonaptera: Pulicidae), Archaeopsylla erinacei (Siphonaptera: Pulicidae), Leptopsylla taschenbergi (Siphonaptera: Ceratophyllidae), Stenoponia tripectinata (Siphonaptera: Stenoponiidae) and Nosopsyllus fasciatus (Siphonaptera: Ceratophyllidae)] collected in the field and stored in ethanol for different periods of time. The results confirmed that MALDI-TOF MS can be used for the identification of wild fleas stored in ethanol. Furthermore, this technique was able to discriminate not only different flea genera, but also the two congeneric species C. felis and C. canis.
Collapse
Affiliation(s)
- A Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - R Djeghar
- Laboratoire d'Amélioration et Développement de la Production Végétale et Animale (LADPVA), Faculté des Sciences de la Nature et de la Vie, Ferhat Abbas University, Sétif, Algeria
| | - R Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - C Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - P Parola
- Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Aix Marseille University, Marseille, France
| | - M Laroche
- Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Aix Marseille University, Marseille, France
| |
Collapse
|
16
|
Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors 2018; 11:281. [PMID: 29720246 PMCID: PMC5932809 DOI: 10.1186/s13071-018-2854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Accurate and rapid identification of dipteran vectors is integral for entomological surveys and is a vital component of control programs for mosquito-borne diseases. Conventionally, morphological features are used for mosquito identification, which suffer from biological and geographical variations and lack of standardization. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for protein profiling of mosquito species from North India with the aim of creating a MALDI-TOF MS database and evaluating it. Methods Mosquito larvae were collected from different rural and urban areas and reared to adult stages. The adult mosquitoes of four medically important genera, Anopheles, Aedes, Culex and Armigerus, were morphologically identified to the species level and confirmed by ITS2-specific PCR sequencing. The cephalothoraces of the adult specimens were subjected to MALDI-TOF analysis and the signature peak spectra were selected for creation of database, which was then evaluated to identify 60 blinded mosquito specimens. Results Reproducible MALDI-TOF MS spectra spanning over 2–14 kDa m/z range were produced for nine mosquito species: Anopheles (An. stephensi, An. culicifacies and An. annularis); Aedes (Ae. aegypti and Ae. albopictus); Culex (Cx. quinquefasciatus, Cx. vishnui and Cx. tritaenorhynchus); and Armigerus (Ar. subalbatus). Genus- and species-specific peaks were identified to create the database and a score of > 1.8 was used to denote reliable identification. The average numbers of peaks obtained were 55–60 for Anopheles, 80–100 for Aedes, 30–60 for Culex and 45–50 peaks for Armigeres species. Of the 60 coded samples, 58 (96.67%) were correctly identified by MALDI-TOF MS with a score > 1.8, while there were two unreliable identifications (both Cx. quinquefasciatus with scores < 1.8). Conclusions MALDI-TOF MS appears to be a pragmatic technique for accurate and rapid identification of mosquito species. The database needs to be expanded to include species from different geographical regions and also different life-cycle stages to fully harness the technique for entomological surveillance programs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2854-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Taruna Kaura
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Kamran Zaman
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Yadav
- Medical Microbiology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| |
Collapse
|
17
|
Rossel S, Martínez Arbizu P. Automatic specimen identification of Harpacticoids (Crustacea:Copepoda) using Random Forest and
MALDI
‐
TOF
mass spectra, including a post hoc test for false positive discovery. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sven Rossel
- Senckenberg am MeerGerman Centre for Marine Biodiversity Research (DZMB) Wilhelmshaven Germany
- AG Marine BiodiversitätFKV‐IBUUniversität Oldenburg Oldenburg Germany
| | - Pedro Martínez Arbizu
- Senckenberg am MeerGerman Centre for Marine Biodiversity Research (DZMB) Wilhelmshaven Germany
- AG Marine BiodiversitätFKV‐IBUUniversität Oldenburg Oldenburg Germany
| |
Collapse
|
18
|
Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. PARASITOLOGY RESEARCH MONOGRAPHS 2018. [PMCID: PMC7122353 DOI: 10.1007/978-3-319-94075-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mosquitoes and other arthropods transmit a large number of medically important pathogens, in particular viruses. These arthropod-borne viruses (arboviruses) include a wide variety of RNA viruses belonging to the Flaviviridae family (West Nile virus (WNV), Usutu virus (USUV), Dengue virus (DENV), Japanese encephalitis virus (JEV), Zika virus (ZIKV)), the Togaviridae family (Chikungunya virus (CHIKV)), and Bunyavirales order (Rift Valley fever virus (RVFV)) (please refer also to Table 9.1). Arboviral transmission to humans and livestock constitutes a major threat to public health and economy as illustrated by the emergence of ZIKV in the Americas, RVFV outbreaks in Africa, and the worldwide outbreaks of DENV. To answer the question if those viral pathogens also pose a risk to Europe, we need to first answer the key questions (summarized in Fig. 9.1):Who could contribute to such an outbreak? Information about mosquito species resident or imported, potential hosts and viruses able to infect vectors and hosts in Germany is needed. Where would competent mosquito species meet favorable conditions for transmission? Information on the minimum requirements for efficient replication of the virus in a given vector species and subsequent transmission is needed. How do viruses and vectors interact to facilitate transmission? Information on the vector immunity, vector physiology, vector genetics, and vector microbiomes is needed.
