1
|
A Perspective of Molecular Cytogenomics, Toxicology, and Epigenetics for the Increase of Heterochromatic Regions and Retrotransposable Elements in Tambaqui (Colossoma macropomum) Exposed to the Parasiticide Trichlorfon. Animals (Basel) 2022; 12:ani12151945. [PMID: 35953934 PMCID: PMC9367383 DOI: 10.3390/ani12151945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The aim of the present study was to evaluate the Trichlorfon effects on the retrotransposable elements in tambaqui (Colossoma macropomum) genome, which is a highly popular and well-known fish in the Amazon with a large reproduction number mediated by pisciculture. Thereby, tambaqui specimens were submitted to two different Trichlorfon concentrations (30% and 50% of LC50–96 h) under experimental conditions. The retrotransposons were analyzed using the FISH technique and the heterochromatin standard with the C-band technique. The retrotransposons studied presented a dispersed distribution profile in the tambaqui karyotype with Rex3 being more prominent than the others, showing the greatest increase in markings. Furthermore, the heterochromatin profile showed that these retrotransposons can be found in the heterochromatic portions of the chromosomes. Thus, it was observed that Trichlorfon has an activation mechanism for these retroelements, especially Rex3. Abstract Rex retroelements are the best-known transposable elements class and are broadly distributed through fish and also individual genomes, playing an important role in their evolutionary dynamics. Several agents can stress these elements; among them, there are some parasitic compounds such as the organochlorophosphate Trichlorfon. Consequently, knowing that the organochlorophosphate Trichlorfon is indiscriminately used as an antiparasitic in aquaculture, the current study aimed to analyze the effects of this compound on the activation of the Transposable Elements (TEs) Rex1, Rex3, and Rex6 and the structure of heterochromatin in the mitotic chromosomes of the tambaqui (Colossoma macropomum). For this, two concentrations of the pesticide were used: 30% (0.261 mg/L) and 50% (0.435 mg/L) of the recommended LC50–96 h concentration (0.87 mg/L) for this fish species. The results revealed a dispersed distribution for Rex1 and Rex6 retroelements. Rex3 showed an increase in both marking intensity and distribution, as well as enhanced chromosomal heterochromatinization. This probably happened by the mediation of epigenetic adaptive mechanisms, causing the retroelement mobilization to be repressed. However, this behavior was most evident when Trichlorfon concentrations and exposure times were the greatest, reflecting the genetic flexibility necessary for this species to successfully adapt to environmental changes.
Collapse
|
2
|
Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T. Transposable Elements and Stress in Vertebrates: An Overview. Int J Mol Sci 2021; 22:1970. [PMID: 33671215 PMCID: PMC7922186 DOI: 10.3390/ijms22041970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Since their identification as genomic regulatory elements, Transposable Elements (TEs) were considered, at first, molecular parasites and later as an important source of genetic diversity and regulatory innovations. In vertebrates in particular, TEs have been recognized as playing an important role in major evolutionary transitions and biodiversity. Moreover, in the last decade, a significant number of papers has been published highlighting a correlation between TE activity and exposition to environmental stresses and dietary factors. In this review we present an overview of the impact of TEs in vertebrate genomes, report the silencing mechanisms adopted by host genomes to regulate TE activity, and finally we explore the effects of environmental and dietary factor exposures on TE activity in mammals, which is the most studied group among vertebrates. The studies here reported evidence that several factors can induce changes in the epigenetic status of TEs and silencing mechanisms leading to their activation with consequent effects on the host genome. The study of TE can represent a future challenge for research for developing effective markers able to detect precocious epigenetic changes and prevent human diseases.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Teresa Capriglione
- Department of Biology, University of Naples "Federico II", Via Cinthia 21-Ed7, 80126 Naples, Italy
| |
Collapse
|
3
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
4
|
Viana Ferreira AM, Marajó L, Matoso DA, Ribeiro LB, Feldberg E. Chromosomal Mapping of Rex Retrotransposons in Tambaqui (Colossoma macropomum Cuvier, 1818) Exposed to Three Climate Change Scenarios. Cytogenet Genome Res 2019; 159:39-47. [PMID: 31593951 DOI: 10.1159/000502926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 11/19/2022] Open
Abstract
Greenhouse gas emissions are known to influence the planet's temperature, mainly due to human activities. To allow hypothesis testing, as well as to seek viable alternatives for mitigation, the Intergovernmental Panel on Climate Change (IPCC) suggested 3 main scenarios for changes projected for the year 2100. In this paper, we subjected Colossoma macropomum Cuvier, 1818 (tambaqui) individuals in a microcosm to IPCC scenarios B1 (mild), A1B (intermediate), and A2 (extreme) to test possible impacts on their genome. We found chromosome heterochromatinization in specimens exposed to the A2 scenario, where terminal blocks and interstitial bands were detected on several chromosome pairs. The behavior of Rex1 and Rex3 sequences differed between the test scenarios. Hybridization of Rex1 resulted in diffuse signals which showed a gradual increase in the tested scenarios. For Rex3, an increase was observed in the A2 scenario with blocks on several chromosomes, some of which coincided with heterochromatin. Heterochromatinization is an epigenetic process, which may have occurred as a mechanism for regulating Rex3 activity. The signal pattern of Rex6 did not change, suggesting that other mechanisms are acting to regulate its activity.
