1
|
Zou Y, Ohlsson JA, Holla S, Sabljić I, Leong JX, Ballhaus F, Krebs M, Schumacher K, Moschou PN, Stael S, Üstün S, Dagdas Y, Bozhkov PV, Minina EA. ATG8 delipidation is not universally critical for autophagy in plants. Nat Commun 2025; 16:403. [PMID: 39757240 DOI: 10.1038/s41467-024-55754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2024] [Indexed: 01/07/2025] Open
Abstract
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families. Remarkably, the more complex autophagy machinery of Arabidopsis renders ATG8 delipidation entirely dispensable for the maturation of autophagosomes, autophagic flux, and related stress tolerance; whereas autophagy in Chlamydomonas strictly depends on the ATG4-mediated delipidation of ATG8. Importantly, we also demonstrate the distinct impact of different Arabidopsis ATG8 orthologs on autophagosome formation, especially prevalent under nitrogen depletion, providing new insight into potential drivers behind the expansion of the ATG8 family in higher plants. Our findings underscore the evolutionary diversification of the molecular mechanism governing the maturation of autophagosomes in eukaryotic lineages and highlight how this conserved pathway is tailored to diverse organisms.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Jonas A Ohlsson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Sanjana Holla
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Jia Xuan Leong
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Florentine Ballhaus
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Melanie Krebs
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Panagiotis N Moschou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Zhou LN, Yuan LX, Li P, Wei BL, Lei JR, Chen ZZ, Zhang ZH, Jin XJ, Chen YQ, Zhang YH. Comparative analyses of plastomes in Allaeanthus and Malaisia: structure, evolution, and phylogeny. Sci Rep 2024; 14:22686. [PMID: 39349756 PMCID: PMC11443005 DOI: 10.1038/s41598-024-73941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The small genera Allaeanthus and Malaisia within the Moraceae have important edible, medicinal, and economic value. However, complete plastome blueprints and a well-resolved evolutionary history of these two genera are still lack, thereby limiting their conservation and application. The recent discovery of a new distribution of Allaeanthus kurzii in Hainan, China, marked by the collection of two unique samples, alongside three samples of Malaisia scandens, has opened new avenues for research. This study aimed to compare the Allaeanthus and Malaisia plastomes of Hainan Province samples with those of samples from other regions, focusing on plastome structure, codon usage bias, natural selection, and the evolutionary history of A. kurzii and M. scandens. The results showed that both species had a quadripartite plastome structure, with sizes ranging from 162,134 to 162,170 bp for A. kurzii and 161,235 to 162,134 bp for M. scandens. Both species displayed loss of the infA gene and reduction of the rpl22 gene. Two highly variable regions (petD-trnD-GUC and rpl20-clpP) and three highly variable genes (rpl20, petB, and rpl16) were identified in A. kurzii, while two highly variable regions (ycf2-ndhB and ccsA-ndhE) and three highly variable genes (psbT, rpl36, and ycf2) were found in M. scandens. The protein-coding sequences (CDSs) of the Allaeanthus and Malaisia plastomes exhibited similar patterns of adaptive indices and codon usage frequencies. The genes associated with photosynthesis underwent strong purifying selection. Phylogenetic analysis revealed that Allaeanthus, Broussonetia, and Malaisia constituted a monophyletic group, with Malaisia being more closely related to Broussonetia. Broussonetia diversified approximately 19.78 million years ago, Malaisia approximately 4.74 million years ago, and Allaeanthus approximately 16.18 million years ago. These new plastome-based discoveries will guide conservation planners and medicinal plant breeders and genetic resource development for these species in the region.
Collapse
Affiliation(s)
- Li-Na Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Lang-Xing Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Bot and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo-Liang Wei
- Zhejiang Wuyanling National Nature Reserve Management Bureau, Wenzhou, 325500, China
| | - Jin-Rui Lei
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Zong-Zhu Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Zhi-Hua Zhang
- Hainan Tropical Rainforest National Park Management Bureau Bawangling Branch, Changjiang, 572722, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Yi-Qing Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China.
| | - Yong-Hua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Gerling N, Mendez JA, Gomez E, Ruiz-Garcia J. The separation between mRNA-ends is more variable than expected. FEBS Open Bio 2024. [PMID: 39226224 DOI: 10.1002/2211-5463.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Effective circularization of mRNA molecules is a key step for the efficient initiation of translation. Research has shown that the intrinsic separation of the ends of mRNA molecules is rather small, suggesting that intramolecular arrangements could provide this effective circularization. Considering that the innate proximity of RNA ends might have important unknown biological implications, we aimed to determine whether the close proximity of the ends of mRNA molecules is a conserved feature across organisms and gain further insights into the functional effects of the proximity of RNA ends. To do so, we studied the secondary structure of 274 full native mRNA molecules from 17 different organisms to calculate the contour length (CL) of the external loop as an index of their end-to-end separation. Our computational predictions show bigger variations (from 0.59 to 31.8 nm) than previously reported and also than those observed in random sequences. Our results suggest that separations larger than 18.5 nm are not favored, whereas short separations could be related to phenotypical stability. Overall, our work implies the existence of a biological mechanism responsible for the increase in the observed variability, suggesting that the CL features of the exterior loop could be relevant for the initiation of translation and that a short CL could contribute to the stability of phenotypes.
Collapse
Affiliation(s)
- Nancy Gerling
- Institute of Physics, Biological Physics Laboratory, San Luis Potosi, Mexico
| | - J Alfredo Mendez
- Institute of Physics, Laboratory of Molecular Biophysics, San Luis Potosi, Mexico
| | - Eduardo Gomez
- Cold Atoms Laboratory, Institute of Physics, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jaime Ruiz-Garcia
- Institute of Physics, Biological Physics Laboratory, San Luis Potosi, Mexico
| |
Collapse
|
4
|
Yang Y, Yang Z, Ferguson DK. The Systematics and Evolution of Gymnosperms with an Emphasis on a Few Problematic Taxa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2196. [PMID: 39204632 PMCID: PMC11360501 DOI: 10.3390/plants13162196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Gymnosperms originated in the Middle Devonian and have experienced a long evolutionary history with pulses of speciation and extinction, which resulted in the four morphologically distinct extant groups, i.e., cycads, Ginkgo, conifers and gnetophytes. For over a century, the systematic relationships within the extant gymnosperms have been debated because different authors emphasized different characters. Recent phylogenomic studies of gymnosperms have given a consistent topology, which aligns well with extant gymnosperms classified into three classes, five subclasses, eight orders, and 13 families. Here, we review the historical opinions of systematics of gymnosperms with special reference to several problematic taxa and reconsider the evolution of some key morphological characters previously emphasized by taxonomists within a phylogenomic context. We conclude that (1) cycads contain two families, i.e., the Cycadaceae and the Zamiaceae; (2) Ginkgo is sister to cycads but not to conifers, with the similarities between Ginkgo and conifers being the result of parallel evolution including a monopodial growth pattern, pycnoxylic wood in long shoots, and the compound female cones, and the reproductive similarities between Ginkgo and cycads are either synapomorphic or plesiomorphic, e.g., the boat-shaped pollen, the branched pollen tube, and the flagellate sperms; (3) conifers are paraphyletic with gnetophytes nested within them, thus gnetophytes are derived conifers, and our newly delimited coniferophytes are equivalent to the Pinopsida and include three subclasses, i.e., Pinidae, Gnetidae, and Cupressidae; (4) fleshy cones of conifers originated multiple times, the Podocarpaceae are sister to the Araucariaceae, the Cephalotaxaceae and the Taxaceae comprise a small clade, which is sister to the Cupressaceae; (5) the Cephalotaxaceae are distinct from the Taxaceae, because the former family possesses typical female cones and the fleshy part of the seed is derived from the fleshiness of integument, while the latter family has reduced female cones and preserves no traces of the seed scale complexes.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
5
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
6
|
Almerekova S, Yermagambetova M, Ivaschenko A, Turuspekov Y, Abugalieva S. Comparative Analysis of Plastome Sequences of Seven Tulipa L. (Liliaceae Juss.) Species from Section Kolpakowskianae Raamsd. Ex Zonn and Veldk. Int J Mol Sci 2024; 25:7874. [PMID: 39063115 PMCID: PMC11277319 DOI: 10.3390/ijms25147874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Tulipa L. is a genus of significant economic, environmental, and cultural importance in several parts of the world. The exact number of species in the genus remains uncertain due to inherent taxonomic challenges. We utilized next-generation sequencing technology to sequence and assemble the plastid genomes of seven Tulipa species collected in Kazakhstan and conducted a comparative analysis. The total number of annotated genes was 136 in all seven studied Tulipa species, 114 of which were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Nine regions (petD, ndhH, ycf2-ycf3, ndhA, rpl16, clpP, ndhD-ndhF, rpoC2, and ycf1) demonstrated significant nucleotide variability, suggesting their potential as molecular markers. A total of 1388 SSRs were identified in the seven Tulipa plastomes, with mononucleotide repeats being the most abundant (60.09%), followed by dinucleotide (34.44%), tetranucleotide (3.90%), trinucleotide (1.08%), pentanucleotide (0.22%), and hexanucleotide (0.29%). The Ka/Ks values of the protein-coding genes ranged from 0 to 3.9286, with the majority showing values <1. Phylogenetic analysis based on a complete plastid genome and protein-coding gene sequences divided the species into three major clades corresponding to their subgenera. The results obtained in this study may contribute to understanding the phylogenetic relationships and molecular taxonomy of Tulipa species.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Yermagambetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
| | | | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
7
|
Nicolau M, Reposi S, Gotelli M, Zarlavsky G, Galati B. Megasporogenesis and megagametogenesis in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae). PROTOPLASMA 2024; 261:725-733. [PMID: 38286848 DOI: 10.1007/s00709-024-01930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae. Flowers in different developmental stages were processed following classical histological methods for their observation with bright-field microscope. The three species present an anatropous and bitegmic mature ovule. This is tenuinucellate in A. plantago-aquatica and S. montevidensis and pseudo-crassinucellate in H. nymphoides. Although all three species have the same type of megasporogenesis, they differ in the megagametogenesis and in the total number of nuclei and cells that form the mature gametophyte. H. nymphoides has a female gametophyte composed of four cells and four nuclei, while A. plantago-aquatica and S. montevidensis have a female gametophyte of five cells and six nuclei. The results are discussed according to the phylogenetic position of each of the species. Moreover, new types of megagametophyte development are described: Hydrocleys and Sagittaria types. The reduction of the female gametophyte with respect to the Polygonum type is found in families belonging to the ANA grade and in other aquatic families within the order Alismatales. We infer that the reduction in the number of cells and nuclei in the female gametophyte is characteristic of species that inhabit aquatic environments. Future studies in aquatic species belonging to other families would be necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Magali Nicolau
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Sofía Reposi
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Marina Gotelli
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Zarlavsky
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Beatriz Galati
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
8
|
Busch A, Gerbracht JV, Davies K, Hoecker U, Hess S. Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3624-3642. [PMID: 38520340 PMCID: PMC11156808 DOI: 10.1093/jxb/erae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.