Collapse
|
19
|
Maasz G, Takács P, Boda P, Varbiro G, Pirger Z. Mayfly and fish species identification and sex determination in bleak (Alburnus alburnus) by MALDI-TOF mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:317-325. [PMID: 28558278 DOI: 10.1016/j.scitotenv.2017.05.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Besides food quality control of fish or cephalopods, the novel mass spectrometry (MS) approaches could be effective and beneficial methods for the investigation of biodiversity in ecological research. Our aims were to verify the applicability of MALDI-TOF MS in the rapid identification of closely related species, and to further develop it for sex determination in phenotypically similar fish focusing on the low mass range. For MALDI-TOF MS spectra analysis, ClinProTools software was applied, but our observed classification was also confirmed by Self Organizing Map. For verifying the wide applicability of the method, brains from invertebrate and vertebrate species were used in order to detect the species related markers from two mayflies and eight fish as well as sex-related markers within bleak. Seven Ephemera larvae and sixty-one fish species related markers were observed and nineteen sex-related markers were identified in bleak. Similar patterns were observed between the individuals within one species. In contrast, there were markedly diverse patterns between the different species and sexes visualized by SOMs. Two different Ephemera species and male or female fish were identified with 100% accuracy. The various fish species were classified into 8 species with a high level of accuracy (96.2%). Based on MS data, dendrogram was generated from different fish species by using ClinProTools software. This MS-based dendrogram shows relatively high correspondence with the phylogenetic relationships of both the studied species and orders. In summary, MALDI-TOF MS provides a cheap, reliable, sensitive and fast identification tool for researchers in the case of closely related species using mass spectra acquired in a low mass range to define specific molecular profiles. Moreover, we presented evidence for the first time for determination of sex within one fish species by using this method. We conclude that it is a powerful tool that can revolutionize ecological and environmental research.
Collapse
Affiliation(s)
- G Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary; Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary.
| | - P Takács
- Department of Hydrozoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| | - P Boda
- Department of Tisza River Research, MTA Centre for Ecological Research, 4032 Debrecen, Hungary
| | - G Varbiro
- Department of Tisza River Research, MTA Centre for Ecological Research, 4032 Debrecen, Hungary
| | - Z Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| |
Collapse
|
20
|
Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 2017; 16:3148-3160. [PMID: 27862981 DOI: 10.1002/pmic.201600287] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Alexandra C Willcox
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Idir Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
21
|
Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:289-298. [PMID: 28426182 DOI: 10.1111/mve.12230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/12/2016] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.
Collapse
Affiliation(s)
- F N Raharimalala
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - A Rakotondrasoa
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - J M Collard
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - S Boyer
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
22
|
Abstract
In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient tool for arthropod identification. Its application for field monitoring of adult mosquitoes was demonstrated, but identification of larvae has been limited to laboratory-reared specimens. Study aim was to test the success of MALDI-TOF MS in correctly identifying mosquito larvae collected in the field. Collections were performed at 13 breeding sites in urban areas of Marseille, a city in the South of France. A total of 559 larvae were collected. Of these, 73 were accurately morphologically identified, with confirmation either by molecular identification (n = 31) or analysis with MALDI-TOF MS (n = 31) and 11 were tested using both methods. The larvae identified belonged to six species including Culiseta longiareolata, Culex pipiens pipiens, Culex hortensis, Aedes albopictus, Ochlerotatus caspius and Anopheles maculipennis. A high intra-species reproducibility and inter-species specificity of whole larva MS spectra was obtained and was independent of breeding site. More than 92% of the remaining 486 larvae were identified in blind tests against the MS spectra database. Identification rates were lower for early and pupal stages, which is attributed to lower protein abundance and metamorphosis, respectively. The suitability of MALDI-TOF MS for mosquito larvae identification from the field has been confirmed.