Collapse
|
5
|
Carducci F, Biscotti MA, Forconi M, Barucca M, Canapa A. An intriguing relationship between teleost Rex3 retroelement and environmental temperature. Biol Lett 2019; 15:20190279. [PMID: 31480936 DOI: 10.1098/rsbl.2019.0279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The movement and accumulation of transposable elements (TEs) exert a great influence on the host genome, e.g. determining architecture and genome size, providing a substrate for homologous recombination and DNA rearrangements. TEs are also known to be responsive and susceptible to environmental changes. However, the correlation between environmental conditions and the sequence evolution of TEs is still an unexplored field of research. Among vertebrates, teleosts represent a successful group of animals adapted to a wide range of different environments and their genome is constituted by a rich repertoire of TEs. The Rex3 retroelement is a lineage-specific non-LTR retrotransposon and thus represents a valid candidate for performing comparative sequence analyses between species adapted to diverse temperature conditions. Partial reverse transcriptase sequences of the Rex3 retroelement belonging to 39 species of teleosts were investigated through phylogenetic analysis to evaluate whether the species' adaptation to different environments led to the evolution of different Rex3 temperature-related variants. Our findings highlight an intriguing behaviour of the analysed sequences, showing clustering of Rex3 sequences isolated from species living in cold waters (Arctic and Antarctic regions and cold waters of temperate regions) compared with those isolated from species living in warm waters. This is the first evidence to our knowledge of a correlation between environmental temperature and Rex3 retroelement evolution.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Araújo da Silva F, Feldberg E, Moura Carvalho ND, Hernández Rangel SM, Schneider CH, Carvalho-Zilse GA, Fonsêca da Silva V, Gross MC. Effects of environmental pollution on the rDNAomics of Amazonian fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:180-187. [PMID: 31146233 DOI: 10.1016/j.envpol.2019.05.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Pollution is a growing environmental problem throughout the world, and the impact of human activities on biodiversity and the genetic variability of natural populations is increasingly preoccupying, given that adaptive processes depend on this variability, in particular that found in the repetitive DNA. In the present study, the mitochondrial DNA (COI) and the distribution of repetitive DNA sequences (18S and 5S rDNA) in the fish genome were analysed in fish populations inhabiting both polluted and unpolluted waters in the northern Amazon basin. The results indicate highly complex ribosomal sequences in the fish genome from the polluted environment because these sequences are involved primarily in the maintenance of genome integrity, mediated by a systematic increase in the number of copies of the ribosomal DNA in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Francijara Araújo da Silva
- Programa de Pós-Graduação Em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil.
| | - Eliana Feldberg
- Programa de Pós-Graduação Em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Natália Dayane Moura Carvalho
- Escola Superior de Ciências da Saúde, Programa de Pós-Graduação Em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | | | | | - Gislene Almeida Carvalho-Zilse
- Programa de Pós-Graduação Em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Maria Claudia Gross
- Instituto de Ciências da Vida e da Natureza, Universidade Federal de Integração Latino Americana, Foz do Iguaçu, PR, Brazil
| |
Collapse
|
7
|
Takagui FH, Baumgärtner L, Baldissera JN, Laridondo Lui R, Margarido VP, Fonteles SBA, Garcia C, Birindelli JO, Moreira-Filho O, Almeida FS, Giuliano-Caetano L. Chromosomal Diversity of Thorny Catfishes (Siluriformes-Doradidae): A Case of Allopatric Speciation Among Wertheimerinae Species of São Francisco and Brazilian Eastern Coastal Drainages. Zebrafish 2019; 16:477-485. [PMID: 31453759 DOI: 10.1089/zeb.2019.1769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wertheimerinae is a small subfamily of thorny catfish composed of two species found in eastern Brazilian coastal drainages: Wertheimeria maculata and Kalyptodoras bahiensis. According to molecular phylogenetic analysis, Franciscodoras marmoratus an endemic species of the São Francisco River is also a member of this subfamily. Even though both phylogenetic approaches suggest that this group is one of the oldest lineages of the Doradidae, a disagreement remains about the constitution of Wertheimerinae. Hence, cytogenetic analysis is important to understand the karyotypic evolution of thorny catfish and can be a useful cytotaxonomic tool to clarify the relationships between these species. All Wertheimerinae species, and F. marmoratus here analyzed, shared 2n = 58 chromosomes, karyotypic formulas (24m+12sm +8st +14a), and nucleolus organizer region (NOR) pattern (terminal 18S rDNA sites on pair 22). Differences were noted in heterochromatin and 5S rDNA site distribution. The chromosomal markers here applied added to the molecular data, reinforcing that these three species actually represent a well-resolved taxonomic unit. Our results represent one more evidence of the ancient connectivity between eastern coastal drainages and São Francisco River, whose separation represented an important event for the allopatric speciation that produced the current forms of Wertheimerinae subfamily.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Lucas Baumgärtner
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Joana Neres Baldissera
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Roberto Laridondo Lui
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Vladimir Pavan Margarido
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Soraia Barreto Aguiar Fonteles
- Genetics of Aquatic Organisms Laboratory, Center for Agrarian Environmental and Biological Sciences, Federal University of Recôncavo of Bahia, Cruz das Almas, Bahia, Brazil
| | - Caroline Garcia
- Cytogenetic Laboratory, Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - José Olivan Birindelli
- Museum of Zoology, Department of Animal and Plant Biology, Centro de Ciências Biológicas, Londrina State University, Londrina, Brazil
| | - Orlando Moreira-Filho
- Molecular Biodiversity and Conservation Laboratory, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Fernanda Simões Almeida
- Genetics and Animal Ecology Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Lucia Giuliano-Caetano
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| |
Collapse
|
8
|
Carducci F, Barucca M, Canapa A, Biscotti MA. Rex Retroelements and Teleost Genomes: An Overview. Int J Mol Sci 2018; 19:ijms19113653. [PMID: 30463278 PMCID: PMC6274825 DOI: 10.3390/ijms19113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Repetitive DNA is an intriguing portion of the genome still not completely discovered and shows a high variability in terms of sequence, genomic organization, and evolutionary mode. On the basis of the genomic organization, it includes satellite DNAs, which are organized as long arrays of head-to-tail linked repeats, and transposable elements, which are dispersed throughout the genome. These repeated elements represent a considerable fraction of vertebrate genomes contributing significantly in species evolution. In this review, we focus our attention on Rex1, Rex3 and Rex6, three elements specific of teleost genomes. We report an overview of data available on these retroelements highlighting their significative impact in chromatin and heterochromatin organization, in the differentiation of sex chromosomes, in the formation of supernumerary chromosomes, and in karyotype evolution in teleosts.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
9
|
Pucci MB, Nogaroto V, Moreira-Filho O, Vicari MR. Dispersion of transposable elements and multigene families: Microstructural variation in Characidium (Characiformes: Crenuchidae) genomes. Genet Mol Biol 2018; 41:585-592. [PMID: 30043833 PMCID: PMC6136364 DOI: 10.1590/1678-4685-gmb-2017-0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genomes consist of several repetitive DNAs, including dispersed DNA
sequences that move between chromosome sites, tandem repeats of DNA sequences,
and multigene families. In this study, repeated sequences isolated from the
genome of Characidium gomesi were analyzed and mapped to
chromosomes in Characidium zebra and specimens from two
populations of C. gomesi. The sequences were transposable
elements (TEs) named retroelement of Xiphophorus (Rex);
multigene families of U2 small nuclear RNA (U2 snRNA); and
histones H1, H3, and H4. Sequence analyses revealed that U2
snRNA contains a major portion corresponding to the Tx1-type
non-LTR retrotransposon Keno, the preferential insertion sites
of which are U2 snRNA sequences. All histone sequences were
found to be associated with TEs. In situ localization revealed
that these DNA sequences are dispersed throughout the autosomes of the species,
but they are not involved in differentiation of the specific region of the W sex
chromosome in C. gomesi. We discuss mechanisms of TE invasion
into multigene families that lead to microstructural variation in
Characidium genomes.
