1
|
Ghorbel M, Baklouti-Gargouri S, Keskes R, Sellami A, McElreavy K, Ammar-Keskes L. Y-chromosome haplogroups and Azoospermia Factor (AZF) analysis in Tunisian infertile male. HUM FERTIL 2023; 26:1238-1247. [PMID: 36591797 DOI: 10.1080/14647273.2022.2163194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/03/2023]
Abstract
The aim of the present study was to clarify the implication of Y chromosome genetic variations and haplogroups in Tunisian infertile men. A total of 27 Y-chromosomal binary markers partial microdeletions (gr/gr, b1/b3 and b2/b3) and copy number variation of DAZ and CDY genes in the AZFc region were analysed in 131 Tunisian infertile men with spermatogenic failure and severe reduced sperm concentrations and in 85 normospermic men as controls. Eleven different haplogroups in the overall population study (E3b2; J1J*, E1, E3b*, F, G, K, P/Q, R*, R1* and R1a1) were found. Interestingly, the J1J* haplogroup was significantly more frequent in azoo/oligospermic patients than in normospermic men (35.1% and 22.3%, respectively (p value = 0.04)). Results showed also that patients without DAZ/CDY1 copies loss and without partial microdeletions belonged to the R1 haplogroup. The relative high frequencies of two haplogroups, E3b2 (35.1%) and J (30%) was confirmed in Tunisia. We reported in the present study and for the first time, that J1J* haplogroup may confer a risk factor for infertility in the Tunisian population and we suggested that R1 haplogroup may ensure certain stability to Y-chromosome in Tunisian men.
Collapse
Affiliation(s)
- Myriam Ghorbel
- Faculty of Medicine, Laboratory of Human Molecular Genetics, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
| | - Siwar Baklouti-Gargouri
- Faculty of Medicine, Laboratory of Human Molecular Genetics, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
| | - Rim Keskes
- Faculty of Medicine, Laboratory of Human Molecular Genetics, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
| | - Afifa Sellami
- Faculty of Medicine, Laboratory of Histology & Embryology, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
| | - Ken McElreavy
- Human Developmental Genetics Unit, Institut Pasteur, Paris, France
| | - Leila Ammar-Keskes
- Faculty of Medicine, Laboratory of Human Molecular Genetics, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
- Faculty of Medicine, Laboratory of Histology & Embryology, Universite de Sfax Faculte de Medecine de Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Mahdi Al-Zubaidi M, Arsheed Sabbah M, Khaleel Mahmood H. Molecular diversity of 23-YSTR markers in Iraqi populations. Gene 2023; 872:147440. [PMID: 37088231 DOI: 10.1016/j.gene.2023.147440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Iraq is home to the ancient civilization, of Mesopotamia. The population genetics of Iraqis is important due to their ethnic diversity. This study aimed to analyze is to analyze the distribution of Y chromosome haplotypes in a sample of 680 native Iraqi males from regions of Iraq and compare it to previously published Y chromosome haplotype data from some neighboring Arab populations.In this study, A total of 680 unrelated samples (not belonging to the same nuclear family) of healthy males were sampled for the Y-STR analysis from the Iraqi populations in Baghdad. blood samples were collected at the ministry of health/medical legal Directorate/paternity and Baghdad from 2018 to 2020. Allele frequency and gene diversity were calculated. The Iraqi population data were compared with the neighboring populations using pairwise genetic distances using the Y Chromosome Haplotype Reference Database Website (YHRD) software.The discrimination capacity 23 STR loci provide was (0.92). The number of haplotypes observed in 680 samples, was 616 haplotypes (568 unique and 48 shared haplotypes). Haplogroup prediction suggests that haplogroup J1 is the most common in the Iraqi population, followed by J2. According to AMOVA and MD, showed high similarities with neighboring countries. We can conclude that there is no genetic structure among the populations and their data could be added to reference the Iraqi database.
Collapse
Affiliation(s)
- Mohammed Mahdi Al-Zubaidi
- Department of Training and Development, Forensic DNA Centre for Research and Training, Al-Nahrain University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Borgio JF. Heterogeneity in biomarkers, mitogenome and genetic disorders of the Arab population with special emphasis on large-scale whole-exome sequencing. Arch Med Sci 2021; 19:765-783. [PMID: 37313193 PMCID: PMC10259412 DOI: 10.5114/aoms/145370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 09/20/2024] Open
Abstract
More than 25 million DNA variations have been discovered as novel including major alleles from the Arab population. Exome studies on the Saudi genome discovered > 3000 novel nucleotide variants associated with > 1200 rare genetic disorders. Reclassification of many pathogenic variants in the Human Gene Mutation Database and ClinVar Database as benign through the Arab database facilitates building a detailed and comprehensive map of the human morbid genome. Intellectual disability comes first with the combined and observed carrier frequency of 0.06779 among Saudi Arabians; retinal dystrophy is the next highest. Genome studies have discovered interesting novel candidate disease marker variations in many genes from consanguineous families. More than 7 pathogenic variants in the C12orf57 gene are prominently associated with the etiology of developmental delay/intellectual impairment in Arab ancestries. Advances in large-scale genome studies open a new outlook on Mendelian genes and disorders. In the past half-dozen years, candidate genes of intellectual disability, neurogenetic disorders, blood and bleeding disorders and rare genetic diseases have been well documented through genomic medicine studies in combination with advanced computational biology applications. The Arab mitogenome exposed hundreds of variations in the mtDNA genome and ancestral sharing with Africa, the Near East and East Asia and its association with obesity. These recent discoveries in disease markers and molecular genetics of the Arab population will have a positive impact towards supporting genetic counsellors on reaching consanguineous families to manage stress linked to genetics and precision medicine. This narrative review summarizes the advances in molecular medical genetics and recent discoveries on pathogenic variants. Despite the fact that these initiatives are targeting the genetics and genomics of disorders prevalent in Arab populations, a lack of complete cooperation across the projects needed to be revisited to uncover the Arab population's prominent disease markers. This shows that further study is needed in genomics to fully comprehend the molecular abnormalities and associated pathogenesis that cause inherited disorders in Arab ancestries.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Rowold DJ, Chennakrishnaiah S, Gayden T, Luis JR, Alfonso-Sanchez MA, Bukhari A, Garcia-Bertrand R, Herrera RJ. The Y-chromosome of the Soliga, an ancient forest-dwelling tribe of South India. Gene 2021; 763S:100026. [PMID: 32550553 PMCID: PMC7286085 DOI: 10.1016/j.gene.2019.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 11/05/2022]