Collapse
|
23
|
Diarra AZ, Almeras L, Laroche M, Berenger JM, Koné AK, Bocoum Z, Dabo A, Doumbo O, Raoult D, Parola P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis 2017; 11:e0005762. [PMID: 28742123 PMCID: PMC5542699 DOI: 10.1371/journal.pntd.0005762] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/03/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
Collapse
Affiliation(s)
- Adama Zan Diarra
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Lionel Almeras
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Maureen Laroche
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Jean-Michel Berenger
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | | | - Abdoulaye Dabo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Didier Raoult
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Murugaiyan J, Roesler U. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors. Front Cell Infect Microbiol 2017; 7:184. [PMID: 28555175 PMCID: PMC5430024 DOI: 10.3389/fcimb.2017.00184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
26
|
Fossou RK, Ziegler D, Zézé A, Barja F, Perret X. Two Major Clades of Bradyrhizobia Dominate Symbiotic Interactions with Pigeonpea in Fields of Côte d'Ivoire. Front Microbiol 2016; 7:1793. [PMID: 27891120 PMCID: PMC5104742 DOI: 10.3389/fmicb.2016.01793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
In smallholder farms of Côte d'Ivoire, particularly in the northeast of the country, Cajanus cajan (pigeonpea) has become an important crop because of its multiple beneficial facets. Pigeonpea seeds provide food to make ends meet, are sold on local markets, and aerial parts serve as forage for animals. Since it fixes atmospheric nitrogen in symbiosis with soil bacteria collectively known as rhizobia, C. cajan also improves soil fertility and reduces fallow time. Yet, seed yields remain low mostly because farmers cannot afford chemical fertilizers. To identify local rhizobial strains susceptible to be used as bio-inoculants to foster pigeonpea growth, root nodules were collected in six fields of three geographically distant regions of Côte d'Ivoire. Nodule bacteria were isolated and characterized using various molecular techniques including matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and DNA sequencing. These molecular analyses showed that 63 out of 85 nodule isolates belonged to two major clades of bradyrhizobia, one of which is known as the Bradyrhizobium elkanii super clade. Phylogenies of housekeeping (16S-ITS-23S, rpoB) and symbiotic (nifH) genes were not always congruent suggesting that lateral transfer of nitrogen fixation genes also contributed to define the genome of these bradyrhizobial isolates. Interestingly, no field-, plant-, or cultivar-specific effect was found to shape the profiles of symbiotic strains. In addition, nodule isolates CI-1B, CI-36E, and CI-41A that belong to distinct species, showed similar symbiotic efficiencies suggesting that any of these strains might serve as a proficient inoculant for C. cajan.
Collapse
Affiliation(s)
- Romain K Fossou
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Dominik Ziegler
- Microbiology Unit, Department of Botany and Plant Biology, University of GenevaGeneva, Switzerland; Mabritec AGRiehen, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny (INPHB) Yamoussoukro, Côte d'Ivoire
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Xavier Perret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| |
Collapse
|
27
|
Kumsa B, Laroche M, Almeras L, Mediannikov O, Raoult D, Parola P. Morphological, molecular and MALDI-TOF mass spectrometry identification of ixodid tick species collected in Oromia, Ethiopia. Parasitol Res 2016; 115:4199-4210. [PMID: 27469536 DOI: 10.1007/s00436-016-5197-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/13/2016] [Indexed: 11/26/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology has recently been reported as a promising method for arthropods identification. More recently, our laboratory reported the correct identification of tick species via the MALDI-TOF MS protein spectra profiling of legs from fresh specimens. The aim of the present study was to assess the use of MALDI-TOF MS for correct identification of ixodid tick species preserved in 70 % ethanol during field collection in Ethiopia. Following morphological identification of 12 tick species, the legs from 85 tick specimens were subjected to MALDI-TOF MS. Spectral analysis revealed an intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. To support the results of the MALDI-TOF MS tick species identification, 41 tick specimens comprising 3 to 5 specimens per tick species were used to create a reference spectra database, which was evaluated using the spectra of the 44 remaining tick specimens. The blind tests revealed that 100 % of the tick specimens studied by MALDI-TOF MS were correctly identified. A relevant Log score value (LSV) of >1.8 was recorded for all of the tick species studied by MALDI-TOF MS, except for Rhipicephalus praetextatus. The morphological and MALDI-TOF MS identifications were confirmed by sequencing the 12S ribosomal RNA (rRNA) gene of 40 tick specimens belonging to 11 ixodid species. Taken together, the results of the present study indicate that MALDI-TOF MS is a reliable tool for tick species identification, even after preservation in ethanol, provided that a reference spectra database is built from specimens that represent the respective species stored under the same conditions.
Collapse
Affiliation(s)
- Bersissa Kumsa
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, PO. BOX 34, Bishoftu, Ethiopia
| | - Maureen Laroche
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France
| | - Lionel Almeras
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France
- Unité de Parasitologie, Département d'Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Oleg Mediannikov
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France
- Campus Universitaire IRD de Hann, Dakar, Senegal
| | - Didier Raoult
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France
| | - Philippe Parola
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, 13385, Marseille, France.
| |
Collapse
|
28
|
Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol 2016; 11:549-66. [PMID: 27070074 DOI: 10.2217/fmb.16.5] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid and reliable identification of arthropod vector species is an essential component of the fight against vector-borne diseases. However, owing to the lack of entomological expertise required for the morphological identification method, development of alternative and complementary tools is needed. This review describes the main methods used for arthropod identification, focusing on the emergence of protein profiling using MALDI-TOF MS technology. Sample preparation, analysis of reproducibility, database creation and blind tests for controlling accuracy of this tool for arthropod identification are described. The advantages and limitations of the MALDI-TOF MS method are illustrated by emphasizing different hematophagous arthropods, including mosquitoes and ticks, the top two main vectors of infectious diseases.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
29
|
Lafri I, Almeras L, Bitam I, Caputo A, Yssouf A, Forestier CL, Izri A, Raoult D, Parola P. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS. PLoS Negl Trop Dis 2016; 10:e0004351. [PMID: 26771833 PMCID: PMC4714931 DOI: 10.1371/journal.pntd.0004351] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/11/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. METHODOLOGY/PRINCIPAL FINDINGS Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. CONCLUSION The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.