Collapse
Affiliation(s)
- Marcela Baer Pucci
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa Ponta Grossa, PR, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa Ponta Grossa, PR, Brazil
| |
Collapse
|
10
|
Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics 2018; 19:339. [PMID: 29739320 PMCID: PMC5941688 DOI: 10.1186/s12864-018-4714-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4714-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France. .,Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France.
| | - P Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - L Belkadi
- Institut Pasteur, Laboratoire Signalisation et Pathogénèse, UMR CNRS 3691, Bâtiment DARRE, 25-28 rue du Dr Roux, 75015, Paris, France
| | - L Petit
- Plateforme d'Imagerie et Cytométrie en flux, Sorbonne Université, CNRS, - Institut de Biologie Paris-Seine (BDPS - IBPS), F-75005, Paris, France
| | - E Bonnivard
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - A Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France
| | - W H Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - C Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - D Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| |
Collapse
|
11
|
Taboada X, Rey M, Bouza C, Viñas A. Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus). Gene 2018; 644:4-12. [PMID: 29246535 DOI: 10.1016/j.gene.2017.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S rDNA, telomeric and Rex repetitive sequences, was compared to their chromosomal mapping by fluorescent in situ hybridization (FISH), providing a more comprehensive picture of these elements in the turbot genome. FISH assays confirmed the location of H1 in LG8; 5S rDNA in LG4 and LG6; telomeric sequences at the end of all chromosomes whereas Rex elements were dispersed along most chromosomes. The discrepancies found between both approaches could be related to the sequencing methodology applied in this species and also to the resolution limitations of the FISH technique. Turbot cytogenomic analyses have proven to add new chromosomal landmarks in the karyotype of this species, representing a powerful tool to investigate targeted genomic sequences or regions in the genetic and physical maps of this species.
Collapse
Affiliation(s)
- Xoana Taboada
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magalí Rey
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Ana Viñas
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Marajó L, Viana PF, Ferreira M, Py-Daniel LHR, Feldberg E. Cytogenetics of two Farlowella species (Loricariidae: Loricariinae): implications on the taxonomic status of the species. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20180029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT Farlowella is one of the most diverse genera of the Loricariinae, restricted to South America rivers. The taxonomic and phylogenetic relationships among its species are contentious and, while genetic studies would contribute to the understanding of their relationships, the only available datum refer to the karyotype description of only one species. In the present study two Amazonian species, Farlowella cf. amazonum and F. schreitmuelleri, were analyzed using conventional and molecular cytogenetic procedures. Both species had diploid chromosome number 58, but different fundamental numbers (NF) 116 and 112, respectively, indicative of chromosomal rearrangements. C-banding is almost poor, especially in F. cf. amazonum, and occurs predominantly in the centromeric and in some telomeric regions, although genome of F. schreitmuelleri possessed a much larger heterochromatin amount then those of F. cf. amazonum. The chromosomes bearing the NOR sites were likely the same for both species, corresponding to the 1st metacentric pair in F. cf. amazonum and to the 28th acrocentric in F. schreitmuelleri. The location of the 5S rDNA was species-specific marker. This study expanded the available cytogenetic data for Farlowella species and pointed the remarkable karyotype diversity among species/populations, indicating a possible species complex within genus.