Abstract
A previous autosomal STR study provided evidence of a connection between the ancient Soliga tribe at the southern tip of the Indian subcontinent and Australian aboriginal populations, possibly reflecting an eastbound coastal migration circa (15 Kya). The Soliga are considered to be among India's earliest inhabitants. In this investigation, we focus on the Y chromosomal characteristics shared between the Soliga population and other Indian tribes as well as western Eurasia and Sub-Saharan Africa groups. Some noteworthy findings of this present analysis include the following: The three most frequent haplogroups detected in the Soliga population are F*, H1 and J2. F*, the oldest (43 to 63 Kya), has a significant frequency bias in favor of Indian tribes versus castes. This observation coupled with the fact that Y-STR haplotypes shared with sub-Saharan African populations are found only in F* males of the Soliga, Irula and Kurumba may indicate a unique genetic connection between these Indian tribes and sub-Saharan Africans. In addition, our study suggests that haplogroup H is confined mostly to South Asia and immediate neighbors and the H1 network may indicate minimal sharing of Y-STR haplotypes among South Asian collections, tribal and otherwise. Also, J2, brought into India by Neolithic farmers, is present at a significantly higher frequency in caste versus tribal communities. This last observation may reflect the marginalization of Indian tribes to isolated regions not ideal for agriculture. Hg F*, H1 and J2 of the Soliga population chronicle the demographic history of the Indian tribal communities. Frequency bias for F* in Indian tribes may be a result of genetic drift due isolation and low population growth. Sharing of Y-STR haplotypes among tribal populations may be indicative of a common source population.
Collapse
Affiliation(s)
- Diane J Rowold
- Foundation for Applied Molecular Science (FfAME), Gainesville, FL 32601, USA; Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | | | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Miguel A Alfonso-Sanchez
- Departamento de Genética y Antropología Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - Areej Bukhari
- Departamento de Genética y Antropología Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
5
|
Sahakyan H, Margaryan A, Saag L, Karmin M, Flores R, Haber M, Kushniarevich A, Khachatryan Z, Bahmanimehr A, Parik J, Karafet T, Yunusbayev B, Reisberg T, Solnik A, Metspalu E, Hovhannisyan A, Khusnutdinova EK, Behar DM, Metspalu M, Yepiskoposyan L, Rootsi S, Villems R. Origin and diffusion of human Y chromosome haplogroup J1-M267. Sci Rep 2021; 11:6659. [PMID: 33758277 PMCID: PMC7987999 DOI: 10.1038/s41598-021-85883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Human Y chromosome haplogroup J1-M267 is a common male lineage in West Asia. One high-frequency region-encompassing the Arabian Peninsula, southern Mesopotamia, and the southern Levant-resides ~ 2000 km away from the other one found in the Caucasus. The region between them, although has a lower frequency, nevertheless demonstrates high genetic diversity. Studies associate this haplogroup with the spread of farming from the Fertile Crescent to Europe, the spread of mobile pastoralism in the desert regions of the Arabian Peninsula, the history of the Jews, and the spread of Islam. Here, we study past human male demography in West Asia with 172 high-coverage whole Y chromosome sequences and 889 genotyped samples of haplogroup J1-M267. We show that this haplogroup evolved ~ 20,000 years ago somewhere in northwestern Iran, the Caucasus, the Armenian Highland, and northern Mesopotamia. The major branch-J1a1a1-P58-evolved during the early Holocene ~ 9500 years ago somewhere in the Arabian Peninsula, the Levant, and southern Mesopotamia. Haplogroup J1-M267 expanded during the Chalcolithic, the Bronze Age, and the Iron Age. Most probably, the spread of Afro-Asiatic languages, the spread of mobile pastoralism in the arid zones, or both of these events together explain the distribution of haplogroup J1-M267 we see today in the southern regions of West Asia.
Collapse
Affiliation(s)
- Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia.
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia.
| | - Ashot Margaryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Lundbeck Foundation, Department of Biology, GeoGenetics Centre, University of Copenhagen, 1350, Copenhagen, Denmark
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Monika Karmin
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Zaruhi Khachatryan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Ardeshir Bahmanimehr
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
- Thalassemia and Haemophilia Genetic PND Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, 71456-83769, Shiraz, Iran
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| | - Tatiana Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bayazit Yunusbayev
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
| | - Tuuli Reisberg
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Core Facility, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Anahit Hovhannisyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Elza K Khusnutdinova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia, 450076
- Institute of Biochemistry and Genetics of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, 51010, Tartu, Estonia
| |
Collapse
|
6
|
Ch. Kassab A, Alaqeel HFM, Messaoudi SA, Babu SR, Shahid SA, Chaudhary AR. Population data and genetic diversity analysis of 17 Y-STR loci in Saudi population. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2020. [DOI: 10.1186/s41935-020-00205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Y chromosome polymorphism has been widely studied for human migrations, population genetics, forensic applications, and paternity analysis. However, studies regarding genetic lineage and population genetic structure of the Y chromosome in different regions of Saudi Arabia are limited.