Collapse
Affiliation(s)
- Ismail Lafri
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- Ecole Nationale Supérieure Vétérinaire d’Alger, Alger, Algérie
- Institut des Sciences Vétérinaires, Université Blida 1, Blida, Algérie
| | - Lionel Almeras
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Idir Bitam
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- Ecole Nationale Supérieure Vétérinaire d’Alger, Alger, Algérie
- Université de Bab Ezzouar, Laboratoire d’Ecologie et Environnement, Bab Ezzouar, Algérie
| | - Aurelia Caputo
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Amina Yssouf
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Claire-Lise Forestier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Arezki Izri
- Parasitologie-Mycologie, CHU Avicenne, Université Paris 13, Bobigny, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|
30
|
The application of “-omics” technologies for the classification and identification of animals. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0234-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
32
|
Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasit Vectors 2015; 8:266. [PMID: 25957576 PMCID: PMC4432514 DOI: 10.1186/s13071-015-0878-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/29/2015] [Indexed: 11/15/2022] Open
Abstract
Background Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. Methods We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. Results Identical biomarker mass patterns (‘superspectra’) were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. Conclusions A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
Collapse
|
33
|
Yssouf A, Almeras L, Berenger JM, Laroche M, Raoult D, Parola P. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick Borne Dis 2015; 6:579-86. [PMID: 26051210 DOI: 10.1016/j.ttbdis.2015.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is increasingly emerging tool for identification of arthropods including tick vectors using whole or body part of specimens. The challenges of the present study were to assess MALDI-TOF MS profiling for the both identification of tick species and Rickettsia spp. in infected ticks using hemolymph as protein mixture. METHODS Firstly, hemolymph protein mixture from legs of 5 tick species, Rhipicephalus sanguineus, Rhipicephalus bursa, Dermacentor marginatus, Hyalomma marginatum rufipes and Amblyomma variegatum infected by Rickettsia africae were submitted to MALDI-TOF MS to assess tick species identification ability. Secondly, hemolymph MS spectra from Rh. sanguineus infected or not by Rickettsia c. conorii were compared to detect protein profiles changes. Finally, leg hemolymph MS spectra from new specimens of the 5 tick species were tested blindly including ticks infected by R. c. conorii. Discriminating mass peaks distinguishing the R. c. conorii infected and non-infected Rh sanguineus were determined. RESULTS Consistent and reproducible MS profiles were obtained into each tick species. Comparison of MS spectra revealed distinct hemolymph protein profiles according to tick species. MS spectra changes were observed between hemolymphs from R. c. conorii-infected and non-infected Rh. sanguineus specimens, revealing 17 discriminating mass peaks. Clustering analysis based on MS protein profiles highlighted that hemolymph samples were grouped according to tick species. All tick hemolymph samples blindly tested against our home-made arthropod MS reference database were correctly identified at the species distinguishing also R. c. conorii-infected from Rickettsia-free Rh. sanguineus specimens. CONCLUSION The present study demonstrated the use of hemolymph MS profiles for dual identification of tick species and associated pathogens. This concomitant identification could be helpful for tick entomological diagnosis, notably for specimens removed directly on patients.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Michel Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Maureen Laroche
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
34
|
Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V, de Meyer S, Vogel G, Tonolla M, Howieson J, Reeve W, Perret X. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015; 99:5547-62. [PMID: 25776061 DOI: 10.1007/s00253-015-6515-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023]
Abstract
Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.