Collapse
|
13
|
Xu D, Molina WF, Yano CF, Zhang Y, de Oliveira EA, Lou B, de Bello Cioffi M. Comparative cytogenetics in three Sciaenid species (Teleostei, Perciformes): evidence of interspecific chromosomal diversification. Mol Cytogenet 2017; 10:37. [PMID: 29075328 PMCID: PMC5654061 DOI: 10.1186/s13039-017-0338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Background Species belonging to the Sciaenidae family present a karyotype composed by 48 acrocentric chromosomes and are thus considered a striking example of chromosomal conservation. In this family, three species are extensively studied including Larimichthys crocea, Larimichthys polyactis and Nibea albiflora due to their importance in fishery and aquaculture in East Asia. Despite abundant data of population genetics available for some of them, cytogenetic information on these species is still scarce and obtained by conventional cytogenetic protocols. Therefore, a more detailed cytogenomic investigation was performed in these species to analyze their karyotype differentiation using conventional staining techniques and fluorescence in situ hybridization to map several repetitive DNAs. Results The three species showed a slight karyotype differentiation with 4sm + 2st + 42a in L. polyactis, 20st + 28a in L. crocea and 48a in N. albiflora. Additionally, the mapping of repetitive sequences further revealed a number of interspecific differences among them. Particularly, 18S and 5S rDNA sites showed syntenic arrangements in N. albiflora and non-syntenic arrangements in both Larimichthys species. The microsatellites (CA)15 and (GA)15 showed conspicuous terminal clusters in some chromosomes of all species. On the other hand, (CGG)10 repeats, Rex6 elements and U2 snRNA displayed a scattered distribution on the chromosomes. Conclusions Although the three Sciaenid species examined displayed a general pattern of karyotypic conservatism, we explored chromosomal diversification among them. The diversificated karyotypic macrostructure is followed by intergeneric evolutionary diversification of the repetitive sequences. The data indicate some degree of intergeneric evolutionary diversification at chromosomal level, and suggest the evolutionary dynamics among Sciaenid species, higher than previously thought. The present cytogenetic data provide new insight into the chromosomal diversification in Sciaenidae, and contribute to inferring the chromosomal rearrangements and trends of karyotype evolution in this fish group.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, Natal, RN 59078-970 Brazil
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil
| | - Yurong Zhang
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Bao Lou
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
14
|
Suárez P, Pinto Barroso ICG, Silva DDS, Milhomem SSR, Cabral-de-Mello DC, Martins C, Pieczarka JC, Nagamachi CY. Highest Diploid Number Among Gymnotiformes: First Cytogenetic Insights into Rhabdolichops (Sternopygidae). Zebrafish 2017; 14:272-279. [PMID: 28394248 DOI: 10.1089/zeb.2016.1405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the first comparative cytogenetic analysis of two species from electrogenic fish of genus Rhabdolichops (Sternopygidae, Gymnotiformes): Rhabdolichops troscheli and Rhabdolichops cf eastwardi. R. troscheli has 2n = 54 (fundamental number [FN] = 66), whereas R. cf. eastwardi has 2n = 74 (FN = 78). C-banding revealed centromeric constitutive heterochromatin in both species. Ag-NORs mapped on pair 6 in R. troscheli and pair 30 in R. cf eastwardi. Fluorescense in situ hybridization with 18S rDNA probes confirmed the Ag-NOR staining results and revealed additional (presumably silent) ribosomal genes on pairs 12, 13, 21, 23, 26, and 27 in R. cf eastwardi. 5S rDNA was found on the centromeres of pair 7 in both species. Telomeric probes showed only distal locations. Dispersed signal patterns were obtained using probes for retrotransposons Rex1 and Rex3. Histone H1 and H3 genes were found together on pair 6 in R. cf eastwardi. The high diploid number found in Rhabdolichops suggests that chromosome fission may have contributed to its chromosomal evolution, phylogenetic relationship of the Sternopygidae suggests that this increase in diploid number could be a synapomorphic characteristic of genus Rhabdolichops. Although both species are phylogenetically close related, their karyotype structure has undergone divergent evolutionary directions. All in all, our results strongly suggest that R. cf eastwardi experencied recent intense genome reorganization.
Collapse
Affiliation(s)
- Pablo Suárez
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
- 2 Instituto de Biología Subtropical , CONICET-UNaM, Puerto Iguazú, Argentina
| | - Inaê Cristina Guerreiro Pinto Barroso
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | | | - Susana S R Milhomem
- 4 Instituto Federal de Educação , Ciência e Tecnologia de Goiás, Valparaiso de Goiás, Brazil
| | | | - Cesar Martins
- 6 Instituto de Biociências, Universidade Estadual Paulista Julio de Mesquita Filho , Botucatu, Brazil
| | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| |
Collapse
|
15
|
Bitencourt JA, Sampaio I, Ramos RT, Vicari MR, Affonso PRADM. First Report of Sex Chromosomes in Achiridae (Teleostei: Pleuronectiformes) with Inferences About the Origin of the Multiple X1X1X2X2/X1X2Y System and Dispersal of Ribosomal Genes inAchirus achirus. Zebrafish 2017; 14:90-95. [DOI: 10.1089/zeb.2016.1333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Iracilda Sampaio
- Institute of Coastal Studies, Federal University of Pará, Bragança, Brazil
| | - Robson T.C. Ramos
- Department of Systematics and Ecology, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo Ricardo Vicari
- Department of Genetics, Structural and Molecular Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | |
Collapse
|
16
|
Ferreira M, Garcia C, Matoso DA, de Jesus IS, Feldberg E. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica 2016; 144:591-599. [DOI: 10.1007/s10709-016-9927-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
|
17
|
Noronha RCR, Barros LMR, Araújo REF, Marques DF, Nagamachi CY, Martins C, Pieczarka JC. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae). Mol Cytogenet 2016; 9:73. [PMID: 27708713 PMCID: PMC5039792 DOI: 10.1186/s13039-016-0281-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cytogenetic studies were conducted in the Brazilian Amazon turtles, Podocnemis expansa Schweigger, 1912 (PEX) and Podocnemis unifilis Troschel, 1848 (PUN) to understand their karyoevolution. Their chromosomal complements were compared using banding techniques (C, G-, Ag-NOR and Chromomycin A3) and fluorescence in situ hybridization (FISH), and efforts were made to establish evolutionary chromosomal relationships within the Podocnemidae family. RESULTS Our results revealed that both species have a chromosome complement of 2n = 28. For PEX and PUN, the fundamental numbers (FNs) were 54 and 52, respectively and the karyotypic formulas (KFs) were 24 m/sm + 2st + 2a and 22 m/sm + 2st + 4a, respectively. G-banding evidenced homologies between the two species and allowed identify a heteromorphic pair (chromosome pair 10) in PUN. In PEX, constitutive heterochromatin (CH) was found in the centromeric regions of pairs 1, 2, 4, 6 and 11 and on 9p. In PUN, CH was observed in the centromeric regions of all chromosomes, and in small proximal bands on 1p, 2p, 3q, 4q, 5q, 9q, 10q and 11q. Moreover, CH amplification was seen in one of the homologs of pair 10 (the heteromorphic pair). The CMA3 staining results were consistent with the CH findings. Ag-NOR staining showed that nucleolar organizing regions (NORs) were localized in the pericentromeric region of pair 1 in both species, and this result was confirmed by the 18S rDNA FISH probe. FISH with telomeric probes identified telomeric sequences in the distal regions of all chromosomes. In addition, interstitial telomeric sequences (ITSs) were present in seven chromosome pairs of PUN, perhaps reflecting the amplification of telomere-like sequences. FISH with a probe against the transposable element (TE), Rex 6, revealed that it is dispersed in euchromatic regions of the first chromosome pairs of both species. This is the first report describing the FISH-based analysis of PEX and PUN for the 18S rDNA, Rex 6 and human telomeric sequences. CONCLUSIONS Our results contribute to clarifying the chromosomal homologies and rearrangement mechanisms that occurred during the evolution of these species, and may help researchers uncover new markers that will improve our understanding of the taxonomy and systematic classification of Podocnemidae. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- R C R Noronha
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - L M R Barros
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - R E F Araújo
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - D F Marques
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil
| | - C Y Nagamachi
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - C Martins
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - J C Pieczarka
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| |
Collapse
|
18
|
da Silva FA, Schneider CH, Feldberg E, Baccaro FB, Carvalho NDM, Gross MC. Genomic Organization Under Different Environmental Conditions: Hoplosternum Littorale as a Model. Zebrafish 2016; 13:197-208. [PMID: 26981695 PMCID: PMC4892195 DOI: 10.1089/zeb.2015.1237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Amazon has abundant rivers, streams, and floodplains in both polluted and nonpolluted environments, which show great adaptability. Thus, the goal of this study was to map repetitive DNA sequences in both mitotic chromosomes and erythrocyte micronuclei of tamoatás from polluted and nonpolluted environments and to assess the possible genotoxic effects of these environments. Individuals were collected in Manaus, Amazonas (AM), and submitted to classical and molecular cytogenetic techniques, as well as to a blood micronucleus test. Diploid number equal to 60 chromosomes are present in all individuals, with 18S ribosomal DNA sites present in one chromosome pair and no interstitial telomeric sites on chromosomes. The micronucleus test showed no significant differences in pairwise comparisons between environments or collection sites, but the Rex3 retroelement was dispersed on the chromosomes of individuals from unpolluted environments and compartmentalized in individuals from polluted environments. Divergent numbers of 5S rDNA sites are present in individuals from unpolluted and polluted environments. The mapping of repetitive sequences revealed that micronuclei have different compositions both intra- and interindividually that suggests different regions are lost in the formation of micronuclei, and no single fragile region undergoes breaks, although repetitive DNA elements are involved in this process.
Collapse
Affiliation(s)
- Francijara Araújo da Silva
- Laboratório de Citogenômica Animal, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Carlos Henrique Schneider
- Laboratório de Citogenômica Animal, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Fabricio Beggiato Baccaro
- Laboratório de Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Natália Dayane Moura Carvalho
- Laboratório de Citogenômica Animal, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Maria Claudia Gross
- Laboratório de Citogenômica Animal, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|
19
|
Silva FAD, Carvalho NDM, Schneider CH, Terencio ML, Feldberg E, Gross MC. Comparative Cytotaxonomy of Two Species of Fish from the Genus Satanoperca Reveals the Presence of a B Chromosome. Zebrafish 2016; 13:354-9. [PMID: 27158927 DOI: 10.1089/zeb.2016.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The taxonomy of Satanoperca spp. is still unresolved, especially because coloring, one of the main diagnostic characters, is variable among species of this genus. Thus, the aim of this study was to elucidate the relationship between the genome and the organization of the chromosome in two Satanoperca species. Our main goal was to develop a method to better differentiate taxa and understand the evolution of Satanoperca jurupari and Satanoperca lilith karyotypes, which we analyzed with classical and molecular cytogenetics. Both species have the same diploid number (2n) of 48 and location of 5S rDNA sites on pair 5. Nonetheless, the distribution of heterochromatin and 18S rDNA sites followed a species-specific pattern. The interstitial telomeric sites were not highlighted in either species. Regardless, a single B chromosome was identified in some metaphases of S. lilith. These data show that Satanoperca species harbor chromosomal features that can be used to identify the two species of Satanoperca studied here, allowing for the use of cytogenetic markers to make taxonomic inferences within the genus.
Collapse
Affiliation(s)
- Francijara Araújo da Silva
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Natália Dayane Moura Carvalho
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Carlos Henrique Schneider
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Maria Leandra Terencio
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| | - Eliana Feldberg
- 3 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia , Manaus, Brazil
| | - Maria Claudia Gross
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| |
Collapse
|
20
|
Integrated cytogenetics and genomics analysis of transposable elements in the Nile tilapia, Oreochromis niloticus. Mol Genet Genomics 2016; 291:1219-25. [PMID: 26860923 DOI: 10.1007/s00438-016-1176-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
Integration of cytogenetics and genomics has become essential to a better view of architecture and function of genomes. Although the advances on genomic sequencing have contributed to study genes and genomes, the repetitive DNA fraction of the genome is still enigmatic and poorly understood. Among repeated DNAs, transposable elements (TEs) are major components of eukaryotic chromatin and their investigation has been hindered even after the availability of whole sequenced genomes. The cytogenetic mapping of TEs in chromosomes has proved to be of high value to integrate information from the micro level of nucleotide sequence to a cytological view of chromosomes. Different TEs have been cytogenetically mapped in cichlids; however, neither details about their genomic arrangement nor appropriated copy number are well defined by these approaches. The current study integrates TEs distribution in Nile tilapia Oreochromis niloticus genome based on cytogenetic and genomics/bioinformatics approach. The results showed that some elements are not randomly distributed and that some are genomic dependent on each other. Moreover, we found extensive overlap between genomics and cytogenetics data and that tandem duplication may be the major mechanism responsible for the genomic dynamics of TEs here analyzed. This paper provides insights in the genomic organization of TEs under an integrated view based on cytogenetics and genomics.