Aim
This study aimed to analyze the distribution of Y chromosome haplotypes in a sample of 125 native Saudi males from different geographic regions of Saudi Arabia and compare to previously published Y chromosome haplotype data from Saudi Arabia and some neighboring Arab populations.
Materials and methods
Buccal swabs were collected from 125 healthy unrelated native Saudi males from different geographic regions of Saudi Arabia. Genomic DNA was extracted by Chelex®100; 17 Y-STR loci were amplified using the AmpFℓlSTR Yfiler PCR amplification kit and detected on the 3130 Genetic AnalyzerTM. Allele frequency and gene diversity were calculated with online tool STRAF. The Saudi population data were compared with the neighboring populations using pairwise genetic distances and associated probability values were calculated using the Y Chromosome Haplotype Reference Database Website (YHRD) software.
Results and conclusion
One hundred six YSTR haplotypes and 102 YSTR alleles (excluding 4 null alleles) were identified having a discrimination capacity (DC) of 85.8%. The highest haplotype diversity (HD) and gene diversity (GD) were observed at the loci DYS 458 (0.817) and DYS385b (0.807), respectively. According to our results, the Iraqi and Qena (Egypt) populations appeared to have closer relatedness to the Saudi population as compared with Yemen. The UAE and Kuwait populations showed the same degree of relatedness to the Saudi population followed by Bahrain. On the contrary, the Adnanit and Qahtanit populations of Jordan demonstrated low genetic distance from the Saudi population. In short, studying a population sample of pure Saudi ethnicity enabled us to identify a unique set of haplotypes which may help in establishing genetic relatedness between Saudi and the neighboring Arab populations. The present paper, therefore, highlights the importance of ensuring ethnic originality of the study sample while conducting population genetics studies.
Collapse
|
7
|
Jabbar SM, Al-Rashedi NAM. Mitochondrial DNA control region variation in an Iraqi population sample. Int J Legal Med 2020; 135:421-425. [PMID: 33150489 DOI: 10.1007/s00414-020-02452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although Iraq has one of the world's oldest cultural histories and an important geographic location, forensic reference data on mitochondrial DNA (mtDNA) control region in Iraqi populations are scarce, particularly for populations residing in the southern part of Iraq. Mitochondrial DNA typing is an excellent tool for forensic investigations and in missing-person cases because of its unique qualities, such as mtDNA non-coding control region with specific genetic markers, high copy numbers in cells, maternal inheritance, and lack of recombination. METHODS Forensic analysis was performed on the entire mtDNA control region in 203 unrelated Iraqi individuals residing in Samawah City of Iraq. Polymorphisms in the mtDNA were detected using polymerase chain reaction and Sanger-type sequencing, and the sequences were aligned to compare with revised Cambridge Reference Sequence (rCRS). RESULTS The sequencing results revealed 111 haplotypes characterized by 143 polymorphic positions. Of these haplotypes, 63 were unique and 48 were shared by more than one person. The haplotype data generated in this study will be available on EMPOP via accession number EMP00814.
Collapse
Affiliation(s)
- Suhair M Jabbar
- Department of Biology, College of Science, Al Muthanna University, Samawah, Iraq
| | - Nihad A M Al-Rashedi
- Department of Biology, College of Science, Al Muthanna University, Samawah, Iraq.
| |
Collapse
|
8
|
Mitochondrial DNA (hypervariable region I) diversity in Basrah population - Iraq. Genomics 2020; 112:3560-3564. [PMID: 32289467 DOI: 10.1016/j.ygeno.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
In attempt to investigate the origin of Basrah, we examined the mitochondrial DNA(mt-DNA) variations by hypervariable segment 1(HVS1) Sequencing and determination of specific site haplogroups. In Basrah, no significant differences diversity among Iraqis' HVS1 compared with other countries. The values were within the range of gene diversity across the Middle East and exhibited the unimodal pattern of differences in the pairwise sequence. Given the small genetic differences between people living in this area, phylogenetic analysis showed a large variability of the communities of Basrah; they didn't cluster on the phylogenetic tree.
Collapse
|
9
|
Badro H, Furtado A, Henry R. Relationships between Iraqi Rice Varieties at the Nuclear and Plastid Genome Levels. PLANTS 2019; 8:plants8110481. [PMID: 31703353 PMCID: PMC6918272 DOI: 10.3390/plants8110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023]
Abstract
Due to the importance of the rice crop in Iraq, this study was conducted to determine the origin of the major varieties and understand the evolutionary relationships between Iraqi rice varieties and other Asian rice accessions that could be significant in the improvement of this crop. Five varieties of Oryza sativa were obtained from Baghdad/Iraq, and the whole genomic DNA was sequenced, among these varieties, Amber33, Furat, Yasmin, Buhooth1 and Amber al-Baraka. Raw sequence reads of 33 domesticated Asian rice accessions were obtained from the Sequence Read Archive (SRA-NCBI). The sequence of the whole chloroplast-genome was assembled while only the sequence of 916 concatenated nuclear-genes was assembled. The phylogenetic analysis of both chloroplast and nuclear genomes showed that two main clusters, Indica and Japonica, and further five sub-clusters based upon their ecotype, indica, aus, tropical-japonica, temperate-japonica and basmati were created; moreover, Amber33, Furat, Yasmin and Buhooth1 belonged to the basmati, indica and japonica ecotypes, respectively, where Amber33 was placed in the basmati group as a sister of cultivars from Pakistan and India. This confirms the traditional story that Amber was transferred by a group of people who had migrated from India and settled in southern Iraq a long time ago.