Collapse
Affiliation(s)
- Dominik Ziegler
- Department of Botany and Plant Biology, Microbiology Unit, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl Trop Dis 2015; 9:e0003473. [PMID: 25659152 PMCID: PMC4319929 DOI: 10.1371/journal.pntd.0003473] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. METHODOLOGY/PRINCIPAL FINDINGS The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. CONCLUSIONS/SIGNIFICANCE Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Jérôme Terras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
36
|
Dieme C, Yssouf A, Vega-Rúa A, Berenger JM, Failloux AB, Raoult D, Parola P, Almeras L. Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasit Vectors 2014; 7:544. [PMID: 25442218 PMCID: PMC4273427 DOI: 10.1186/s13071-014-0544-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/17/2014] [Indexed: 12/02/2022] Open
Abstract
Background The identification of mosquito vectors is generally based on morphological criteria, but for aquatic stages, morphological characteristics may be missing, leading to incomplete or incorrect identification. The high cost of molecular biology techniques requires the development of an alternative strategy. In the last decade, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has proved to be efficient for arthropod identification at the species level. Methods To investigate the usefulness of MALDI-TOF MS for the identification of mosquitoes at aquatic stages, optimizations of sample preparation, diet, body parts and storage conditions were tested. Protein extracts of whole specimens from second larval stage to pupae were selected for the creation of a reference spectra database. The database included a total of 95 laboratory-reared specimens of 6 mosquito species, including Anopheles gambiae (S form), Anopheles coluzzi (M form), Culex pipiens pipiens, Culex pipiens molestus, Aedes aegypti and 2 colonies of Aedes albopictus. Results The present study revealed that whole specimens at aquatic stages produced reproducible and singular spectra according to the mosquito species. Moreover, MS protein profiles appeared weakly affected by the diet provided. Despite the low diversity of some MS profiles, notably for cryptic species, clustering analyses correctly classified all specimens tested at the species level followed by the clustering of early vs. late aquatic developmental stages. Discriminant mass peaks were recorded for the 6 mosquito species analyzed at larval stage 3 and the pupal stage. Querying against the reference spectra database of 149 new specimens at different aquatic stages from the 6 mosquito species revealed that 147 specimens were correctly identified at the species level and that early and late developmental stages were also distinguished. Conclusions The present work highlights that MALDI-TOF MS profiling may be useful for the rapid and reliable identification of mosquito species at aquatic stages. With this proteomic tool, it becomes now conceivable to survey mosquito breeding sites prior to the mosquitoes’ emergence and to adapt anti-vectorial measures according to the mosquito fauna detected. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0544-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Constentin Dieme
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France. .,Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal.
| | - Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Anubis Vega-Rúa
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France.
| | - Jean-Michel Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France.
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| |
Collapse
|
37
|
Stephan R, Johler S, Oesterle N, Näumann G, Vogel G, Pflüger V. Rapid and reliable species identification of scallops by MALDI-TOF mass spectrometry. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: ceratopogonidae) biting midges in senegal. J Clin Microbiol 2014; 53:410-8. [PMID: 25411169 DOI: 10.1128/jcm.01855-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biting midges of the genus Culicoides are implicated as vectors for a wide variety of pathogens. The morphological identification of these arthropods may be difficult because of a lack of detailed investigation of taxonomy for this species in Africa. However, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) profiling is efficient for arthropod identification at the species level. This study established a spectrum database of Culicoides spp. from Senegal using MALDI-TOF. Identification of Culicoides insects to the species level before mass spectrometry was performed on the basis of morphological characters. MALDI-TOF MS reference spectra were determined for 437 field-caught Culicoides of 10 species. The protein profiles of all tested Culicoides revealed several peaks with mass ranges of 2 to 20 kDa. In a validation study, 72 Culicoides specimens in the target species were correctly identified at the species level with a similarity of 95 to 99.9%. Four Culicoides protein profiles were misidentified. Nevertheless, six SuperSpectra (C. imicola, C. enderleini, C. oxystoma, C. kingi, C. magnus, and C. fulvithorax) were created. Abdomens of midges were used to amplify and sequence a portion of the mitochondrial cytochrome oxidase I gene (COI). The results obtained using the MALDI-TOF MS method were consistent with the morphological identification and similar to the genetic identification. Protein profiling using MALDI-TOF is an efficient approach for the identification of Culicoides spp., and it is economically advantageous for approaches that require detailed and quantitative information of vector species that are collected in field. The database of African Culicoides MS spectra created is the first database in Africa. The COI sequences of five Culicoides species that were previously noncharacterized using molecular methods were deposited in GenBank.
Collapse
|
39
|
Mediannikov O, Fenollar F. Looking in ticks for human bacterial pathogens. Microb Pathog 2014; 77:142-8. [PMID: 25229617 DOI: 10.1016/j.micpath.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/28/2023]
Abstract
Ticks are considered to be second worldwide to mosquitoes as vectors of human diseases and the most important vectors of disease-causing pathogens in domestic and wild animals. A number of emerging tick-borne pathogens are already discovered; however, the proportion of undiagnosed infectious diseases, especially in tropical regions, may suggest that there are still more pathogens associated with ticks. Moreover, the identification of bacteria associated with ticks may provide new tool for the control of ticks and tick-borne diseases. Described here molecular methods of screening of ticks, extensive use of modern culturomics approach, newly developed artificial media and different cell line cultures may significantly improve our knowledge about the ticks as the agents of human and animal pathology.