Collapse
|
21
|
Nascimento J, Baldo D, Lourenço LB. First insights on the retroelement Rex1 in the cytogenetics of frogs. Mol Cytogenet 2015; 8:86. [PMID: 26550032 PMCID: PMC4635592 DOI: 10.1186/s13039-015-0189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Background While some transposable elements (TEs) have been found in the sequenced genomes of frog species, detailed studies of these elements have been lacking. In this work, we investigated the occurrence of the Rex1 element, which is widespread in fish, in anurans of the genus Physalaemus. We isolated and characterized the reverse transcriptase (RT)-coding sequences of Rex1 elements of five species of this genus. Results The amino acid sequences deduced from the nucleotide sequences of the isolated fragments allowed us to unambiguously identify regions corresponding to domains 3–7 of RT. Some of the nucleotide sequences isolated from Physlaemus ephippifer and P. albonotatus had internal deletions, suggesting that these fragments are likely not active TEs, despite being derived from a Rex1 element. When hybridized with metaphase chromosomes, Rex1 probes were revealed at the pericentromeric heterochromatic region of the short arm of chromosome 3 of the P. ephippifer karyotype. Neither other heterochromatin sites of the P. ephippifer karyotype nor any chromosomal regions of the karyotypes of P. albonotatus, P. spiniger and P. albifrons were detected with these probes. Conclusions Rex1 elements were found in the genomes of five species of Physalaemus but clustered in only the P. ephippifer karyotype, in contrast to observations in some species of fish, where large chromosomal sites with Rex1 elements are typically present. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Nascimento
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF Posadas, Misiones Argentina
| | - Luciana Bolsoni Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| |
Collapse
|
22
|
Dynamics of Rex3 in the genomes of endangered Iberian Leuciscinae (Teleostei, Cyprinidae) and their natural hybrids. Mol Cytogenet 2015; 8:81. [PMID: 26512297 PMCID: PMC4623273 DOI: 10.1186/s13039-015-0180-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
Background Iberian Leuciscinae are greatly diverse comprising taxa of hybrid origin. With highly conservative karyotypes, Iberian Chondrostoma s.l. have recently demonstrated sub-chromosomal differentiation and rapid genome restructuring in natural hybrids, which was confirmed by ribosomal DNA (rDNA) transposition and/or multiplication. To understand the role of repetitive DNAs in the differentiation of their genomes, a genetic and molecular cytogenetic survey was conducted in Achondrostoma oligolepis, Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. polylepis, Squalius pyrenaicus and hybrids between A. oligolepis x (P. duriense/P. polylepis), representing ‘alburnine’, chondrostomine and Squalius lineages. Results Partial Rex3 sequences evidenced high sequence homology among Leuciscinae (≥98 %) and different fish families (80–95 %) proposing a relatively recent activity of these elements in the species inspected. Low nucleotide substitution rates (<20 %) and intact ORFs suggests that Rex3 may in fact be active in these genomes. The chromosomal distribution of Rex3 retroelement was found highly concentrated at pericentromeric and moderately at subtelomeric blocks, co-localizing with 5S rDNA loci, and correlating with blocks of heterochromatin and C0t-1 DNA. This accumulation was evident in at least 10 chromosome pairs, a pattern that seemed to be shared among the different species, likely pre-dating their divergence. Nevertheless, species-specific clusters were detected in I. lusitanicum, P. duriense, P. polylepis and S. pyrenaicus demonstrating rapid and independent differentiation. Natural hybrids followed the same patterns of accumulation and association with repetitive sequences. An increased number of Rex3 clusters now associating also with translocated 45S rDNA clusters vouched for other genomic rearrangements in hybrids. Rex3 sequence phylogeny did not agree with its hosts’ phylogeny but the observed distribution pattern is congruent with an evolutionary tendency to protect its activity, a robust regulatory system and/or events of horizontal transfer. Conclusions This is the first report directed at retroelement physical mapping in Cyprinidae. It helped outlining conceivable ancestral homologies and recognizing retrotransposon activation in hybrids, being possibly associated with genome diversification within the subfamily. The extensive diversity of Iberian Leuciscinae makes them excellent candidates to explore the processes and mechanisms behind the great plasticity distinguishing vertebrate genomes. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0180-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Argôlo LA, Affonso PRADM. First cytogenetic report in Cichlasoma sanctifranciscense Kullander, 1983 (Perciformes, Cichlidae) from northeastern Brazil with inferences on chromosomal evolution of Cichlasomatini. COMPARATIVE CYTOGENETICS 2015; 9:671-81. [PMID: 26753082 PMCID: PMC4698579 DOI: 10.3897/compcytogen.v9i4.5562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/19/2015] [Indexed: 05/28/2023]
Abstract
Even though genetic aspects of some cichlids have been widely studied over the last decades, little is known about the genomic structure of Cichlidae when compared to the large number of species in the family. In this paper, the first chromosomal data for Cichlasoma sanctifranciscense Kullander, 1983 are presented and discussed based on cytotaxonomic and karyoevolutionary inferences on Cichlasomatini. All individuals shared a diploid number of 2n=48 distributed as 10sm+28st+10a and Ag-NORs on short arms of a submetacentric pair. Heterochromatin was detected at pericentromeric regions of most chromosomes and at terminal sites of a few pairs. GC-rich regions were observed on short arms of two biarmed pairs, including the pair bearing Ag-NORs. Double-FISH with ribosomal probes revealed 18S rDNA clusters coincident with GC-rich regions in two biarmed pairs and 5S rDNA at interstitial location of an acrocentric pair. Cichlasoma sanctifranciscense shares some symplesiomorphic traits described in Cichlidae (2n=48 and pericentromeric C-bands) while other chromosomal features diverge from the common trend reported in Cichlasomatini, such as multiple 18S rDNA sites combined with high FN values. Finally, the present results are useful to support taxonomic identification once species-specific markers have been provided in Cichlasoma sanctifranciscense.