Collapse
Affiliation(s)
- Anna Busch
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, D-50674, Cologne, Germany
| | - Sebastian Hess
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
9
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
11
|
Tarigholizadeh S, Motafakkerazad R, Mohajel Kazemi E, Kolahi M, Salehi-Lisar SY, Sushkova S, Minkina T. Phenanthrene metabolism in Panicum miliaceum: anatomical adaptations, degradation pathway, and computational analysis of a dioxygenase enzyme. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37532-37551. [PMID: 38777975 DOI: 10.1007/s11356-024-33737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Polycyclic aromatic compounds (PAHs) are persistent organic pollutants of environmental concern due to their potential impacts on food chain, with plants being particularly vulnerable. While plants can uptake, transport, and transform PAHs, the precise mechanisms underlying their localization and degradation are not fully understood. Here, a cultivation experiment conducted with Panicum miliaceum exposed different concentrations of phenanthrene (PHE). Intermediate PHE degradation compounds were identified via GC-MS analysis, leading to the proposal of a phytodegradation pathway featuring three significant benzene ring cleavage steps. Our results showed that P. miliaceum exhibited the ability to effectively degrade high levels of PHE, resulting in the production of various intermediate products through several chemical changes. Examination of the localization and anatomical characteristics revealed structural alterations linked to PHE stress, with an observed enhancement in PHE accumulation density in both roots and shoots as treatment levels increased. Following a 2-week aging period, a decrease in the amount of PHE accumulation was observed, along with a change in its localization. Bioinformatics analysis of the P. miliaceum 2-oxoglutarate-dependent dioxygenase (2-ODD) DAO-like protein revealed a 299 amino acid structure with two highly conserved domains, namely 2OG-FeII_Oxy and DIOX_N. Molecular docking analysis aligned with experimental results, strongly affirming the potential link and direct action of 2-ODD DAO-like protein with PHE. Our study highlights P. miliaceum capacity for PAHs degradation and elucidates the mechanisms behind enhanced degradation efficiency. By integrating experimental evidence with bioinformatics analysis, we offer valuable insights into the potential applications of plant-based remediation strategies for PAHs-contaminated environments.
Collapse
Affiliation(s)
- Sarieh Tarigholizadeh
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Rouhollah Motafakkerazad
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elham Mohajel Kazemi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Yahya Salehi-Lisar
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | |
Collapse
|
12
|
Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu AQ, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu JX, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin PA, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk KJ, Downie SR, Duretto MF, Duvall MR, Edwards SL, Eggli U, Erkens RHJ, Escudero M, de la Estrella M, Fabriani F, Fay MF, Ferreira PDL, Ficinski SZ, Fowler RM, Frisby S, Fu L, Fulcher T, Galbany-Casals M, Gardner EM, German DA, Giaretta A, Gibernau M, Gillespie LJ, González CC, Goyder DJ, Graham SW, Grall A, Green L, Gunn BF, Gutiérrez DG, Hackel J, Haevermans T, Haigh A, Hall JC, Hall T, Harrison MJ, Hatt SA, Hidalgo O, Hodkinson TR, Holmes GD, Hopkins HCF, Jackson CJ, James SA, Jobson RW, Kadereit G, Kahandawala IM, Kainulainen K, Kato M, Kellogg EA, King GJ, Klejevskaja B, Klitgaard BB, Klopper RR, Knapp S, Koch MA, Leebens-Mack JH, Lens F, Leon CJ, Léveillé-Bourret É, Lewis GP, Li DZ, Li L, Liede-Schumann S, Livshultz T, Lorence D, Lu M, Lu-Irving P, Luber J, Lucas EJ, Luján M, Lum M, Macfarlane TD, Magdalena C, Mansano VF, Masters LE, Mayo SJ, McColl K, McDonnell AJ, McDougall AE, McLay TGB, McPherson H, Meneses RI, Merckx VSFT, Michelangeli FA, Mitchell JD, Monro AK, Moore MJ, Mueller TL, Mummenhoff K, Munzinger J, Muriel P, Murphy DJ, Nargar K, Nauheimer L, Nge FJ, Nyffeler R, Orejuela A, Ortiz EM, Palazzesi L, Peixoto AL, Pell SK, Pellicer J, Penneys DS, Perez-Escobar OA, Persson C, Pignal M, Pillon Y, Pirani JR, Plunkett GM, Powell RF, Prance GT, Puglisi C, Qin M, Rabeler RK, Rees PEJ, Renner M, Roalson EH, Rodda M, Rogers ZS, Rokni S, Rutishauser R, de Salas MF, Schaefer H, Schley RJ, Schmidt-Lebuhn A, Shapcott A, Al-Shehbaz I, Shepherd KA, Simmons MP, Simões AO, Simões ARG, Siros M, Smidt EC, Smith JF, Snow N, Soltis DE, Soltis PS, Soreng RJ, Sothers CA, Starr JR, Stevens PF, Straub SCK, Struwe L, Taylor JM, Telford IRH, Thornhill AH, Tooth I, Trias-Blasi A, Udovicic F, Utteridge TMA, Del Valle JC, Verboom GA, Vonow HP, Vorontsova MS, de Vos JM, Al-Wattar N, Waycott M, Welker CAD, White AJ, Wieringa JJ, Williamson LT, Wilson TC, Wong SY, Woods LA, Woods R, Worboys S, Xanthos M, Yang Y, Zhang YX, Zhou MY, Zmarzty S, Zuloaga FO, Antonelli A, Bellot S, Crayn DM, Grace OM, Kersey PJ, Leitch IJ, Sauquet H, Smith SA, Eiserhardt WL, Forest F, Baker WJ. Phylogenomics and the rise of the angiosperms. Nature 2024; 629:843-850. [PMID: 38658746 PMCID: PMC11111409 DOI: 10.1038/s41586-024-07324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elaine Françoso
- Royal Botanic Gardens, Kew, Richmond, UK
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, London, UK
| | | | | | | | | | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | | | - Laura Botigué
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | | | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Jan T Kim
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Guilherme M Antar
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Brazil
| | | | | | - Kasper P Hendriks
- Department of Biology, University of Osnabrück, Osnabrück, Germany
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alina Hoewener
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Elizabeth M Joyce
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Systematic, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, Munich, Germany
| | - Izai A B S Kikuchi
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Drew A Larson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elton John de Lírio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Toral Shah
- Royal Botanic Gardens, Kew, Richmond, UK
| | | | | | - Gabriel K Ameka
- Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana
| | - Rose L Andrew
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Marc S Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Jesús Ariza
- General Research Services, Herbario SEV, CITIUS, Universidad de Sevilla, Seville, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Helen F Barnes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Matthew D Barrett
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Russell L Barrett
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Randall J Bayer
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Joanne L Birch
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Diego Bogarín
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | | | - Peter C Boyce
- Centro Studi Erbario Tropicale, Dipartimento di Biologia, University of Florence, Florence, Italy
| | | | | | - Linda Broadhurst
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Gillian K Brown
- Queensland Herbarium and Biodiversity Science, Brisbane Botanic Gardens, Toowong, Queensland, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, University of Montreal, Montreal, Quebec, Canada
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Ainsley Calladine
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Ángela Cano
- Cambridge University Botanic Garden, Cambridge, UK
| | | | - Warren M Cardinal-McTeague
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Alejandra de Castro Mateo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mark W Chase
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | | | | | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Plant Gateway, Den Haag, The Netherlands
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Mark A Clements
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Skye C Coffey
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - John G Conran
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xavier Cornejo
- Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | | | - Ian D Cowie
- Northern Territory Herbarium Department of Environment Parks & Water Security, Northern Territory Government, Palmerston, Northern Territory, Australia
| | | | | | | | | | | | - Kor-Jent van Dijk
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Stephen R Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marco F Duretto
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Melvin R Duvall
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, DeKalb, IL, USA
| | | | - Urs Eggli
- Sukkulenten-Sammlung Zürich/ Grün Stadt Zürich, Zürich, Switzerland
| | - Roy H J Erkens
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
- System Earth Science, Maastricht University, Venlo, The Netherlands
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Manuel de la Estrella
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Paola de L Ferreira
- Departamento de Biologia, Faculdade de Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sue Frisby
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Lin Fu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC by IBB, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elliot M Gardner
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Augusto Giaretta
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Marc Gibernau
- Laboratoire Sciences Pour l'Environnement, Université de Corse, Ajaccio, France
| | | | - Cynthia C González
- Herbario Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina
| | | | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Bee F Gunn
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Diego G Gutiérrez
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Jan Hackel
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Universität Marburg, Marburg, Germany
| | - Thomas Haevermans
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Anna Haigh
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony Hall
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Melissa J Harrison
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gareth D Holmes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | | | - Shelley A James
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Richard W Jobson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Botanische Staatssammlung München, Botanischer Garten München-Nymphenburg, Munich, Germany
| | | | | | - Masahiro Kato
- National Museum of Nature and Science, Tsukuba, Japan
| | | | - Graham J King
- Southern Cross University, Lismore, New South Wales, Australia