Collapse
Affiliation(s)
- O Mediannikov
- URMITE, UMR CNRS 7278 - IRD 198 - INSERM, Aix Marseille Université, Marseille, France; Campus Universitaire IRD de Hann, Dakar, Senegal.
| | - F Fenollar
- URMITE, UMR CNRS 7278 - IRD 198 - INSERM, Aix Marseille Université, Marseille, France; Campus Universitaire IRD de Hann, Dakar, Senegal
| |
Collapse
|
40
|
Uhlmann KR, Gibb S, Kalkhof S, Arroyo-Abad U, Schulz C, Hoffmann B, Stubbins F, Carpenter S, Beer M, von Bergen M, Feltens R. Species determination of Culicoides biting midges via peptide profiling using matrix-assisted laser desorption ionization mass spectrometry. Parasit Vectors 2014; 7:392. [PMID: 25152308 PMCID: PMC4158057 DOI: 10.1186/1756-3305-7-392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/12/2014] [Indexed: 02/08/2023] Open
Abstract
Background Culicoides biting midges are vectors of bluetongue and Schmallenberg viruses that inflict large-scale disease epidemics in ruminant livestock in Europe. Methods based on morphological characteristics and sequencing of genetic markers are most commonly employed to differentiate Culicoides to species level. Proteomic methods, however, are also increasingly being used as an alternative method of identification. These techniques have the potential to be rapid and may also offer advantages over DNA-based techniques. The aim of this proof-of-principle study was to develop a simple MALDI-MS based method to differentiate Culicoides from different species by peptide patterns with the additional option of identifying discriminating peptides. Methods Proteins extracted from 7 Culicoides species were digested and resulting peptides purified. Peptide mass fingerprint (PMF) spectra were recorded using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and peak patterns analysed in R using the MALDIquant R package. Additionally, offline liquid chromatography (LC) MALDI-TOF tandem mass spectrometry (MS/MS) was applied to determine the identity of peptide peaks in one exemplary MALDI spectrum obtained using an unfractionated extract. Results We showed that the majority of Culicoides species yielded reproducible mass spectra with peak patterns that were suitable for classification. The dendrogram obtained by MS showed tentative similarities to a dendrogram generated from cytochrome oxidase I (COX1) sequences. Using offline LC-MALDI-TOF-MS/MS we determined the identity of 28 peptide peaks observed in one MALDI spectrum in a mass range from 1.1 to 3.1 kDa. All identified peptides were identical to other dipteran species and derived from one of five highly abundant proteins due to an absence of available Culicoides data. Conclusion Shotgun mass mapping by MALDI-TOF-MS has been shown to be compatible with morphological and genetic identification of specimens. Furthermore, the method performs at least as well as an alternative approach based on MS spectra of intact proteins, thus establishing the procedure as a method in its own right, with the additional option of concurrently using the same samples in other MS-based applications for protein identifications. The future availability of genomic information for different Culicoides species may enable a more stringent peptide detection based on Culicoides-specific sequence information. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-392) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin von Bergen
- Department of Proteomics, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| | | |
Collapse
|
41
|
Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, Drancourt M. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 2014; 8:e2984. [PMID: 25058611 PMCID: PMC4109908 DOI: 10.1371/journal.pntd.0002984] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Africa, relapsing fever borreliae are neglected vector-borne pathogens that cause mild to deadly septicemia and miscarriage. Screening vectors for the presence of borreliae currently requires technically demanding, time- and resource-consuming molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has recently emerged as a tool for the rapid identification of vectors and the identification of cultured borreliae. We investigated whether MALDI-TOF-MS could detect relapsing fever borreliae directly in ticks. METHODOLOGY/PRINCIPAL FINDINGS As a first step, a Borrelia MALDI-TOF-MS database was created to house the newly determined Mean Spectrum Projections for four Lyme disease group and ten relapsing fever group reference borreliae. MALDI-TOF-MS yielded a unique protein profile for each of the 14 tested Borrelia species, with 100% reproducibility over 12 repeats. In a second proof-of-concept step, the Borrelia database and a custom software program that subtracts the uninfected O. sonrai profile were used to detect Borrelia crocidurae in 20 Ornithodoros sonrai ticks, including eight ticks that tested positive for B. crocidurae by PCR-sequencing. A B. crocidurae-specific pattern consisting of 3405, 5071, 5898, 7041, 8580 and 9757-m/z peaks was found in all B. crocidurae-infected ticks and not found in any of the un-infected ticks. In a final blind validation step, MALDI-TOF-MS exhibited 88.9% sensitivity and 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks, including 18 that tested positive for B. crocidurae by PCR-sequencing. MALDI-TOF-MS took 45 minutes to be completed. CONCLUSIONS/SIGNIFICANCE After the development of an appropriate database, MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae in a single assay. This work paves the way for the use of MALDI-TOF-MS for the dual identification of vectors and vectorized pathogens.
