1
|
Ikumawoyi VO, Lynch KD, Iverson DT, Call MR, Yue GE, Prasad B, Clarke JD. Microcystin-LR activates serine/threonine kinases and alters the phosphoproteome in human HepaRG cells. Toxicon 2024; 249:108072. [PMID: 39154757 PMCID: PMC11402562 DOI: 10.1016/j.toxicon.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Microcystin-LR (MCLR) exposure has been associated with development of hepatocellular carcinoma (HCC). Many of the carcinogenic mechanisms for MCLR have been attributed to the induction of cell survival and proliferation through altered protein phosphorylation pathways by inhibition of protein phosphatases 1 (PP1) and PP2A. The current study determined MCLR effects on the phosphoproteome in human HepaRG cells. Differentiated HepaRG cells were treated with either vehicle or MCLR followed by phosphoproteomic analysis and Western blotting of MAPK-activated proteins. MCLR decreased cell viability at 24 h at doses as low as 0.03 μM. MCLR also caused a dose-dependent increase in phosphorylation of signaling and stress kinases. The number of decreased phosphosites by 0.1 μM MCLR was similar between the 2 h (212) and 24 h (154) timepoints. In contrast, a greater number of phosphosites were increased at 24 h (567) versus the 2 h timepoint (136), indicating the hyperphosphorylation state caused by MCLR-mediated inhibition of PPs is time-dependent. A kinase perturbation analysis predicted that MCLR exposure at both 2 h and 24 h increased the function of aurora kinase B (AURKB), checkpoint kinase 1 (CHEK1), and serum and glucocorticoid-regulated kinase 1 (SGK1). STRING database analysis of the phosphosites altered by MCLR exposure revealed pathways associated with cell proliferation and survival, including ribosomal protein S6 kinase (RSK), and vascular endothelial growth factor receptor (VEGFR2)-mediated vascular permeability. In addition, several cancer-related KEGG pathways were enriched at both 2 h and 24 h timepoints, and multiple cancer-related disease-gene associations were identified at the 24 h timepoint. Many of the kinases and pathways described above play crucial roles in the development of HCC by affecting processes such as invasion and metastasis. Overall, our data indicate that MCLR-mediated changes in protein phosphorylation involve biological pathways related to carcinogenesis that may contribute to the development of HCC.
Collapse
Affiliation(s)
- Victor O Ikumawoyi
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Dayne T Iverson
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - M Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Guihua Eileen Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
2
|
Wei N, Hu C, Dittmann E, Song L, Gan N. The biological functions of microcystins. WATER RESEARCH 2024; 262:122119. [PMID: 39059200 DOI: 10.1016/j.watres.2024.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Microcystins are potent hepatotoxins predominantly produced by bloom-forming freshwater cyanobacteria (e.g., Microcystis, Planktothrix, Dolichospermum). Microcystin biosynthesis involves large multienzyme complexes and tailoring enzymes encoded by the mcy gene cluster. Mutation, recombination, and deletion events have shaped the mcy gene cluster in the course of evolution, resulting in a large diversity of microcystin congeners and the natural coexistence of toxic and non-toxic strains. The biological functions of microcystins and their association with algal bloom formation have been extensively investigated over the past decades. This review synthesizes recent advances in decoding the biological role of microcystins in carbon/nitrogen metabolism, antioxidation, colony formation, and cell-to-cell communication. Microcystins appear to adopt multifunctional roles in cyanobacteria that reflect the adaptive plasticity of toxic cyanobacteria to changing environments.