| | | | | | - Ronell R Klopper
- Foundational Biodiversity Science Division, South African National Biodiversity Institute, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Marcus A Koch
- Centre for Organismal Studies, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | | | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | | | | | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lan Li
- CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Tatyana Livshultz
- Department of Biodiversity, Earth and Environmental Sciences, Drexel University, Philadelphia, PA, USA
- Academy of Natural Science, Drexel University, Philadelphia, PA, USA
| | - David Lorence
- National Tropical Botanical Garden, Kalaheo, HI, USA
| | - Meng Lu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Patricia Lu-Irving
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Jaquelini Luber
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Mabel Lum
- Bioplatforms Australia Ltd, Sydney, New South Wales, Australia
| | - Terry D Macfarlane
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Vidal F Mansano
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Kristina McColl
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Angela J McDonnell
- Department of Biological Sciences, Saint Cloud State University, Saint Cloud, MN, USA
| | - Andrew E McDougall
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Rosa I Meneses
- Instituto de Arqueología y Antropología, Universidad Católica del Norte, San Pedro de Atacama, Chile
| | | | | | | | | | | | - Taryn L Mueller
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Klaus Mummenhoff
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Jérôme Munzinger
- AMAP Lab, Université Montpellier, IRD, CIRAD, CNRS INRAE, Montpellier, France
| | - Priscilla Muriel
- Laboratorio de Ecofisiología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Francis J Nge
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | - Reto Nyffeler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Andrés Orejuela
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- Grupo de Investigación en Recursos Naturales Amazónicos, Instituto Tecnológico del Putumayo, Mocoa, Colombia
| | - Edgardo M Ortiz
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Ariane Luna Peixoto
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Darin S Penneys
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | - Claes Persson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pignal
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Yohan Pillon
- LSTM Université Montpellier, CIRADIRD, Montpellier, France
| | - José R Pirani
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Carmen Puglisi
- Royal Botanic Gardens, Kew, Richmond, UK
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Ming Qin
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Richard K Rabeler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Matthew Renner
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michele Rodda
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | | | - Saba Rokni
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Miguel F de Salas
- Tasmanian Herbarium, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Hanno Schaefer
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | | | - Alexander Schmidt-Lebuhn
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Alison Shapcott
- School of Science Technology and Engineering, Center for Bioinnovation, University Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | - Kelly A Shepherd
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - André O Simões
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Michelle Siros
- Royal Botanic Gardens, Kew, Richmond, UK
- University of California, San Francisco, San Francisco, CA, USA
| | - Eric C Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - James F Smith
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Neil Snow
- Pittsburg State University, Pittsburg, KS, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | | | - Julian R Starr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | - Ian R H Telford
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Andrew H Thornhill
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ifeanna Tooth
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | - Jose C Del Valle
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - G Anthony Verboom
- Department of Biological Sciences and Bolus Herbarium, University of Cape Town, Cape Town, South Africa
| | - Helen P Vonow
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Jurriaan M de Vos
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | | | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cassiano A D Welker
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Adam J White
- Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Luis T Williamson
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Trevor C Wilson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Sin Yeng Wong
- Institute of Biodiversity And Environmental Conservation, Universiti Malaysia Sarawak, Samarahan, Malaysia
| | - Lisa A Woods
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Stuart Worboys
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Ya Yang
- University of Minnesota-Twin Cities, St. Paul, MN, USA
| | | | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Darren M Crayn
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, UK.
- Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Ma Q, Liu HS, Li HJ, Bai WP, Gao QF, Wu SD, Yin XX, Chen QQ, Shi YQ, Gao TG, Bao AK, Yin HJ, Li L, Rowland O, Hepworth SR, Luan S, Wang SM. Genomic analysis reveals phylogeny of Zygophyllales and mechanism for water retention of a succulent xerophyte. PLANT PHYSIOLOGY 2024; 195:617-639. [PMID: 38285060 DOI: 10.1093/plphys/kiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.
Collapse
Affiliation(s)
- Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qi-Fei Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng-Dan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Xia Yin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qin-Qin Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ya-Qi Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tian-Ge Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hong-Ju Yin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
14
|
Sun W, Wei Z, Gu Y, Wang T, Liu B, Yan Y. Chloroplast genome structure analysis of Equisetum unveils phylogenetic relationships to ferns and mutational hotspot region. FRONTIERS IN PLANT SCIENCE 2024; 15:1328080. [PMID: 38665369 PMCID: PMC11044155 DOI: 10.3389/fpls.2024.1328080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/02/2024] [Indexed: 04/28/2024]
Abstract
Equisetum is one of the oldest extant group vascular plants and is considered to be the key to understanding vascular plant evolution. Equisetum is distributed almost all over the world and has a high degree of adaptability to different environments. Despite the fossil record of horsetails (Equisetum, Equisetaceae) dating back to the Carboniferous, the phylogenetic relationship of this genus is not well, and the chloroplast evolution in Equisetum remains poorly understood. In order to fill this gap, we sequenced, assembled, and annotated the chloroplast genomes of 12 species of Equisetum, and compared them to 13 previously published vascular plants chloroplast genomes to deeply examine the plastome evolutionary dynamics of Equisetum. The chloroplast genomes have a highly conserved quadripartite structure across the genus, but these chloroplast genomes have a lower GC content than other ferns. The size of Equisetum plastomes ranges from 130,773 bp to 133,684 bp and they encode 130 genes. Contraction/expansion of IR regions and the number of simple sequences repeat regions underlie large genomic variations in size among them. Comparative analysis revealed we also identified 13 divergence hotspot regions. Additionally, the genes accD and ycf1 can be used as potential DNA barcodes for the identification and phylogeny of the genus Equisetum. Twelve photosynthesis-related genes were specifically selected in Equisetum. Comparative genomic analyses implied divergent evolutionary patterns between Equisetum and other ferns. Phylogenomic analyses and molecular dating revealed a relatively distant phylogenetic relationship between Equisetum and other ferns, supporting the division of pteridophyte into Lycophytes, Equisetaceae and ferns. The results show that the chloroplast genome can be used to solve phylogenetic problems within or between Equisetum species, and also provide genomic resources for the study of Equisetum systematics and evolution.
Collapse
Affiliation(s)
- Weiyue Sun
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Zuoying Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Yuefeng Gu
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Ting Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Baodong Liu
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| |
Collapse
|
15
|
Shan B, Mo J, Yang J, Qin X, Yu H. Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111989. [PMID: 38232819 DOI: 10.1016/j.plantsci.2024.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Hornworts, as the sister group to liverworts and mosses, comprise bryophytes, which are critical in understanding the evolution of key land plant traits. Cinnamate 4-hydroxylase (C4H) catalyzes the second step of the phenylpropanoid pathway to synthesize the precursor of numerous phenolic compounds, such as lignin and flavonoids. However, C4H in the hornwort Anthoceros angustus has not yet been cloned and functionally characterized. In this work, we screened the transcriptome database of A. angustus and identified one C4H gene, AnanC4H. AnanC4H maintained conserved cytochrome P450 domains with other typical plant C4Hs. Ultraviolet B irradiation and exogenous application of methyl jasmonate (MeJA) induced the expression of AnanC4H to varying degrees. The coding sequence of AnanC4H was expressed in yeast, and the recombinant proteins were isolated. The recombinant proteins of AnanC4H catalyzed the conversion of trans-cinnamic acid to p-coumaric acid and catalyzed the conversion of 3-hydroxycinnamic acid to caffeic acid. AnanC4H showed higher affinity for trans-cinnamic acid than for 3-hydroxycinnamic acid, but there was no significant difference in the catalytic efficiency of AnanC4H for the two substrates in vitro. Moreover, the expression of AnanC4H in Arabidopsis thaliana led to an increase in both the lignin content and the number of lignified cells in stems. However, there was no significant change in flavonoid content in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Baoyun Shan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Jian Mo
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Jiayi Yang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China.
| | - Haina Yu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China.