Collapse
Affiliation(s)
- Aurélien Fotso Fotso
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Oleg Mediannikov
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; URMITE, UMR, IRD 198, Campus IRD Ham Manisty, Dakar, Senegal
| | - Georges Diatta
- URMITE, UMR, IRD 198, Campus IRD Ham Manisty, Dakar, Senegal
| | - Lionel Almeras
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Christophe Flaudrops
- Pôle de Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France
| | - Philippe Parola
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Michel Drancourt
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
42
|
Yssouf A, Socolovschi C, Leulmi H, Kernif T, Bitam I, Audoly G, Almeras L, Raoult D, Parola P. Identification of flea species using MALDI-TOF/MS. Comp Immunol Microbiol Infect Dis 2014; 37:153-7. [PMID: 24878069 DOI: 10.1016/j.cimid.2014.05.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
In the present study, a molecular proteomics (MALDI-TOF/MS) approach was used as a tool for identifying flea vectors. We measured the MS spectra from 38 flea specimens of 5 species including Ctenocephalides felis, Ctenocephalides canis, Archaeopsylla erinacei, Xenopsylla cheopis and Stenoponia tripectinata. A blind test performed with 24 specimens from species included in a library spectral database confirmed that MALDI-TOF/MS is an effective tool for discriminating flea species. Although fresh and 70% ethanol-conserved samples subjected to MALDI-TOF/MS in blind tests were correctly classified, only MS spectra of quality from fresh specimens were sufficient for accurate and significant identification. A cluster analysis highlighted that the MALDI Biotyper can be used for studying the phylogeny of fleas.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Cristina Socolovschi
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Hamza Leulmi
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Tahar Kernif
- Institut Pasteur d'Algérie, 1 Rue du Docteur Laveran, Hamma, Alger, Algeria
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interactions, Génomes, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Gilles Audoly
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France.
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
43
|
Yssouf A, Parola P, Lindström A, Lilja T, L'Ambert G, Bondesson U, Berenger JM, Raoult D, Almeras L. Identification of European mosquito species by MALDI-TOF MS. Parasitol Res 2014; 113:2375-8. [PMID: 24737398 DOI: 10.1007/s00436-014-3876-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/24/2014] [Indexed: 11/24/2022]
Abstract
MALDI-TOF MS profiling has proved to be efficient for arthropod identification at the species level. However, prior to entomological monitoring, the reference spectra database should cover relevant species. Here, 74 specimens were field-collected from 11 mosquito species captured in two distinct European areas and used either to increment our database or for blind tests. Misidentification was not noted, underlining the power of this approach. Nevertheless, three out of the 26 specimens used for the blind test did not reach the significant identification threshold value set, attributed to lower spectral quality. In the future, the quality control spectra parameters need to be defined to avoid not achieving significant threshold identification.
Collapse
Affiliation(s)
- Amina Yssouf
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Aix Marseille Université, 27 bd Jean Moulin, 13385, Marseille CEDEX 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit Vectors 2014; 7:21. [PMID: 24423215 PMCID: PMC3896986 DOI: 10.1186/1756-3305-7-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/10/2014] [Indexed: 12/01/2022] Open
Abstract
Background Phlebotomine sand flies are incriminated in the transmission of several human and veterinary pathogens. To elucidate their role as vectors, proper species identification is crucial. Since traditional morphological determination is based on minute and often dubious characteristics on their head and genitalia, which require certain expertise and may be damaged in the field-collected material, there is a demand for rapid, simple and cost-effective molecular approaches. Methods Six laboratory-reared colonies of phlebotomine sand flies belonging to five species and four subgenera (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius) were used to evaluate the discriminatory power of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Various storage conditions and treatments, including the homogenization in either distilled water or given concentrations of formic acid, were tested on samples of both sexes. Results Specimens of all five analysed sand fly species produced informative, reproducible and species-specific protein spectra that enabled their conclusive species identification. The method also distinguished between two P. sergenti colonies originating from different geographical localities. Protein profiles within a species were similar for specimens of both sexes. Tested conditions of specimen storage and sample preparation give ground to a standard protocol that is generally applicable on analyzed sand fly specimens. Conclusions Species identification of sand flies by MALDI-TOF MS is feasible and represents a novel promising tool to improve biological and epidemiological studies on these medically important insects.
Collapse
Affiliation(s)
- Vit Dvorak
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
45
|
Analysis of Glossina palpalis gambiensis and Glossina tachinoides from two distant locations in Burkina Faso using MALDI TOF MS. Parasitol Res 2013; 113:723-6. [DOI: 10.1007/s00436-013-3701-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
46
|
Matrix-assisted laser desorption ionization--time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS One 2013; 8:e72380. [PMID: 23977292 PMCID: PMC3744494 DOI: 10.1371/journal.pone.0072380] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Background The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification. Methods To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested. Results Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species. Conclusions We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.