Collapse
|
10
|
Al-Zaidy KJL, Parisi G, Ali Abed S, Salim MA. Classification of The Key Functional Diversity of the Marshes of Southern Iraq Marshes. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1294/7/072021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Neolithic expansions. Sci Rep 2019; 9:14751. [PMID: 31611588 PMCID: PMC6791841 DOI: 10.1038/s41598-019-48596-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
Abstract
Of particular significance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages first reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA findings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defined by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found.
Collapse
|
12
|
Chung NN, Jacobs GS, Sudoyo H, Malik SG, Chew LY, Lansing JS, Cox MP. Sex-linked genetic diversity originates from persistent sociocultural processes at microgeographic scales. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190733. [PMID: 31598251 PMCID: PMC6731738 DOI: 10.1098/rsos.190733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Population genetics has been successful at identifying the relationships between human groups and their interconnected histories. However, the link between genetic demography inferred at large scales and the individual human behaviours that ultimately generate that demography is not always clear. While anthropological and historical context are routinely presented as adjuncts in population genetic studies to help describe the past, determining how underlying patterns of human sociocultural behaviour impact genetics still remains challenging. Here, we analyse patterns of genetic variation in village-scale samples from two islands in eastern Indonesia, patrilocal Sumba and a matrilocal region of Timor. Adopting a 'process modelling' approach, we iteratively explore combinations of structurally different models as a thinking tool. We find interconnected socio-genetic interactions involving sex-biased migration, lineage-focused founder effects, and on Sumba, heritable social dominance. Strikingly, founder ideology, a cultural model derived from anthropological and archaeological studies at larger regional scales, has both its origins and impact at the scale of villages. Process modelling lets us explore these complex interactions, first by circumventing the complexity of formal inference when studying large datasets with many interacting parts, and then by explicitly testing complex anthropological hypotheses about sociocultural behaviour from a more familiar population genetic standpoint.
Collapse
Affiliation(s)
- Ning Ning Chung
- Complexity Institute, Nanyang Technological University, Singapore
- Centre for University Core, Singapore University of Social Sciences, Singapore
| | - Guy S. Jacobs
- Complexity Institute, Nanyang Technological University, Singapore
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Safarina G. Malik
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Lock Yue Chew
- Complexity Institute, Nanyang Technological University, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - J. Stephen Lansing
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Stockholm Resilience Center, Kräftriket, 10405 Stockholm, Sweden
| | - Murray P. Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence for Complex Systems, Aukland, New Zealand
| |
Collapse
|
13
|
Grugni V, Raveane A, Mattioli F, Battaglia V, Sala C, Toniolo D, Ferretti L, Gardella R, Achilli A, Olivieri A, Torroni A, Passarino G, Semino O. Reconstructing the genetic history of Italians: new insights from a male (Y-chromosome) perspective. Ann Hum Biol 2018; 45:44-56. [PMID: 29382284 DOI: 10.1080/03014460.2017.1409801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.
Collapse
Affiliation(s)
- Viola Grugni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Alessandro Raveane
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Francesca Mattioli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Vincenza Battaglia
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Cinzia Sala
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Daniela Toniolo
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Luca Ferretti
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Rita Gardella
- c Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Brescia , Italy
| | - Alessandro Achilli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Anna Olivieri
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Antonio Torroni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Giuseppe Passarino
- d Dipartimento di Biologia, Ecologia e Scienze della Terra , Università della Calabria , Arcavacata di Rende , Cosenza , Italy
| | - Ornella Semino
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| |
Collapse
|
14
|
A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean. Sci Rep 2018; 8:7465. [PMID: 29748665 PMCID: PMC5945646 DOI: 10.1038/s41598-018-25912-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022] Open
Abstract
In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.
Collapse
|
15
|
Y-chromosomal Status of Six Indo-European-speaking Arab Subpopulations in Chaharmahal and Bakhtiari Province, Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:435-440. [PMID: 29845033 PMCID: PMC5971182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We analyzed the Y-chromosome haplogroups of six documented Arab subpopulations that accommodated separately in different counties of Chaharmahal and Bakhtiari Province but nowadays speak Indo-European language (Luri and Farsi). METHODS This was an outcome study conducted in 2015 to test whether there was any genetic relatedness among some Indo-European-speaking Arab subpopulation accommodated in a geographically similar region, Chaharmahal and Bakhtiari Province, Iran. Seven main Y-chromosome bi-allelic markers were genotyped in six documented Arab subpopulations. Therefore, after DNA extraction from blood samples, PCR reaction carried out by designed primers for J1-M267, J2-M172, and J-M304, I-M170, IJ-M429, F-M89 and K-M9 markers. Then PCR products after quality control on agarose gel were sequenced. RESULTS Most subjects (83.3%) belonged to F-M89 haplogroup. These subjects belonged to K-M9 (40%), J2-M172 (40%) and I-M170 (20%). Generally, there were at least three genetically distinct ancestors with a divergence date of about 22200 yr for I, 429000 for J and 47400 before present for K haplogroup and may show separate historical migrations of studied populations. As the most recent common ancestor (MRCA) of most of these populations, haplogroup F, lived about 40000-50000 yr ago, the data do not support a nearly close genetic relationship among all of these populations. However, there were populations with same haplogroups J2 (n=2), K (n=2), or with a closer MRCA, IJ haplogroups, among I and J2 haplogroups. Finding haplogroup I, a specific European haplogroup, among Arab populations was not expected. CONCLUSION Identification of various haplogroups in Arab subpopulations despite its small area and geographically conserved region of this part of Iranian plateau was unexpected.