| |
Collapse
|
16
|
Li T, Zhang S, Deng Y, Li Y. Comparative Analysis of Chloroplast Genomes for the Genus Manglietia Blume (Magnoliaceae): Molecular Structure and Phylogenetic Evolution. Genes (Basel) 2024; 15:406. [PMID: 38674341 PMCID: PMC11048997 DOI: 10.3390/genes15040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Manglietia Blume, belonging to the Magnoliaceae family and mainly distributed in tropical and subtropical regions of Asia, has great scientific and economic value. In this study, we employed next-generation sequencing followed by de novo assembly to investigate the adaptive evolution of Manglietia using plastid genetic information. We newly sequenced the complete or nearly complete plastomes of four Manglietia species (Manglietia aromatica, Manglietia calcarea, Manglietia kwangtungensis, and Manglietia glauca) and conducted comparative analysis with seventeen published plastomes to examine the evolutionary pattern within this genus. The plastomes of these five newly sequenced Manglietia species range from 157,093 bp (M. calcarea2) to 160,493 bp (M. kwangtungensis), all exhibiting circular structures when mapped. Nucleotide diversity was observed across the plastomes, leading us to identify 13 mutational hotspot regions, comprising eight intergenic spacer regions and five gene regions. Our phylogenetic analyses based on 77 protein-coding genes generated phylogenetic relationships with high support and resolution for Manglietia. This genus can be divided into three clades, and the previously proposed infrageneric classifications are not supported by our studies. Furthermore, the close affinity between M. aromatica and M. calcarea is supported by the present work, and further studies are necessary to conclude the taxonomic treatment for the latter. These results provide resources for the comparative plastome, breeding, and plastid genetic engineering of Magnoliaceae and flowering plants.
Collapse
Affiliation(s)
- Tingzhang Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Shuangyu Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| |
Collapse
|
17
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
18
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
20
|
Yang T, Aishan S, Zhu J, Qin Y, Liu J, Liu H, Tie J, Wang J, Qin R. Chloroplast Genomes and Phylogenetic Analysis of Three Carthamus (Asteraceae) Species. Int J Mol Sci 2023; 24:15634. [PMID: 37958617 PMCID: PMC10648744 DOI: 10.3390/ijms242115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The genus Carthamus Linnaeus, which belongs to the tribe Cardueae in the Asteraceae family, originated in the Mediterranean region and consists of approximately 20 species worldwide. Understanding the phylogeny of the Carthamus is crucial for the cultivation of C. tinctorius. Although chloroplast genomes are widely used for species identification and evolutionary studies, there have been limited investigations on the chloroplast genomes of Carthamus species. In this study, we assembled the chloroplast genomes of C. persicus, C. tinctorius × C. persicus, and C. lanatus and combined them with the five chloroplast genomes of C. tinctorius for comparative genomic analysis. The sizes of the chloroplast genomes of C. lanatus, C. persicus, and C. tinctorius × C. persicus were 152,602 bp, 153,177 bp, and 153,177 bp, respectively. Comparative analysis showed that the chloroplast genome structures of the four Carthamus species were highly conserved. Additionally, the phylogenomic analysis demonstrated that the plastid genome and angiosperms353 dataset significantly improved the phylogenetic support of Carthamus species. This analysis supported Carthamus as a monophyletic taxon and its internal division into the sect. Carthamus and sect. Atractylis. The Carthamus was closely related to Carduncellus, Femeniasia, Phonus, and Centaurea. In conclusion, this study not only expands our understanding of the cp genomes of Carthamus species but also provides support for more comprehensive phylogenetic studies of Carthamus.
Collapse
Affiliation(s)
- Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiale Zhu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jun Tie
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Jiangqing Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| |
Collapse
|
21
|
Yang T, Wu Z, Tie J, Qin R, Wang J, Liu H. A Comprehensive Analysis of Chloroplast Genome Provides New Insights into the Evolution of the Genus Chrysosplenium. Int J Mol Sci 2023; 24:14735. [PMID: 37834185 PMCID: PMC10572340 DOI: 10.3390/ijms241914735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chrysosplenium, a perennial herb in the family Saxifragaceae, prefers to grow in low light and moist environments and is divided into two sections of Alternifolia and Oppositifolia based on phyllotaxy. Although there has been some progress in the phylogeny of Chrysosplenium over the years, the phylogenetic position of some species is still controversial. In this study, we assembled chloroplast genomes (cp genomes) of 34 Chrysosplenium species and performed comparative genomic and phylogenetic analyses in combination with other cp genomes of previously known Chrysosplenium species, for a total of 44 Chrysosplenium species. The comparative analyses revealed that cp genomes of Chrysosplenium species were more conserved in terms of genome structure, gene content and arrangement, SSRs, and codon preference, but differ in genome size and SC/IR boundaries. Phylogenetic analysis showed that cp genomes effectively improved the phylogenetic support and resolution of Chrysosplenium species and strongly supported Chrysosplenium species as a monophyletic taxon and divided into three branches. The results also showed that the sections of Alternifolia and Oppositifolia were not monophyletic with each other, and that C. microspermum was not clustered with other Chrysosplenium species with alternate leaves, but with C. sedakowii into separate branches. In addition, we identified 10 mutational hotspot regions that could serve as potential DNA barcodes for Chrysosplenium species identification. In contrast to Peltoboykinia, the clpP and ycf2 genes of Chrysosplenium were subjected to positive selection and had multiple significant positive selection sites. We further detected a significant positive selection site on the petG gene between the two sections of Chrysosplenium. These evolutionary characteristics may be related to the growth environment of Chrysosplenium species. This study enriches the cp genomes of Chrysosplenium species and provides a reference for future studies on its evolution and origin.
Collapse
Affiliation(s)
- Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Jun Tie
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| | - Jiangqing Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| |
Collapse
|
22
|
Heß D, Holzhausen A, Hess WR. Insight into the nodal cells transcriptome of the streptophyte green alga Chara braunii S276. PHYSIOLOGIA PLANTARUM 2023; 175:e14025. [PMID: 37882314 DOI: 10.1111/ppl.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023]
Abstract
Charophyceae are the most complex streptophyte algae, possessing tissue-like structures, rhizoids and a cellulose-pectin-based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non-sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA-seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3- and PAX7-binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP- and DNA binding. Looking at specific genes, several signaling-related genes and genes encoding sugar-metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis-and chloroplast-related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360-containing cysteine-rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.
Collapse
Affiliation(s)
- Daniel Heß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anja Holzhausen
- Plant Cell Biology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
24
|
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase. BIOLOGY 2023; 12:1043. [PMID: 37626930 PMCID: PMC10452086 DOI: 10.3390/biology12081043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
25
|
Liu TJ, Zhang SY, Wei L, Lin W, Yan HF, Hao G, Ge XJ. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). BMC PLANT BIOLOGY 2023; 23:359. [PMID: 37452336 PMCID: PMC10347800 DOI: 10.1186/s12870-023-04363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.
Collapse
Affiliation(s)
- Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
26
|
Lin N, Liu R, Wang Y, Guo P, Wang Y, Liu Y, Shang F. The complete chloroplast genome of Ulmus mianzhuensis with insights into structural variations, adaptive evolution, and phylogenetic relationships of Ulmus (Ulmaceae). BMC Genomics 2023; 24:366. [PMID: 37386355 PMCID: PMC10308733 DOI: 10.1186/s12864-023-09430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ulmus mianzhuensis is an endemic tree species in China with high ornamental and economic value. Currently, little is known regarding its genomic architecture, phylogenetic position, or adaptive evolution. Here, we sequenced the complete chloroplast genome (cp genome) of U. mianzhuensis and further compared the variations in gene organization and structure within Ulmus species to define their genomic evolution, then reconstructed the phylogenomic relationship of 31 related Ulmus species to explore the systematic position of U. mianzhuensis and the utility of cp genome for resolving phylogenetics among Ulmus species. RESULTS Our results revealed that all the Ulmus species exhibited a typical quadripartite structure, with a large single copy (LSC) region of 87,170 - 88,408 bp, a small single copy (SSC) region of 18,650 - 19,038 bp and an inverted repeat (IR) region of 26,288 - 26,546 bp. Within Ulmus species, gene structure and content of cp genomes were highly conserved, although slight variations were found in the boundary of SC/IR regions. Moreover, genome-wide sliding window analysis uncovered the variability of ndhC-trnV-UAC, ndhF-rpl32, and psbI-trnS-GCU were higher among 31 Ulmus that may be useful for the population genetics and potential DNA barcodes. Two genes (rps15 and atpF) were further detected under a positive selection of Ulmus species. Comparative phylogenetic analysis based on the cp genome and protein-coding genes revealed consistent topology that U. mianzhuensis is a sister group to U. parvifolia (sect. Microptelea) with a relatively low-level nucleotide variation of the cp genome. Additionally, our analyses also found that the traditional taxonomic system of five sections in Ulmus is not supported by the current phylogenomic topology with a nested evolutionary relationship between sections. CONCLUSIONS Features of the cp genome length, GC content, organization, and gene order were highly conserved within Ulmus. Furthermore, molecular evidence from the low variation of the cp genome suggested that U. mianzhuensis should be merged into U. parvifolia and regarded as a subspecies of U. parvifolia. Overall, we demonstrated that the cp genome provides valuable information for understanding the genetic variation and phylogenetic relationship in Ulmus.