Collapse
|
47
|
Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour 2013; 13:862-76. [PMID: 23848968 DOI: 10.1111/1755-0998.12139] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
Calanoid copepods play an important role in the pelagic ecosystem making them subject to various taxonomic and ecological studies, as well as indicators for detecting changes in the marine habitat. For all these investigations, valid identification, mainly of sibling and cryptic species as well as early life history stages, represents a central issue. In this study, we compare species identification methods for pelagic calanoid copepod species from the North Sea and adjacent regions in a total of 333 specimens. Morphologically identified specimens were analysed on the basis of nucleotide sequences (i.e. partial mitochondrial cytochrome c oxidase subunit I (COI) and complete 18S rDNA) and on proteome fingerprints using the technology of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). On all three molecular approaches, all specimens were classified to species level indicated by low intraspecific and high interspecific variability. Sequence divergences in both markers revealed a second Pseudocalanus species for the southern North Sea identified as Pseudocalanus moultoni by COI sequence comparisons to GenBank. Proteome fingerprints were valid for species clusters irrespective of high intraspecific variability, including significant differences between early developmental stages and adults. There was no effect of sampling region or time; thus, trophic effect, when analysing the whole organisms, was observed in species-specific protein mass spectra, underlining the power of this tool in the application on metazoan species identification. Because of less sample preparation steps, we recommend proteomic fingerprinting using the MALDI-TOF MS as an alternative or supplementary approach for rapid, cost-effective species identification.
Collapse
Affiliation(s)
- S Laakmann
- Senckenberg Research Institute, German Center for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Hoppenheit A, Murugaiyan J, Bauer B, Steuber S, Clausen PH, Roesler U. Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl Trop Dis 2013; 7:e2305. [PMID: 23875040 PMCID: PMC3708848 DOI: 10.1371/journal.pntd.0002305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/24/2013] [Indexed: 01/23/2023] Open
Abstract
Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future. Tsetse flies are confined to tropical Africa and are carriers for trypanosomes, single-celled blood parasites. Through the bite of an infective tsetse, people and animals may contract trypanosomiasis, a degenerative disease leading to death if left untreated. Tsetse control proved effective for disease containment, but data on the flies as tsetse identification are a prerequisite for planning any control intervention. There are 32 generally accepted tsetse species and subspecies. Classical species identification relies on minor morphological differences, often challenging for field workers. In the last decade, Matrix-Assisted Laser Desorption/Ionisation (MALDI) has revolutionised microbial species identification. After a simple protein extraction, a laser-induced ionisation takes place. Then, the ions are accelerated in a vacuum tube, and their Time of Flight (ToF) to reach the detector is recorded. The protein composition of each organism is unique, and so is their MALDI signature. Comparison of the obtained signature with a database of known organisms enables rapid identification as reliable as genome-based methods. To possibly speed up tsetse diagnostics, we established a MALDI database for the identification of five defined laboratory tsetse breeds. Inclusion of wild-caught tsetse could reinforce the reference database for the identification of tsetse at the species and subspecies level.
Collapse
Affiliation(s)
- Antje Hoppenheit
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
- * E-mail: (AH); (JM)
| | - Jayaseelan Murugaiyan
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute of Animal Health and Environmental Hygiene, Berlin, Germany
- * E-mail: (AH); (JM)
| | - Burkhard Bauer
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Peter-Henning Clausen
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Uwe Roesler
- Freie Universität Berlin, Zentrum für Infektionsmedizin, Institute of Animal Health and Environmental Hygiene, Berlin, Germany
| |
Collapse
|
49
|
Müller P, Pflüger V, Wittwer M, Ziegler D, Chandre F, Simard F, Lengeler C. Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS One 2013; 8:e57486. [PMID: 23469000 PMCID: PMC3585343 DOI: 10.1371/journal.pone.0057486] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.
Collapse
Affiliation(s)
- Pie Müller
- Department of Medical Services and Diagnostic, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
50
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol 2012; 51:522-8. [PMID: 23224087 DOI: 10.1128/jcm.02665-12] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A method for rapid species identification of ticks may help clinicians predict the disease outcomes of patients with tick bites and may inform the decision as to whether to administer postexposure prophylactic antibiotic treatment. We aimed to establish a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) spectrum database based on the analysis of the legs of six tick vectors: Amblyomma variegatum, Rhipicephalus sanguineus, Hyalomma marginatum rufipes, Ixodes ricinus, Dermacentor marginatus, and Dermacentor reticulatus. A blind test was performed on a trial set of ticks to identify specimens of each species. Subsequently, we used MALDI-TOF MS to identify ticks obtained from the wild or removed from patients. The latter tick samples were also identified by 12S ribosomal DNA (rDNA) sequencing and were tested for bacterial infections. Ticks obtained from the wild or removed from patients (R. sanguineus, I. ricinus, and D. marginatus) were accurately identified using MALDI-TOF MS, with the exception of those ticks for which no spectra were available in the database. Furthermore, one damaged specimen was correctly identified as I. ricinus, a vector of Lyme disease, using MALDI-TOF MS only. Six of the 14 ticks removed from patients were found to be infected by pathogens that included Rickettsia, Anaplasma, and Borrelia spp. MALDI-TOF MS appears to be an effective tool for the rapid identification of tick vectors that requires no previous expertise in tick identification. The benefits for clinicians include the more targeted surveillance of patients for symptoms of potentially transmitted diseases and the ability to make more informed decisions as to whether to administer postexposure prophylactic treatment.
Collapse
|