Collapse
Affiliation(s)
- Leandro A. Argôlo
- Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Laboratório de Citogenética, Avenida José Moreira Sobrinho s/n, Jequiezinho, 45.206-190 Jequié, BA, Brazil
| | - Paulo Roberto Antunes de Mello Affonso
- Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Laboratório de Citogenética, Avenida José Moreira Sobrinho s/n, Jequiezinho, 45.206-190 Jequié, BA, Brazil
| |
Collapse
|
24
|
Terencio ML, Schneider CH, Gross MC, do Carmo EJ, Nogaroto V, de Almeida MC, Artoni RF, Vicari MR, Feldberg E. Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish. COMPARATIVE CYTOGENETICS 2015; 9:465-481. [PMID: 26752156 PMCID: PMC4698564 DOI: 10.3897/compcytogen.v9i4.5299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Abstract
The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions - thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841) and Semaprochilodus taeniurus (Valenciennes, 1817) and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (Semaprochilodus insignis, Semaprochilodus taeniurus, and Prochilodus lineatus (Valenciennes, 1836) by cross-FISH using Cot-1 DNA (renaturation kinetics) probes. We found that the repetitive fractions of the genomes of Semaprochilodus insignis and Semaprochilodus taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of Prochilodus lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of Semaprochilodus insignis and Semaprochilodus taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the Semaprochilodus insignis and Semaprochilodus taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the Prochilodus lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish.
Collapse
Affiliation(s)
- Maria L Terencio
- Federal University of Integration American-Latin (Universidade Federal da Integração Latino-Americana), Laboratory of Genetics, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, Foz do Iguaçu, PR, Brazil 85857-190
| | - Carlos H Schneider
- Federal University of Amazonas (Universidade Federal do Amazonas), Institute of Biological Sciences, Department of Genetics, Laboratory of Animal Cytogenomics, Manaus, AM, Brazil
| | - Maria C Gross
- Federal University of Amazonas (Universidade Federal do Amazonas), Institute of Biological Sciences, Department of Genetics, Laboratory of Animal Cytogenomics, Manaus, AM, Brazil
| | - Edson Junior do Carmo
- Federal University of Amazonas, Institute of Biological Sciences, Laboratory of DNA Technologies, Manaus, AM, Brazil
| | - Viviane Nogaroto
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Mara Cristina de Almeida
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Roberto Ferreira Artoni
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Marcelo R Vicari
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Eliana Feldberg
- National Institute of Amazonian Research, Laboratory of Animal Genetics, Av. André Araújo, 2936, Petrópolis, Manaus, AM, Brazil 69011-970
| |
Collapse
|
25
|
Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes. AN ACAD BRAS CIENC 2015; 86:1801-12. [PMID: 25590717 DOI: 10.1590/0001-3765201420130489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/13/2014] [Indexed: 08/20/2023] Open
Abstract
Mechanisms of accumulation based on typical centromeric drive or of chromosomes carrying pericentric inversions are adjusted to the general karyotype differentiation in the principal Actinopterygii orders. Here, we show that meiotic drive in fish is also supported by preferential establishment of sex chromosome systems and B chromosomes in orders with predominantly bi-brachial chromosomes. The mosaic of trends acting at an infra-familiar level in fish could be explained as the interaction of the directional process of meiotic drive as background, modulated on a smaller scale by adaptive factors or specific karyotypic properties of each group, as proposed for the orthoselection model.
Collapse
Affiliation(s)
- Wagner F Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Pablo A Martinez
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - Claudio J Bidau
- Departamento de Ingeniería en Biotecnología, Universidad Nacional de Río Negro, Villa Regina, Argentina
| |
Collapse
|
26
|
Schneider CH, Gross MC, Terencio ML, de Tavares ÉSGM, Martins C, Feldberg E. Chromosomal distribution of microsatellite repeats in Amazon cichlids genome (Pisces, Cichlidae). COMPARATIVE CYTOGENETICS 2015; 9:595-605. [PMID: 26753076 PMCID: PMC4698573 DOI: 10.3897/compcytogen.v9i4.5582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2014] [Indexed: 05/10/2023]
Abstract
Fish of the family Cichlidae are recognized as an excellent model for evolutionary studies because of their morphological and behavioral adaptations to a wide diversity of explored ecological niches. In addition, the family has a dynamic genome with variable structure, composition and karyotype organization. Microsatellites represent the most dynamic genomic component and a better understanding of their organization may help clarify the role of repetitive DNA elements in the mechanisms of chromosomal evolution. Thus, in this study, microsatellite sequences were mapped in the chromosomes of Cichla monoculus Agassiz, 1831, Pterophyllum scalare Schultze, 1823, and Symphysodon discus Heckel, 1840. Four microsatellites demonstrated positive results in the genome of Cichla monoculus and Symphysodon discus, and five demonstrated positive results in the genome of Pterophyllum scalare. In most cases, the microsatellite was dispersed in the chromosome with conspicuous markings in the centromeric or telomeric regions, which suggests that sequences contribute to chromosome structure and may have played a role in the evolution of this fish family. The comparative genome mapping data presented here provide novel information on the structure and organization of the repetitive DNA region of the cichlid genome and contribute to a better understanding of this fish family's genome.