Collapse
|
16
|
Manco L, Albuquerque J, Sousa MF, Martiniano R, de Oliveira RC, Marques S, Gomes V, Amorim A, Alvarez L, Prata MJ. The Eastern side of the Westernmost Europeans: Insights from subclades within Y-chromosome haplogroup J-M304. Am J Hum Biol 2017; 30. [PMID: 29193490 DOI: 10.1002/ajhb.23082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We examined internal lineages and haplotype diversity in Portuguese samples belonging to J-M304 to improve the spatial and temporal understanding of the introduction of this haplogroup in Iberia, using the available knowledge about the phylogeography of its main branches, J1-M267 and J2-M172. METHODS A total of 110 males of Portuguese descent were analyzed for 17 Y-chromosome bi-allelic markers and seven Y-chromosome short tandem repeats (Y-STR) loci. RESULTS Among J1-M267 individuals (n = 36), five different sub-haplogroups were identified, with the most common being J1a2b2-L147.1 (∼72%), which encompassed the majority of representatives of the J1a2b-P58 subclade. One sample belonged to the rare J1a1-M365.1 lineage and presented a core Y-STR haplotype consistent with the Iberian settlement during the fifth century by the Alans, a people of Iranian heritage. The analysis of J2-M172 Portuguese males (n = 74) enabled the detection of the two main subclades at very dissimilar frequencies, J2a-M410 (∼80%) and J2b-M12 (∼20%), among which the most common branches were J2a1(xJ2a1b,h)-L26 (22.9%), J2a1b(xJ2a1b1)-M67 (20.3%), J2a1h-L24 (27%), and J2b2-M241 (20.3%). CONCLUSIONS While previous inferences based on modern haplogroup J Y-chromosomes implicated a main Neolithic dissemination, here we propose a later arrival of J lineages into Iberia using a combination of novel Portuguese Y-chromosomal data and recent evidence from ancient DNA. Our analysis suggests that a substantial tranche of J1-M267 lineages was likely carried into the Iberian Peninsula as a consequence of the trans-Mediterranean contacts during the first millennium BC, while most of the J2-M172 lineages may be associated with post-Neolithic population movements within Europe.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana Albuquerque
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Maria Francisca Sousa
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Martiniano
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, United Kingdom
| | | | - Sofia Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Verónica Gomes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Luís Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| |
Collapse
|
17
|
A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis. PLoS One 2017; 12:e0187408. [PMID: 29099847 PMCID: PMC5669434 DOI: 10.1371/journal.pone.0187408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
Widely considered as one of the cradles of human civilization, Mesopotamia is largely situated in the Republic of Iraq, which is also the birthplace of the Sumerian, Akkadian, Assyrian and Babylonian civilizations. These lands were subsequently ruled by the Persians, Greeks, Romans, Arabs, Mongolians, Ottomans and finally British prior to the independence. As a direct consequence of this rich history, the contemporary Iraqi population comprises a true mosaic of different ethnicities, which includes Arabs, Kurds, Turkmens, Assyrians, and Yazidis among others. As such, the genetics of the contemporary Iraqi populations are of anthropological and forensic interest. In an effort to contribute to a better understanding of the genetic basis of this ethnic diversity, a total of 500 samples were collected from Northern Iraqi volunteers belonging to five major ethnic groups, namely: Arabs (n = 102), Kurds (n = 104), Turkmens (n = 102), Yazidis (n = 106) and Syriacs (n = 86). 17-loci Y-STR analyses were carried out using the AmpFlSTR Yfiler system, and subsequently in silico haplogroup assignments were made to gain insights from a molecular anthropology perspective. Systematic comparisons of the paternal lineages of these five Northern Iraqi ethnic groups, not only among themselves but also in the context of the larger genetic landscape of the Near East and beyond, were then made through the use of two different genetic distance metric measures and the associated data visualization methods. Taken together, results from the current study suggested the presence of intricate Y-chromosomal lineage patterns among the five ethic groups analyzed, wherein both interconnectivity and independent microvariation were observed in parallel, albeit in a differential manner. Notably, the novel Y-STR data on Turkmens, Syriacs and Yazidis from Northern Iraq constitute the first of its kind in the literature. Data presented herein is expected to contribute to further population and forensic investigations in Northern Iraq in particular and the Near East in general.
Collapse
|
18
|
Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M, Youhanna S, Martiniano R, Prado-Martinez J, Szpak M, Matisoo-Smith E, Schutkowski H, Mikulski R, Zalloua P, Kivisild T, Tyler-Smith C. Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences. Am J Hum Genet 2017; 101:274-282. [PMID: 28757201 PMCID: PMC5544389 DOI: 10.1016/j.ajhg.2017.06.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600–3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750–2,170 years ago during a period of successive conquests by distant populations.