Collapse
Affiliation(s)
- Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Rui Liu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Yakun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Yihan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Yanpei Liu
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China.
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
27
|
Bruno L, Ronchini M, Binelli G, Muto A, Chiappetta A, Bitonti MB, Gerola P. A Study of GUS Expression in Arabidopsis as a Tool for the Evaluation of Gene Evolution, Function and the Role of Expression Derived from Gene Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:2051. [PMID: 37653968 PMCID: PMC10221982 DOI: 10.3390/plants12102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Gene duplication played a fundamental role in eukaryote evolution and different copies of a given gene can be present in extant species, often with expressions and functions differentiated during evolution. We assume that, when such differentiation occurs in a gene copy, this may be indicated by its maintenance in all the derived species. To verify this hypothesis, we compared the histological expression domains of the three β-glucuronidase genes (AtGUS) present in Arabidopsis thaliana with the GUS evolutionary tree in angiosperms. We found that AtGUS gene expression overlaps in the shoot apex, the floral bud and the root hairs. In the root apex, AtGUS3 expression differs completely from AtGUS1 and AtGUS2, whose transcripts are present in the root cap meristem and columella, in the staminal cell niche, in the epidermis and in the proximal cortex. Conversely, AtGUS3 transcripts are limited to the old border-like cells of calyptra and those found along the protodermal cell line. The GUS evolutionary tree reveals that the two main clusters (named GUS1 and GUS3) originate from a duplication event predating angiosperm radiation. AtGUS3 belongs to the GUS3 cluster, while AtGUS1 and AtGUS2, which originate from a duplication event that occurred in an ancestor of the Brassicaceae family, are found together in the GUS1 cluster. There is another, previously undescribed cluster, called GUS4, originating from a very ancient duplication event. While the copy of GUS4 has been lost in many species, copies of GUS3 and GUS1 have been conserved in all species examined.
Collapse
Affiliation(s)
- Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Matteo Ronchini
- Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, 21100 Varese, Italy; (M.R.); (P.G.)
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy;
| | - Antonella Muto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Maria Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Paolo Gerola
- Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, 21100 Varese, Italy; (M.R.); (P.G.)
| |
Collapse
|
28
|
Del Amparo R, Arenas M. Influence of substitution model selection on protein phylogenetic tree reconstruction. Gene 2023; 865:147336. [PMID: 36871672 DOI: 10.1016/j.gene.2023.147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Probabilistic phylogenetic tree reconstruction is traditionally performed under a best-fitting substitution model of molecular evolution previously selected according to diverse statistical criteria. Interestingly, some recent studies proposed that this procedure is unnecessary for phylogenetic tree reconstruction leading to a debate in the field. In contrast to DNA sequences, phylogenetic tree reconstruction from protein sequences is traditionally based on empirical exchangeability matrices that can differ among taxonomic groups and protein families. Considering this aspect, here we investigated the influence of selecting a substitution model of protein evolution on phylogenetic tree reconstruction by the analyses of real and simulated data. We found that phylogenetic tree reconstructions based on a selected best-fitting substitution model of protein evolution are the most accurate, in terms of topology and branch lengths, compared with those derived from substitution models with amino acid replacement matrices far from the selected best-fitting model, especially when the data has large genetic diversity. Indeed, we found that substitution models with similar amino acid replacement matrices produce similar reconstructed phylogenetic trees, suggesting the use of substitution models as similar as possible to a selected best-fitting model when the latter cannot be used. Therefore, we recommend the use of the traditional protocol of selection among substitution models of evolution for protein phylogenetic tree reconstruction.
Collapse
Affiliation(s)
- Roberto Del Amparo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain.
| |
Collapse
|
29
|
Liu Q, Yang N, Dong W, Zhao L. Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae). Ecol Evol 2023; 13:e10134. [PMID: 37261318 PMCID: PMC10227175 DOI: 10.1002/ece3.10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Cotinus is an oligo-specific ornamentally valuable genus with a disjunct distribution in the Northern Hemisphere. Traditionally, the taxonomy of Cotinus was mainly based on leaf morphological characteristics. However, the limited availability of genomic information greatly hindered the study of molecular evolution and phylogeny of this genus. This study sequenced the chloroplast (cp) genomes of all currently recognized taxa of Cotinus, including three species and four varieties. A comparative analysis was performed to investigate their cp genome characteristics and evolution. Furthermore, we inferred the phylogenetic relationships of Cotinus based on whole cp genomes, protein-coding genes, and nuclear ITS data. All cp genomes exhibited a typical quadripartite structure with genome sizes ranging from 158,865 to 160,155 bp. A total of 113-114 genes were identified in the genomes. Seven non-coding and four coding regions were identified as the most divergent hotspots for potential molecular barcodes and phylogenetic markers. Selection pressure analysis showed that there had been positive selection on genes matK and rps8 in the Cotinus cp genomes. Phylogenetic results confirmed that Cotinus is a monophyletic group but the widely distributed species Cotinus coggygria is not monophyletic. The divergence-time analysis suggested that Cotinus underwent an evolutionary divergence from the middle Eocene and rapid adaptive radiation from the middle Miocene. This study revealed new insights into the cp genome evolution and phylogeny of Cotinus and related taxa.
Collapse
Affiliation(s)
- Qiaoyun Liu
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Nan Yang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Wenpan Dong
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Liangcheng Zhao
- Museum of Beijing Forestry UniversityBeijing Forestry UniversityBeijingChina
| |
Collapse
|
30
|
Gu YF, Shu JP, Lu YJ, Shen H, Shao W, Zhou Y, Sun QM, Chen JB, Liu BD, Yan YH. Insights into cryptic speciation of quillworts in China. PLANT DIVERSITY 2023; 45:284-301. [PMID: 37397601 PMCID: PMC10311115 DOI: 10.1016/j.pld.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 07/04/2023]
Abstract
Cryptic species are commonly misidentified because of high morphological similarities to other species. One group of plants that may harbor large numbers of cryptic species is the quillworts (Isoëtes spp.), an ancient aquatic plant lineage. Although over 350 species of Isoëtes have been reported globally, only ten species have been recorded in China. The aim of this study is to better understand Isoëtes species diversity in China. For this purpose, we systematically explored the phylogeny and evolution of Isoëtes using complete chloroplast genome (plastome) data, spore morphology, chromosome number, genetic structure, and haplotypes of almost all Chinese Isoëtes populations. We identified three ploidy levels of Isoëtes in China-diploid (2n = 22), tetraploid (2n = 44), and hexaploid (2n = 66). We also found four megaspore and microspore ornamentation types in diploids, six in tetraploids, and three in hexaploids. Phylogenetic analyses confirmed that I. hypsophila as the ancestral group of the genus and revealed that Isoëtes diploids, tetraploids, and hexaploids do not form monophyletic clades. Most individual species possess a single genetic structure; however, several samples have conflicting positions on the phylogenetic tree based on SNPs and the tree based on plastome data. All 36 samples shared 22 haplotypes. Divergence time analysis showed that I. hypsophila diverged in the early Eocene (∼48.05 Ma), and most other Isoëtes species diverged 3-20 Ma. Additionally, different species of Isoëtes were found to inhabit different water systems and environments along the Yangtze River. These findings provide new insights into the relationships among Isoëtes species in China, where highly similar morphologic populations may harbor many cryptic species.
Collapse
Affiliation(s)
- Yu-Feng Gu
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, 150025, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Jiang-Ping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Yi-Jun Lu
- Zhejiang University City College, Hangzhou, 310015, China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wen Shao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yan Zhou
- Jiande Xin'anjiang Forest Farm, Jiande, 311600, China
| | - Qi-Meng Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jian-Bing Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Bao-Dong Liu
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, 150025, China
| | - Yue-Hong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| |
Collapse
|
31
|
Skuza L, Androsiuk P, Gastineau R, Paukszto Ł, Jastrzębski JP, Cembrowska-Lech D. Molecular structure, comparative and phylogenetic analysis of the complete chloroplast genome sequences of weedy rye Secale cereale ssp. segetale. Sci Rep 2023; 13:5412. [PMID: 37012409 PMCID: PMC10070434 DOI: 10.1038/s41598-023-32587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The complete chloroplast genome of Secale cereale ssp. segetale (Zhuk.) Roshev. (Poaceae: Triticeae) was sequenced and analyzed to better use its genetic resources to enrich rye and wheat breeding. The study was carried out using the following methods: DNA extraction, sequencing, assembly and annotation, comparison with other complete chloroplast genomes of the five Secale species, and multigene phylogeny. As a result of the study, it was determined that the chloroplast genome is 137,042 base pair (bp) long and contains 137 genes, including 113 unique genes and 24 genes which are duplicated in the IRs. Moreover, a total of 29 SSRs were detected in the Secale cereale ssp. segetale chloroplast genome. The phylogenetic analysis showed that Secale cereale ssp. segetale appeared to share the highest degree of similarity with S. cereale and S. strictum. Intraspecific diversity has been observed between the published chloroplast genome sequences of S. cereale ssp. segetale. The genome can be accessed on GenBank with the accession number (OL688773).