Collapse
Affiliation(s)
- Carlos Henrique Schneider
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Maria Leandra Terencio
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, Zip code 85857-190, Foz do Iguaçu, PR, Brazil
| | - Édika Sabrina Girão Mitozo de Tavares
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Cesar Martins
- Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Instituto de Biociências, Departamento de Morfologia, Laboratório Genômica Integrativa, Rubião Junior, Zip code 18618-000 Botucatu, SP, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Genética Animal, Av. André Araújo, 2936 Zip Code 69077-000, Manaus, AM, Brazil
| |
Collapse
|
27
|
Hodaňová L, Kalous L, Musilová Z. Comparative cytogenetics of Neotropical cichlid fishes (Nannacara, Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers. COMPARATIVE CYTOGENETICS 2014; 8:169-83. [PMID: 25349669 PMCID: PMC4205487 DOI: 10.3897/compcytogen.v8i3.7279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/29/2014] [Indexed: 06/01/2023]
Abstract
A comparative cytogenetic analysis was carried out in five species of a monophyletic clade of neotropical Cichlasomatine cichlids, namely Cleithracara maronii Steindachner, 1881, Ivanacara adoketa (Kullander & Prada-Pedreros, 1993), Nannacara anomala Regan, 1905, N. aureocephalus Allgayer, 1983 and N. taenia Regan, 1912. Karyotypes and other chromosomal characteristics were revealed by CDD banding and mapped onto the phylogenetic hypothesis based on molecular analyses of four genes, namely cyt b, 16S rRNA, S7 and RAG1. The diploid numbers of chromosomes ranged from 44 to 50, karyotypes were composed predominantly of monoarmed chromosomes and one to three pairs of CMA3 signal were observed. The results showed evolutionary reduction in this monophyletic clade and the cytogenetic mechanisms (fissions/fusions) were hypothesized and discussed.
Collapse
Affiliation(s)
- Lucie Hodaňová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zuzana Musilová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics AV CR, Libechov, Czech Republic
- Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
28
|
Porto FE, de Rossi Vieira MM, Barbosa LM, Borin-Carvalho LA, Vicari MR, de Brito Portela-Castro AL, Martins-Santos IC. Chromosomal Polymorphism in Rineloricaria Lanceolata Günther, 1868 (Loricariidae: Loricariinae) of the Paraguay Basin (Mato Grosso do Sul, Brazil): Evidence of Fusions and Their Consequences in the Population. Zebrafish 2014; 11:318-24. [DOI: 10.1089/zeb.2014.0996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fernanda Errero Porto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Ligia Magrinelli Barbosa
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Marcelo Ricardo Vicari
- Setor de Ciências Biológicas e da Saúde/Debiogem, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
29
|
Splendore de Borba R, Lourenço da Silva E, Parise-Maltempi PP. Chromosome mapping of retrotransposable elements Rex1 and Rex3 in Leporinus Spix, 1829 species (Characiformes: Anostomidae) and its relationships among heterochromatic segments and W sex chromosome. Mob Genet Elements 2013; 3:e27460. [PMID: 24404417 DOI: 10.4161/mge.27460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 01/21/2023] Open
Abstract
The family Anostomidae is an interesting model for studies of repetitive elements, mainly because of the presence of high numbers of heterochromatic segments related to a peculiar system of female heterogamety, which is restricted to a few species of Leporinus genus. Thus, cytogenetic mapping of the retrotransposable elements Rex1, Rex3, and Rex6 was performed in six Leporinus species, to elucidate the genomic organization of this genus. The sequencing of the Rex1 and Rex3 elements detected different base pair compositions in these elements among species, whereas the Rex6 element was not identified in the genomes of these species. FISH analysis using Rex1 detected different distribution patterns, L. elongatus, L. macrocephalus, and L. obtusidens had clusters in the terminal regions, whereas the signals were dispersed throughout all of the chromosomes with some signals in the terminal position in other species. The Rex3 signals were found mainly in the terminal positions in all the chromosomes of all species. The W chromosomes of L. elongatus, L. macrocephalus, and L. obtusidens contained the Rex1 and Rex3 signal in an interstitial position. These results suggest the emergence of different activity levels for these elements during the evolution of the species analyzed. Despite the conserved karyotype macrostructure species Leporinus often discussed, our results show some variation in hybridization patterns, particularly between the species with specific patterns in their sex chromosomes and species without this differentiated system.
Collapse
Affiliation(s)
- Rafael Splendore de Borba
- Instituto de Biociências; Universidade Estadual Paulista (UNESP) "Julio de Mesquita Filho," Rio Claro; Departamento de Biologia; Laboratório de Citogenética; Rio Claro, SP Brazil
| | | | - Patrícia Pasquali Parise-Maltempi
- Instituto de Biociências; Universidade Estadual Paulista (UNESP) "Julio de Mesquita Filho," Rio Claro; Departamento de Biologia; Laboratório de Citogenética; Rio Claro, SP Brazil
| |
Collapse
|
30
|
Terencio ML, Schneider CH, Gross MC, Vicari MR, Farias IP, Passos KB, Feldberg E. Evolutionary dynamics of repetitive DNA in semaprochilodus (characiformes, prochilodontidae): a fish model for sex chromosome differentiation. Sex Dev 2013; 7:325-33. [PMID: 24296872 DOI: 10.1159/000356691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Distribution of 6 microsatellites and 5 transposable elements on the chromosomes of Semaprochilodus taeniurus and S. insignis, commonly referred to as Jaraqui, was performed using their physical mapping with fluorescence in situ hybridization. In this study, we aim to understand the evolutionary dynamics in genomes of S. taeniurus and S. insignis by comparing the position, abundance and contribution of the repetitive sequences in the origins and differentiation of a ZZ/ZW sex chromosome system in S. taeniurus. Results revealed that distribution patterns of repetitive DNAs along the chromosomes varied considerably. Hybridization signals were observed on several autosomes in both species; however, in S. taeniurus genome, the repetitive sequences were more abundant. In addition, large clusters of known repetitive sequences were detected in sex chromosomes of S. taeniurus. This observation is notable because the accumulation of repetitive DNAs could reflect the degradation of genetic activities and the differentiation of protosex chromosomes, evolving into the heteromorphic ZW pair observed in S. taeniurus.
Collapse
Affiliation(s)
- M L Terencio
- Laboratório de Citogenômica Animal, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | | | | | | | | | | |
Collapse
|