Collapse
|
19
|
Ben El Haj R, Salmi A, Regragui W, Moussa A, Bouslam N, Tibar H, Benomar A, Yahyaoui M, Bouhouche A. Evidence for prehistoric origins of the G2019S mutation in the North African Berber population. PLoS One 2017; 12:e0181335. [PMID: 28723952 PMCID: PMC5517005 DOI: 10.1371/journal.pone.0181335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
The most common cause of the monogenic form of Parkinson’s disease known so far is the G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene. Its frequency varies greatly among ethnic groups and geographic regions ranging from less than 0.1% in Asia to 40% in North Africa. This mutation has three distinct haplotypes; haplotype 1 being the oldest and most common. Recent studies have dated haplotype 1 of the G2019S mutation to about 4000 years ago, but it remains controversial whether the mutation has a Near-Eastern or Moroccan-Berber ancestral origin. To decipher this evolutionary history, we genotyped 10 microsatellite markers spanning a region of 11.27 Mb in a total of 57 unrelated Moroccan PD patients carrying the G2019S mutation for which the Berber or Arab origin was established over 3 generations based on spoken language. We estimated the age of the most recent common ancestor for the 36 Arab-speaking and the 15 Berber-speaking G2019S carriers using the likelihood-based method with a mutation rate of 10−4. Data analysis suggests that the shortest haplotype originated in a patient of Berber ethnicity. The common founder was estimated to have lived 159 generations ago (95% CI 116–224) for Arab patients, and 200 generations ago (95% CI 123–348) for Berber patients. Then, 29 native North African males carrying the mutation were assessed for specific uniparental markers by sequencing the Y-chromosome (E-M81, E-M78, and M-267) and mitochondrial DNA (mtDNA) hypervariable regions (HV1 and HV2) to examine paternal and maternal contributions, respectively. Results showed that the autochthonous genetic component reached 76% for mtDNA (Eurasian and north African haplogroups) and 59% for the Y-chromosome (E-M81 and E-M78), suggesting that the G2019S mutation may have arisen in an autochthonous DNA pool. Therefore, we conclude that LRRK2 G2019S mutation most likely originated in a Berber founder who lived at least 5000 years ago (95% CI 3075–8700).
Collapse
Affiliation(s)
- Rafiqua Ben El Haj
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Ayyoub Salmi
- Laboratory of Information and Communication Technologies, National School of Applied Sciences, Abdelmalek Essaadi University, Tanger, Morocco
| | - Wafa Regragui
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
| | - Ahmed Moussa
- Laboratory of Information and Communication Technologies, National School of Applied Sciences, Abdelmalek Essaadi University, Tanger, Morocco
| | - Naima Bouslam
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
| | - Houyam Tibar
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
| | - Ali Benomar
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
| | - Mohamed Yahyaoui
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
| | - Ahmed Bouhouche
- Research Team in Neurology and Neurogenetics, Genomics Center of Human Pathologies, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, IBN Sina University Hospital Center, Rabat, Morocco
- * E-mail:
| |
Collapse
|
20
|
The Connection of the Genetic, Cultural and Geographic Landscapes of Transoxiana. Sci Rep 2017; 7:3085. [PMID: 28596519 PMCID: PMC5465200 DOI: 10.1038/s41598-017-03176-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.
Collapse
|
21
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
22
|
Balanovsky O, Gurianov V, Zaporozhchenko V, Balaganskaya O, Urasin V, Zhabagin M, Grugni V, Canada R, Al-Zahery N, Raveane A, Wen SQ, Yan S, Wang X, Zalloua P, Marafi A, Koshel S, Semino O, Tyler-Smith C, Balanovska E. Phylogeography of human Y-chromosome haplogroup Q3-L275 from an academic/citizen science collaboration. BMC Evol Biol 2017; 17:18. [PMID: 28251872 PMCID: PMC5333174 DOI: 10.1186/s12862-016-0870-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. Results We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3–4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. Conclusions This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0870-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Vavilov Institute of General Genetics, Moscow, Russia. .,Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Valery Zaporozhchenko
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Maxat Zhabagin
- National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Nadia Al-Zahery
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xianpin Wang
- Department of Criminal Investigation, Xuanwei Public Security Bureau, Xuanwei, China
| | | | | | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
23
|
Grugni V, Battaglia V, Perego UA, Raveane A, Lancioni H, Olivieri A, Ferretti L, Woodward SR, Pascale JM, Cooke R, Myres N, Motta J, Torroni A, Achilli A, Semino O. Exploring the Y Chromosomal Ancestry of Modern Panamanians. PLoS One 2015; 10:e0144223. [PMID: 26636572 PMCID: PMC4670172 DOI: 10.1371/journal.pone.0144223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Collapse
Affiliation(s)
- Viola Grugni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Ancestry, Provo, Utah, United States of America
| | - Jorge Motta
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
24
|
Triki-Fendri S, Sánchez-Diz P, Rey-González D, Alfadhli S, Ayadi I, Ben Marzoug R, Carracedo Á, Rebai A. Genetic structure of the Kuwaiti population revealed by paternal lineages. Am J Hum Biol 2015; 28:203-12. [PMID: 26293354 DOI: 10.1002/ajhb.22773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/18/2015] [Accepted: 07/25/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE We analyzed the Y-chromosome haplogroup diversity in the Kuwaiti population to gain a more complete overview of its genetic landscape. METHOD A sample of 117 males from the Kuwaiti population was studied through the analysis of 22 Y-SNPs. The results were then interpreted in conjunction with those of other populations from the Middle East, South Asia, North and East Africa, and East Europe. RESULTS The analyzed markers allowed the discrimination of 19 different haplogroups with a diversity of 0.7713. J-M304 was the most frequent haplogroup in the Kuwaiti population (55.5%) followed by E-M96 (18%). They revealed a genetic homogeneity between the Kuwaiti population and those of the Middle East (FST = 6.1%, P-value < 0.0001), although a significant correlation between genetic and geographic distances was found (r = 0.41, P-value = 0.009). Moreover, the nonsignificant pairwise FST genetic distances between the Kuwait population on the one hand and the Arabs of Iran and those of Sudan on the other, corroborate the hypothesis of bidirectional gene flow between Arabia and both Iran and Sudan. CONCLUSION Overall, we have revealed that the Kuwaiti population has experienced significant gene flow from neighboring populations like Saudi Arabia, Iran, and East Africa. Therefore, we have confirmed that the population of Kuwait is genetically coextensive with those of the Middle East.