Collapse
Affiliation(s)
- Lidia Skuza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10719, Olsztyn, Poland
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, 70383, Szczecin, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10719, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10719, Olsztyn, Poland
| | - Danuta Cembrowska-Lech
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71412, Szczecin, Poland
- Sanprobi Sp. z o. o. Sp. k., Kurza Stopka 5c St., 70535, Szczecin, Poland
| |
Collapse
|
32
|
Tyszka AS, Bretz EC, Robertson HM, Woodcock-Girard MD, Ramanauskas K, Larson DA, Stull GW, Walker JF. Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1125107. [PMID: 37063179 PMCID: PMC10098128 DOI: 10.3389/fpls.2023.1125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.
Collapse
Affiliation(s)
- Alexa S. Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Eric C. Bretz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Holly M. Robertson
- Sainsbury Laboratory, School of Biological Sciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Miles D. Woodcock-Girard
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Drew A. Larson
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Gregory W. Stull
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Joseph F. Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Yang L, Deng S, Zhu Y, Da Q. Comparative chloroplast genomics of 34 species in subtribe Swertiinae (Gentianaceae) with implications for its phylogeny. BMC PLANT BIOLOGY 2023; 23:164. [PMID: 36977991 PMCID: PMC10044379 DOI: 10.1186/s12870-023-04183-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Subtribe Swertiinae, a medicinally significant and highly speciose Subtribe of family Gentianaceae. Despite previous extensive studies based on both morphology and molecular data, intergeneric and infrageneric relationships within subtribe Swertiinae remain controversial. METHODS Here, we employed four newly generated Swertia chloroplast genomes with thirty other published genomes to elucidate their genomic characteristics. RESULTS The 34 chloroplast genomes were small and ranged in size from 149,036 to 154,365 bp, each comprising two inverted repeat regions (size range 25,069-26,126 bp) that separated large single-copy (80,432-84,153 bp) and small single-copy (17,887-18,47 bp) regions, and all the chloroplast genomes showed similar gene orders, contents, and structures. These chloroplast genomes contained 129-134 genes each, including 84-89 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes of subtribe Swertiinae appeared to have lost some genes, such as rpl33, rpl2 and ycf15 genes. Comparative analyses revealed that two mutation hotspot regions (accD-psaI and ycf1) could serve as effective molecular markers for further phylogenetic analyses and species identification in subtribe Swertiinae. Positive selection analyses showed that two genes (ccsA and psbB) had high Ka/Ks ratios, indicating that chloroplast genes may have undergone positive selection in their evolutionary history. Phylogenetic analysis showed that the 34 subtribe Swertiinae species formed a monophyletic clade, with Veratrilla, Gentianopsis and Pterygocalyx located at the base of the phylogenetic tree. Some genera of this subtribe, however, were not monophyletic, including Swertia, Gentianopsis, Lomatogonium, Halenia, Veratrilla and Gentianopsis. In addition, our molecular phylogeny was consistent with taxonomic classification of subtribe Swertiinae in the Roate group and Tubular group. The results of molecular dating showed that the divergence between subtrib Gentianinae and subtrib Swertiinae was estimated to occur in 33.68 Ma. Roate group and Tubular group in subtribe Swertiinae approximately diverged in 25.17 Ma. CONCLUSION Overall, our study highlighted the taxonomic utility of chloroplast genomes in subtribe Swertiinae, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of subtribe Swertiinae species.
Collapse
Affiliation(s)
- Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 81008, China.
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Shengxue Deng
- Qinghai Environmental Science Research and Design Institute Co. Ltd, Xining, 810007, China
| | - Yongqing Zhu
- Maqin County Forestry and Grassland Station, Maqin, 814000, China
| | - Qilin Da
- Bureau of Forestry in Hualong County, Hualong, 810900, China
| |
Collapse
|
34
|
Song Y, Li C, Liu L, Hu P, Li G, Zhao X, Zhou H. The population genomic analyses of chloroplast genomes shed new insights on the complicated ploidy and evolutionary history in Fragaria. FRONTIERS IN PLANT SCIENCE 2023; 13:1065218. [PMID: 36874917 PMCID: PMC9975502 DOI: 10.3389/fpls.2022.1065218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The genus Fragaria consists of a rich diversity of ploidy levels with diploid (2x), tetraploid (4x), pentaploid (5x), hexaploidy (6x), octoploid (8x) and decaploid (10x) species. Only a few studies have explored the origin of diploid and octoploid strawberry, and little is known about the roles of tetraploidy and hexaploidy during the evolution of octoploid strawberry. The chloroplast genome is usually a stable circular genome and is widely used in investigating the evolution and matrilineal identification. Here, we assembled the chloroplast genomes of F. x ananassa cv. 'Benihoppe' (8x) using Illumina and HiFi data seperately. The genome alignment results showed that more InDels were located in the chloroplast genomes based on the PacBio HiFi data than Illumina data. We obtain highly accurate chloroplast genomes assembled through GetOrganelle using Illumina reads. We assembled 200 chloroplast genomes including 198 Fragaria (21 species) and 2 Potentilla samples. Analyses of sequence variation, phylogenetic and PCA analyses showed that Fragaria was divided into five groups. F. iinumae, F. nilgerrensis and all octoploid accessions formed Group A, C and E separately. Species native to western China were clustered into Group B. Group D consisted of F. virdis, F. orientalis, F. moschata, and F. vesca. STRUCTURE and haplotype network confirmed that the diploid F. vesca subsp. bracteata was the last maternal donator of octoploid strawberry. The dN/dS ratio estimated for the protein-coding genes revealed that genes involved in ATP synthase and photosystem function were under positive selection. These findings demonstrate the phylogeny of totally 21 Fragaria species and the origin of octoploid species. F. vesca was the last female donator of octoploid, which confirms the hypothesis that the hexaploid species F. moschata may be an evolutionary intermediate between the diploids and wild octoploid species.
Collapse
Affiliation(s)
- Yanhong Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaochao Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
35
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Cronberg N, Simonsen HT. Lipidomes of Icelandic bryophytes and screening of high contents of polyunsaturated fatty acids by using lipidomics approach. PHYTOCHEMISTRY 2023; 206:113560. [PMID: 36528120 DOI: 10.1016/j.phytochem.2022.113560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bryophytes (mosses, liverworts, and hornworts) have interested researchers because of their high chemical diversity and their potential uses in pharmaceutical, food, and cosmetic industries. Specifically, long-chain polyunsaturated fatty acids (l-PUFA) such as arachidonic acid (AA) and eicosapentaenoic acid (EPA) are commonly found in bryophytes, but not in vascular plants. Bryophytes accumulate PUFAs in cold or even freezing temperature to keep the cell fluidity. Iceland has a long history of bryophyte vegetation. These bryophytes are highly adapted to the harsh environment in Iceland and therefore are expected to produce high amounts of PUFAs. However, despite the fact that hundreds of mosses and liverworts have been found in Iceland, their lipid profiles largely remain unknown. In this study, we performed untargeted lipidomics by using UPLC-ESI-QTOF-MS as a rapid screening strategy to examine the lipid compositions of 39 local bryophyte species in Iceland and aimed to find high AA and EPA producers. A total of 280 lipid molecular species from 15 lipid classes were quantified with isotope-labeled internal standards. AA and EPA were abundantly distributed in the phospholipids (mainly PC and PE) and glycerolipids (MGDG and DGDG) in six moss species, namely Racomotrium lanuginosum, R. ericoides, Bryum psedotriquetrium, Plagiomnium ellipticum, Hylocomium splendens, and Rhytidiadelphus triquetrus. Two of the six species (B. psedotriquetrium and H. splendens) also accumulated high concentrations of PUFA-containing-triacylglycerols.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; ArcticMass, Reykjavik, Iceland.
| | - Finnur Freyr Eiriksson
- ArcticMass, Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Nils Cronberg
- Department of Biology, Lund University, Lund, Sweden
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Université Jean Monnet Saint-Etienne, CNRS, LBVpam UMR 5079, Saint-Étienne, France.
| |
Collapse
|
36
|
Shen Z, Ding X, Cheng J, Wu F, Yin H, Wang M. Phylogenetic studies of magnoliids: Advances and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 13:1100302. [PMID: 36726671 PMCID: PMC9885158 DOI: 10.3389/fpls.2022.1100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Magnoliids are the largest flowering plant clades outside of the eudicots and monocots, which are distributed worldwide and have high economic, ornamental and ecological values. Eudicots, monocots and magnoliids are the three major clades of Mesangiospermae, and their phylogenetic relationship is one of the most interesting issues. In recent years, with the continuous accumulation of genomic information, the evolutionary status of magnoliids has become a hot spot in plant phylogenetic research. Although great efforts have been made to study the evolution of magnoliids using molecular data from several representative species such as nuclear genome, plastid genome, mitochondrial genome, and transcriptome, the results of current studies on the phylogenetic status of magnoliids are inconsistent. Here, we systematically describe the current understanding of the molecular research on magnoliid phylogeny and review the differences in the evolutionary state of magnoliids. Understanding the research approaches and limitations of magnoliid phylogeny can guide research strategies to further improve the study of the phylogenetic evolution of magnoliids.