Collapse
Affiliation(s)
- Soumaya Triki-Fendri
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, BP1177 Route Sidi Mansour Km 6, Sfax, Tunisia
| | - Paula Sánchez-Diz
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago De Compostela, Santiago De Compostela, Galicia, Spain
| | - Danel Rey-González
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago De Compostela, Santiago De Compostela, Galicia, Spain
| | - Suad Alfadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Imen Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, BP1177 Route Sidi Mansour Km 6, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, BP1177 Route Sidi Mansour Km 6, Sfax, Tunisia
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago De Compostela, Santiago De Compostela, Galicia, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, BP1177 Route Sidi Mansour Km 6, Sfax, Tunisia
| |
Collapse
|
25
|
Palanichamy MG, Mitra B, Zhang CL, Debnath M, Li GM, Wang HW, Agrawal S, Chaudhuri TK, Zhang YP. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system. Hum Genet 2015; 134:637-47. [PMID: 25832481 DOI: 10.1007/s00439-015-1547-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Abstract
There is no indication from the previous mtDNA studies that west Eurasian-specific subclades have evolved within India and played a role in the spread of languages and the origins of the caste system. To address these issues, we have screened 14,198 individuals (4208 from this study) and analyzed 112 mitogenomes (41 new sequences) to trace west Eurasian maternal ancestry. This has led to the identification of two autochthonous subhaplogroups--HV14a1 and U1a1a4, which are likely to have originated in the Dravidian-speaking populations approximately 10.5-17.9 thousand years ago (kya). The carriers of these maternal lineages might have settled in South India during the time of the spread of the Dravidian language. In addition to this, we have identified several subsets of autochthonous U7 lineages, including U7a1, U7a2b, U7a3, U7a6, U7a7, and U7c, which seem to have originated particularly in the higher-ranked caste populations in relatively recent times (2.6-8.0 kya with an average of 5.7 kya). These lineages have provided crucial clues to the differentiation of the caste system that has occurred during the recent past and possibly, this might have been influenced by the Indo-Aryan migration. The remaining west Eurasian lineages observed in the higher-ranked caste groups, like the Brahmins, were found to cluster with populations who possibly arrived from west Asia during more recent times.
Collapse
Affiliation(s)
- Malliya Gounder Palanichamy
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650 091, Yunnan, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kareem MA, Abdulzahra AI, Hameed IH, Jebor MA. A new polymorphic positions discovered in mitochondrial DNA hypervariable region HVIII from central and north-central of Iraq. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3250-4. [DOI: 10.3109/19401736.2015.1007369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Imad Hadi Hameed
- Department of Molecular Biology, Babylon University, Hilla City, Iraq
| | | |
Collapse
|
27
|
Triki-Fendri S, Sánchez-Diz P, Rey-González D, Ayadi I, Carracedo Á, Rebai A. Paternal lineages in Libya inferred from Y-chromosome haplogroups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:242-51. [DOI: 10.1002/ajpa.22705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Soumaya Triki-Fendri
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Paula Sánchez-Diz
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Danel Rey-González
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Imen Ayadi
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University; Jeddah Saudi Arabia
| | - Ahmed Rebai
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| |
Collapse
|
28
|
Tadmouri GO, Sastry KS, Chouchane L. Arab gene geography: From population diversities to personalized medical genomics. Glob Cardiol Sci Pract 2014; 2014:394-408. [PMID: 25780794 PMCID: PMC4355514 DOI: 10.5339/gcsp.2014.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Genetic disorders are not equally distributed over the geography of the Arab region. While a number of disorders have a wide geographical presence encompassing 10 or more Arab countries, almost half of these disorders occur in a single Arab country or population. Nearly, one-third of the genetic disorders in Arabs result from congenital malformations and chromosomal abnormalities, which are also responsible for a significant proportion of neonatal and perinatal deaths in Arab populations. Strikingly, about two-thirds of these diseases in Arab patients follow an autosomal recessive mode of inheritance. High fertility rates together with increased consanguineous marriages, generally noticed in Arab populations, tend to increase the rates of genetic and congenital abnormalities. Many of the nearly 500 genes studied in Arab people revealed striking spectra of heterogeneity with many novel and rare mutations causing large arrays of clinical outcomes. In this review we provided an overview of Arab gene geography, and various genetic abnormalities in Arab populations, including disorders of blood, metabolic, circulatory and neoplasm, and also discussed their associated molecules or genes responsible for the cause of these disorders. Although studying Arab-specific genetic disorders resulted in a high value knowledge base, approximately 35% of genetic diseases in Arabs do not have a defined molecular etiology. This is a clear indication that comprehensive research is required in this area to understand the molecular pathologies causing diseases in Arab populations.