Collapse
Affiliation(s)
- Zhiguo Shen
- National Innovation Alliance of Wintersweet, Henan Academy of Forestry, Zhengzhou, China
| | - Xin Ding
- National Innovation Alliance of Wintersweet, Henan Academy of Forestry, Zhengzhou, China
| | - Jianming Cheng
- Scientific Research Department, Scientific Research Department, Henan Colorful Horticulture Co., Ltd, Zhengzhou, China
| | - Fangfang Wu
- Scientific Research Department, Scientific Research Department, Henan Colorful Horticulture Co., Ltd, Zhengzhou, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Minyan Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Complete chloroplast genomes and comparative analysis of Ligustrum species. Sci Rep 2023; 13:212. [PMID: 36604557 PMCID: PMC9814286 DOI: 10.1038/s41598-022-26884-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, we assembled and annotated the chloroplast (cp) genomes of four Ligustrum species, L. sinense, L. obtusifolium, L. vicaryi, and L. ovalifolium 'Aureum'. Including six other published Ligustrum species, we compared various characteristics such as gene structure, sequence alignment, codon preference, and nucleic acid diversity, and performed positive-selection genes screening and phylogenetic analysis. The results showed that the cp genome of Ligustrum was 162,185-166,800 bp in length, with a circular tetrad structure, including a large single-copy region (86,885-90,106 bp), a small single-copy region (11,446-11,499 bp), and a pair of IRa and IRb sequences with the same coding but in opposite directions (31,608-32,624 bp). This structure is similar to the cp genomes of most angiosperms. We found 132-137 genes in the cp genome of Ligustrum, including 89-90 protein-coding genes, 35-39 tRNAs, and 8 rRNAs. The GC content was 37.93-38.06% and varied among regions, with the IR region having the highest content. The single-nucleotide (A/T)n was dominant in simple-sequence repeats of the Ligustrum cp genome, with an obvious A/T preference. Six hotspot regions were identified from multiple sequence alignment of Ligustrum; the ycf1 gene region and the clpP1 exon region can be used as potential DNA barcodes for the identification and phylogeny of the genus Ligustrum. Branch-site model and Bayes empirical Bayes (BEB) analysis showed that four protein-coding genes (accD, clpP, ycf1, and ycf2) were positively selected, and BEB analysis showed that accD and rpl20 had positively selected sites. A phylogenetic tree of Oleaceae species was constructed based on the whole cp genomes, and the results were consistent with the traditional taxonomic results. The phylogenetic results showed that genus Ligustrum is most closely related to genus Syringa. Our study provides important genetic information to support further investigations of the phylogenetic development and adaptive evolution of Ligustrum species.
Collapse
|
38
|
Li Y, Chen X, Lin X, Gu Y, Liu B, Zhang R. Complete chloroplast genome of Isoetes orientalis (Isoetaceae), an endangered quillwort from China. Mitochondrial DNA B Resour 2023; 8:342-346. [PMID: 36876143 PMCID: PMC9980155 DOI: 10.1080/23802359.2023.2183070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Isoetes orientalis is an endangered hexaploidy species of Isoetaceae in China and the complete chloroplast genome of this species has not been reported. In the present study, a complete chloroplast genome of Isoetes orientalis (Isoetaceae) was assembled and annotated. This chloroplast genome has a circular structure of 145,504 bp in length, comprising a pair of inverted repeat (IR) regions of 13,207 bp each, a large single-copy (LSC) region of 91,864 bp, and a small single-copy (SSC) region of 27,226 bp. The chloroplast genome contains 136 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that I. orientalis was closely related to I. sinensis. These results provide additional resources for future studies on Isoetes from China and across the globe.
Collapse
Affiliation(s)
- Yanqing Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Xi Chen
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Xiaoyan Lin
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Yufeng Gu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation & Research Center of Shenzhen, Shenzhen, China.,Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Baodong Liu
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Rongjing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Chen Q, Chen C, Wang B, Wang Z, Xu W, Huang Y, Sun Q. Complete chloroplast genomes of 11 Sabia samples: Genomic features, comparative analysis, and phylogenetic relationship. FRONTIERS IN PLANT SCIENCE 2022; 13:1052920. [PMID: 36589084 PMCID: PMC9800934 DOI: 10.3389/fpls.2022.1052920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The genus Sabia is a woody climber belonging to the family Sabiaceae, order Proteales. Several species of this genus have been utilized as medicines for treating diseases, such as rheumatic arthritis, traumatism, hepatitis, etc. However, the lack of molecular data has prevented the accurate identification and refinement of taxonomic relationships in this genus. In this study, chloroplast genomes of 11 samples of the genus Sabia were assembled and analyzed. These chloroplast genomes showed a typical quadripartite structure and ranged in length from 160,956 to 162,209 bp. The structure of the genomes was found to be relatively conserved, with 130 genes annotated, including 85 coding genes, 37 tRNA genes, and eight rRNA genes. A total of 78-98 simple sequence repeats and 52-61 interspersed repeats were detected. Sequence alignment revealed 11 highly variable loci in chloroplast genomes. Among these loci, ndhF-ndhD achieved a remarkably higher resolution than the other regions. In addition, phylogenetic analysis indicated that Sect. Pachydiscus and Sect. Sabia of Sabia did not form two separate monophyletic groups. The divergence time calculated based on the Reltime method indicated that the evolutionary branches of Sabia and Meliosma started to form approximately 85.95 million years ago (Mya), and the species within Sabia began to diverge approximately 7.65 Mya. In conclusion, our study provides a basis for comprehensively exploring the phylogenetic relationships of Sabia. It also provides a methodological basis and data support for establishing a standardized and scientific identification system for this genus.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Huang
- *Correspondence: Yuan Huang, ; Qingwen Sun,
| | | |
Collapse
|
40
|
Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J. A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 2022; 32:4473-4482.e7. [PMID: 36055238 PMCID: PMC9632326 DOI: 10.1016/j.cub.2022.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.
Collapse
Affiliation(s)
- Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Shelby K Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Anna Busch
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD, USA
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
41
|
Wang L, Zhang S, Fang J, Jin X, Mamut R, Li P. The Chloroplast Genome of the Lichen Photobiont Trebouxiophyceae sp. DW1 and Its Phylogenetic Implications. Genes (Basel) 2022; 13:genes13101840. [PMID: 36292725 PMCID: PMC9601494 DOI: 10.3390/genes13101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lichens are symbiotic associations of algae and fungi. The genetic mechanism of the symbiosis of lichens and the influence of symbiosis on the size and composition of the genomes of symbiotic algae have always been intriguing scientific questions explored by lichenologists. However, there were limited data on lichen genomes. Therefore, we isolated and purified a lichen symbiotic alga to obtain a single strain (Trebouxiophyceae sp. DW1), and then obtained its chloroplast genome information by next-generation sequencing (NGS). The chloroplast genome is 129,447 bp in length, and the GC content is 35.2%. Repetitive sequences with the length of 30–35 bp account for 1.27% of the total chloroplast genome. The simple sequence repeats are all mononucleotide repeats. Codon usage analysis showed that the genome tended to use codon ending in A/U. By comparing the length of different regions of Trebouxiophyceae genomes, we found that the changes in the length of exons, introns, and intergenic sequences affect the size of genomes. Trebouxiophyceae had an unstable chloroplast genome structure, with IRs repeatedly losing during evolution. Phylogenetic analysis showed that Trebouxiophyceae is paraphyletic, and Trebouxiophyceae sp. DW1 is sister to the clade of Koliella longiseta and Pabia signiensis.
Collapse
Affiliation(s)
- Lidan Wang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Shenglu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Fang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Reyim Mamut
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
- Correspondence: (R.M.); (P.L.)
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (R.M.); (P.L.)
| |
Collapse
|
42
|
Characterization and Comparative Analysis of Chloroplast Genomes in Five Uncaria Species Endemic to China. Int J Mol Sci 2022; 23:ijms231911617. [PMID: 36232915 PMCID: PMC9569570 DOI: 10.3390/ijms231911617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Uncaria, a perennial vine from the Rubiaceae family, is a typical Chinese traditional medicine. Currently, uncertainty exists over the Uncaria genus’ evolutionary relationships and germplasm identification. The complete chloroplast genomes of four Uncaria species mentioned in the Chinese Pharmacopoeia and Uncaria scandens (an easily confused counterfeit) were sequenced and annotated. The findings demonstrated that the whole chloroplast genome of Uncaria genus is 153,780–155,138 bp in full length, encoding a total of 128–131 genes, containing 83–86 protein-coding genes, eight rRNAs and 37 tRNAs. These regions, which include eleven highly variable loci and 31–49 SSRs, can be used to create significant molecular markers for the Uncaria genus. The phylogenetic tree was constructed according to protein-coding genes and the whole chloroplast genome sequences of five Uncaria species using four methods. The topology of the two phylogenetic trees showed no difference. The sequences of U. rhynchophylla and U. scandens are clustered in one group, while the U. hirsuta and U. macrophylla are clustered in another group. U. sessilifructus is clustered together with the above two small clades. New insights on the relationship were revealed via phylogenetic research in five Uncaria species. This study will provide a theoretical basis for identifying U. rhynchophylla and its counterfeits, as well as the species of the Uncaria genus. This research provides the initial chloroplast genome report of Uncaria, contributes to elucidating the chloroplast genome evolution of Uncaria in China.