Collapse
Affiliation(s)
| | - Konduru S Sastry
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
29
|
Rootsi S, Behar DM, Järve M, Lin AA, Myres NM, Passarelli B, Poznik GD, Tzur S, Sahakyan H, Pathak AK, Rosset S, Metspalu M, Grugni V, Semino O, Metspalu E, Bustamante CD, Skorecki K, Villems R, Kivisild T, Underhill PA. Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites. Nat Commun 2014; 4:2928. [PMID: 24346185 PMCID: PMC3905698 DOI: 10.1038/ncomms3928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022] Open
Abstract
Previous Y-chromosome studies have demonstrated that Ashkenazi Levites, members of a paternally inherited Jewish priestly caste, display a distinctive founder event within R1a, the most prevalent Y-chromosome haplogroup in Eastern Europe. Here we report the analysis of 16 whole R1 sequences and show that a set of 19 unique nucleotide substitutions defines the Ashkenazi R1a lineage. While our survey of one of these, M582, in 2,834 R1a samples reveals its absence in 922 Eastern Europeans, we show it is present in all sampled R1a Ashkenazi Levites, as well as in 33.8% of other R1a Ashkenazi Jewish males and 5.9% of 303 R1a Near Eastern males, where it shows considerably higher diversity. Moreover, the M582 lineage also occurs at low frequencies in non-Ashkenazi Jewish populations. In contrast to the previously suggested Eastern European origin for Ashkenazi Levites, the current data are indicative of a geographic source of the Levite founder lineage in the Near East and its likely presence among pre-Diaspora Hebrews. Population genetics studies continue to debate whether Ashkenazi Levites originated in Europe or the Near East. Here, Rootsi et al. use whole Y-chromosome DNA sequences to unravel the phylogenetic origin of the Ashkenazi Levite and suggest an origin for the Levite founder lineage in the Near East.
Collapse
Affiliation(s)
- Siiri Rootsi
- 1] Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia [2]
| | - Doron M Behar
- 1] Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia [2] Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa 31096, Israel [3]
| | - Mari Järve
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Alice A Lin
- Department of Psychiatry, Stanford University, Stanford, California 94305, USA
| | | | - Ben Passarelli
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - G David Poznik
- Program in Biomedical Informatics and Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Shay Tzur
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa 31096, Israel
| | - Hovhannes Sahakyan
- 1] Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia [2] Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014, Armenia
| | - Ajai Kumar Pathak
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Saharon Rosset
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mait Metspalu
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università di Pavia, Pavia 27100, Italy
| | - Ornella Semino
- 1] Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università di Pavia, Pavia 27100, Italy [2] Centro Interdipartimentale 'Studi di Genere', Università di Pavia, Pavia 27100, Italy
| | - Ene Metspalu
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Carlos D Bustamante
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Karl Skorecki
- 1] Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa 31096, Israel [2] Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Richard Villems
- 1] Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia [2]
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, CB2 3QG Cambridge, UK
| | - Peter A Underhill
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Hameed IH, Abdulzahra AI, Jebor MA, Kqueen CY, Ommer AJ. Haplotypes and variable position detection in the mitochondrial DNA coding region encompassing nucleotide positions 10,716-11,184. MITOCHONDRIAL DNA 2014; 26:544-9. [PMID: 24397767 DOI: 10.3109/19401736.2013.869675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study evaluates the mitochondrial noncoding regions by using the Sanger sequencing method for application in Forensic Science. FTA® Technology (FTA™ paper DNA extraction) was utilized to extract DNA. Portion of coding region encompassing positions from (10,716 to 11,184) amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column were then sequenced and detected using the ABI 3730 × L DNA Analyzer. A new polymorphic positions 10,750 and 10,790 that are described may be suitable sources in future for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence, most promising for identification variants.
Collapse
Affiliation(s)
- Imad Hadi Hameed
- Department of Molecular Biology, Babylon University , Hilla City , Iraq
| | | | | | | | | |
Collapse
|
31
|
Battaglia V, Grugni V, Perego UA, Angerhofer N, Gomez-Palmieri JE, Woodward SR, Achilli A, Myres N, Torroni A, Semino O. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS One 2013; 8:e71390. [PMID: 23990949 PMCID: PMC3749222 DOI: 10.1371/journal.pone.0071390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 01/13/2023] Open
Abstract
Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America) belonging to haplogroup Q – virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America – together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3), were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3) Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3) display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.
Collapse
Affiliation(s)
- Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Norman Angerhofer
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Scott Ray Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Alessandro Achilli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
32
|
Kushniarevich A, Sivitskaya L, Danilenko N, Novogrodskii T, Tsybovsky I, Kiseleva A, Kotova S, Chaubey G, Metspalu E, Sahakyan H, Bahmanimehr A, Reidla M, Rootsi S, Parik J, Reisberg T, Achilli A, Hooshiar Kashani B, Gandini F, Olivieri A, Behar DM, Torroni A, Davydenko O, Villems R. Uniparental genetic heritage of belarusians: encounter of rare middle eastern matrilineages with a central European mitochondrial DNA pool. PLoS One 2013; 8:e66499. [PMID: 23785503 PMCID: PMC3681942 DOI: 10.1371/journal.pone.0066499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively.
Collapse
|
33
|
Characterization of mitochondrial DNA control region lineages in Iraq. Int J Legal Med 2012; 127:373-5. [DOI: 10.1007/s00414-012-0757-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
34
|
Grugni V, Battaglia V, Hooshiar Kashani B, Parolo S, Al-Zahery N, Achilli A, Olivieri A, Gandini F, Houshmand M, Sanati MH, Torroni A, Semino O. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS One 2012; 7:e41252. [PMID: 22815981 PMCID: PMC3399854 DOI: 10.1371/journal.pone.0041252] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Silvia Parolo
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
| |
Collapse
|