Collapse
|
43
|
Nitta JH, Schuettpelz E, Ramírez-Barahona S, Iwasaki W. An open and continuously updated fern tree of life. FRONTIERS IN PLANT SCIENCE 2022; 13:909768. [PMID: 36092417 PMCID: PMC9449725 DOI: 10.3389/fpls.2022.909768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 05/31/2023]
Abstract
Ferns, with about 12,000 species, are the second most diverse lineage of vascular plants after angiosperms. They have been the subject of numerous molecular phylogenetic studies, resulting in the publication of trees for every major clade and DNA sequences from nearly half of all species. Global fern phylogenies have been published periodically, but as molecular systematics research continues at a rapid pace, these become quickly outdated. Here, we develop a mostly automated, reproducible, open pipeline to generate a continuously updated fern tree of life (FTOL) from DNA sequence data available in GenBank. Our tailored sampling strategy combines whole plastomes (few taxa, many loci) with commonly sequenced plastid regions (many taxa, few loci) to obtain a global, species-level fern phylogeny with high resolution along the backbone and maximal sampling across the tips. We use a curated reference taxonomy to resolve synonyms in general compliance with the community-driven Pteridophyte Phylogeny Group I classification. The current FTOL includes 5,582 species, an increase of ca. 40% relative to the most recently published global fern phylogeny. Using an updated and expanded list of 51 fern fossil constraints, we find estimated ages for most families and deeper clades to be considerably older than earlier studies. FTOL and its accompanying datasets, including the fossil list and taxonomic database, will be updated on a regular basis and are available via a web portal (https://fernphy.github.io) and R packages, enabling immediate access to the most up-to-date, comprehensively sampled fern phylogeny. FTOL will be useful for anyone studying this important group of plants over a wide range of taxonomic scales, from smaller clades to the entire tree. We anticipate FTOL will be particularly relevant for macroecological studies at regional to global scales and will inform future taxonomic systems with the most recent hypothesis of fern phylogeny.
Collapse
Affiliation(s)
- Joel H. Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Vera-Paz SI, Díaz Contreras Díaz DD, Jost M, Wanke S, Rossado AJ, Hernández-Gutiérrez R, Salazar GA, Magallón S, Gouda EJ, Ramírez-Morillo IM, Donadío S, Granados Mendoza C. New plastome structural rearrangements discovered in core Tillandsioideae (Bromeliaceae) support recently adopted taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:924922. [PMID: 35982706 PMCID: PMC9378858 DOI: 10.3389/fpls.2022.924922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits' rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.
Collapse
Affiliation(s)
- Sandra I. Vera-Paz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel D. Díaz Contreras Díaz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Andrés J. Rossado
- Laboratorio de Sistemática de Plantas Vasculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rebeca Hernández-Gutiérrez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric J. Gouda
- Botanical Garden, Utrecht University, Utrecht, Netherlands
| | | | - Sabina Donadío
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
46
|
Robison T, Nelson JM, Hauser DA, Lewis LA, Li FW. Dynamic plastid and mitochondrial genomes in Chaetopeltidales (Chlorophyceae) and characterization of a new chlorophyte taxon. AMERICAN JOURNAL OF BOTANY 2022; 109:939-951. [PMID: 35678538 DOI: 10.1002/ajb2.16015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Chaetopeltidales is a poorly characterized order in the Chlorophyceae, with only two plastid and no mitochondrial genomes published. Here we describe a new taxon in Chaetopeltidales, Gormaniella terricola gen. et sp. nov. and characterize both of its organellar genomes. METHODS Gormaniella terricola was inadvertently isolated from a surface-sterilized hornwort thallus. Light microscopy was used to characterize its vegetative morphology. Organellar genomes were assembled, annotated, and analyzed using a variety of software packages. RESULTS The mitochondrial genome (66,927 bp) represents the first complete mitochondrial genome published for Chaetopeltidales. The chloroplast genome, measuring 428,981 bp, is one of the largest plastid genomes published to date and shares this large size and an incredible number of short, dispersed repeats with the other sequenced chloroplast genomes in Chaetopeltidales. Despite these shared features, the chloroplast genomes of Chaetopeltidales appear to be highly rearranged when compared to one another, with numerous inversions, translocations, and duplications, suggesting a particularly dynamic chloroplast genome. Both the chloroplast and mitochondrial genomes of G. terricola contain a number of mobile group I and group II introns, which appear to have invaded separately. Three of the introns within the mitochondrial genome encode homing endonucleases that are phylogenetically nested within those found in fungi, rather than algae, suggesting a possible case of horizontal gene transfer. CONCLUSIONS These results help to shed light on a poorly understood group of algae and their unusual organellar genomes, raising additional questions about the unique patterns of genome evolution within Chaetopeltidales.
Collapse
Affiliation(s)
- Tanner Robison
- Plant Biology Section, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | | | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Fay-Wei Li
- Plant Biology Section, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
47
|
Liu H, Zhao W, Zhang RG, Mao JF, Wang XR. Repetitive Elements, Sequence Turnover and Cyto-Nuclear Gene Transfer in Gymnosperm Mitogenomes. Front Genet 2022; 13:867736. [PMID: 35692831 PMCID: PMC9174605 DOI: 10.3389/fgene.2022.867736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Among the three genomes in plant cells, the mitochondrial genome (mitogenome) is the least studied due to complex recombination and intergenomic transfer. In gymnosperms only ∼20 mitogenomes have been released thus far, which hinders a systematic investigation into the tempo and mode of mitochondrial DNA evolution in seed plants. Here, we report the complete mitogenome sequence of Platycladus orientalis (Cupressaceae). This mitogenome is assembled as two circular-mapping chromosomes with a size of ∼2.6 Mb and which contains 32 protein-coding genes, three rRNA and seven tRNA genes, and 1,068 RNA editing sites. Repetitive sequences, including dispersed repeats, transposable elements (TEs), and tandem repeats, made up 23% of the genome. Comparative analyses with 17 other mitogenomes representing the five gymnosperm lineages revealed a 30-fold difference in genome size, 80-fold in repetitive content, and 230-fold in substitution rate. We found dispersed repeats are highly associated with mitogenome expansion (r = 0.99), and most of them were accumulated during recent duplication events. Syntenic blocks and shared sequences between mitogenomes decay rapidly with divergence time (r = 0.53), with the exceptions of Ginkgo and Cycads which retained conserved genome structure over long evolutionary time. Our phylogenetic analysis supports a sister group relationship of Cupressophytes and Gnetophytes; both groups are unique in that they lost 8–12 protein-coding genes, of which 4–7 intact genes are likely transferred to nucleus. These two clades also show accelerated and highly variable substitution rates relative to other gymnosperms. Our study highlights the dynamic and enigmatic evolution of gymnosperm mitogenomes.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- *Correspondence: Wei Zhao,
| | - Ren-Gang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, China
| | - Jian-Feng Mao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
48
|
Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing. Mol Phylogenet Evol 2022; 173:107507. [PMID: 35589053 DOI: 10.1016/j.ympev.2022.107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.
Collapse
|
49
|
Cai L, Zhang H, Davis CC. PhyloHerb: A high-throughput phylogenomic pipeline for processing genome skimming data. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11475. [PMID: 35774988 PMCID: PMC9215275 DOI: 10.1002/aps3.11475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Premise The application of high-throughput sequencing, especially to herbarium specimens, is rapidly accelerating biodiversity research. Low-coverage sequencing of total genomic DNA (genome skimming) is particularly promising and can simultaneously recover the plastid, mitochondrial, and nuclear ribosomal regions across hundreds of species. Here, we introduce PhyloHerb, a bioinformatic pipeline to efficiently assemble phylogenomic data sets derived from genome skimming. Methods and Results PhyloHerb uses either a built-in database or user-specified references to extract orthologous sequences from all three genomes using a BLAST search. It outputs FASTA files and offers a suite of utility functions to assist with alignment, partitioning, concatenation, and phylogeny inference. The program is freely available at https://github.com/lmcai/PhyloHerb/. Conclusions We demonstrate that PhyloHerb can accurately identify genes using a published data set from Clusiaceae. We also show via simulations that our approach is effective for highly fragmented assemblies from herbarium specimens and is scalable to thousands of species.
Collapse
Affiliation(s)
- Liming Cai
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCalifornia92507USA
| | - Hongrui Zhang
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
| | - Charles C. Davis
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
| |
Collapse
|
50
|
Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species. Genes (Basel) 2022; 13:genes13040570. [PMID: 35456376 PMCID: PMC9032312 DOI: 10.3390/genes13040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
In angiosperms, huge advances in massive DNA sequencing technologies have impacted phylogenetic studies. Probe sets have been developed with the purpose of recovering hundreds of orthologous loci of targeted DNA sequences (TDS) across different plant lineages. We tested in silico the effectiveness of two universal probe sets in the whole available genomes of Caryophyllids, emphasizing phylogenetic issues in cacti species. A total of 870 TDS (517 TDS from Angiosperm v.1 and 353 from Angiosperms353) were individually tested in nine cacti species and Amaranthus hypochondriacus (external group) with ≥17 Gbp of available DNA data. The effectiveness was measured by the total number of orthologous loci recovered and their length, the percentage of loci discarded by paralogy, and the proportion of informative sites (PIS) in the alignments. The results showed that, on average, Angiosperms353 was better than Angiosperm v.1 for cacti species, since the former obtained an average of 275.6 loci that represent 123,687 bp, 2.48% of paralogous loci, and 4.32% of PIS in alignments, whereas the latter recovered 148.4 loci (37,683 bp), 10.38% of paralogous loci, and 3.49% of PIS. We recommend the use of predesigned universal probe sets for Caryophyllids, since these recover a high number of orthologous loci that resolve phylogenetic relationships.
Collapse
|