Collapse
Affiliation(s)
- Nian Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Miles CO, McCarron P, Thomas K, Al-Sinawi B, Liu T, Neilan BA. Microcystins with Modified Adda 5-Residues from a Heterologous Microcystin Expression System. ACS OMEGA 2024; 9:27618-27631. [PMID: 38947807 PMCID: PMC11209926 DOI: 10.1021/acsomega.4c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Microcystins are hepatotoxic cyclic heptapeptides produced by some cyanobacterial species and usually contain the unusual β-amino acid 3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyl-4E,6E-decadienoic acid (Adda) at position-5. The full microcystin gene cluster from Microcystis aeruginosa PCC 7806 has been expressed in Escherichia coli. In an earlier study, the engineered strain was shown to produce MC-LR and [d-Asp3]MC-LR, the main microcystins reported in cultures of M. aeruginosa PCC 7806. However, analysis of the engineered strain of E. coli using semitargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS) and thiol derivatization revealed the presence of 15 additional microcystin analogues, including four linear peptide variants and, in total, 12 variants with modifications to the Adda moiety. Four of the Adda-variants lacked the phenyl group at the Adda-terminus, a modification that has not previously been reported in cyanobacteria. Their HRMS/MS spectra contained the product-ion from Adda at m/z 135.1168, but the commonly observed product-ion at m/z 135.0804 from Adda-containing microcystins was almost completely absent. In contrast, three of the variants were missing a methyl group between C-2 and C-8 of the Adda moiety, and their LC-HRMS/MS spectra displayed the product-ion from Adda at m/z 135.0804. However, instead of the product-ion at m/z 135.1168, these three variants gave product-ions at m/z 121.1011. These observations, together with spectra from microcystin standards using in-source fragmentation, showed that the product-ion at m/z 135.1168 found in the HRMS/MS spectra of most microcystins originated from the C-2 to C-8 region of the Adda moiety. Identification of the fragmentation pathways for the Adda side chain will facilitate the detection of microcystins containing modifications in their Adda moieties that could otherwise easily be overlooked with standard LC-MS screening methods. Microcystin variants containing Abu at position-1 were also prominent components of the microcystin profile of the engineered bacterium. Microcystin variants with Abu1 or without the phenyl group on the Adda side chain were not detected in the original host cyanobacterium. This suggests not only that the microcystin synthase complex may be affected by substrate availability within its host organism but also that it possesses an unexpected degree of biosynthetic flexibility.
Collapse
Affiliation(s)
- Christopher O. Miles
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
- Norwegian
Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Pearse McCarron
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Krista Thomas
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Bakir Al-Sinawi
- Diagnostic
Technology Pty. Ltd., Sydney 2085, NSW, Australia
- School
of Environmental and Life Sciences, The
University of Newcastle, Callaghan 2308, NSW, Australia
| | - Tianzhe Liu
- Diagnostic
Technology Pty. Ltd., Sydney 2085, NSW, Australia
- Department
of Chemistry and Food Chemistry, Technical
University of Dresden, 01069 Dresden, Germany
| | - Brett A. Neilan
- School
of Environmental and Life Sciences, The
University of Newcastle, Callaghan 2308, NSW, Australia
- ARC Centre
of Excellence in Synthetic Biology, Sydney, NSW 2019, Australia
| |
Collapse
|
4
|
Ouyang X, Wahlsten M, Pollari M, Delbaje E, Jokela J, Fewer DP. Identification of a homoarginine biosynthetic gene from a microcystin biosynthetic pathway in Fischerella sp. PCC 9339. Toxicon 2024; 243:107733. [PMID: 38670499 DOI: 10.1016/j.toxicon.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microcystins (MCs) are a family of chemically diverse toxins produced by numerous distantly related cyanobacteria. They are potent inhibitors of eukaryotic protein phosphatases 1 and 2A and are responsible for the toxicosis and death of wild and domestic animals around the world. Microcystins are synthesized on large enzyme complexes comprised of peptide synthetases, polyketide synthases, and additional modifying enzymes. Bioinformatic analysis identified the presence of an additional uncharacterized enzyme in the microcystin (mcy) biosynthetic gene cluster in Fischerella sp. PCC 9339, which we named McyK, that lacked a clearly defined role in the biosynthesis of microcystin. Further bioinformatic analysis suggested that McyK belongs to the inosamine-phosphate amidinotransferase family and could be involved in synthesizing homo amino acids. Quadrupole time-of-flight tandem mass spectrometry (Q-TOFMS/MS) analysis confirmed that Fischerella sp. PCC 9339 produces MC-Leucine2-Homoarginine4(MC-LHar) and [Aspartic acid3]MC-Leucine2-Homoarginine4 ([Asp3]MC-LHar) as the dominant chemical variants. We hypothesized that the McyK enzyme might be involved in the production of microcystin variants containing homoarginine (Har) in the strain. Heterologous expression of a codon-optimized mcyK gene in Escherichia coli confirmed that McyK is responsible for the synthesis of L-Har. These results confirm the production of MC-LHar, a novel microcystin chemical variant [Asp3]MC-LHar, and a new microcystin biosynthetic enzyme involved in supply of the rare homo-amino acid Har to the microcystin biosynthetic pathway in Fischerella sp. PCC 9339. This study provides new insights into the logic underpinning the biosynthesis of microcystin chemical variants and broadens our knowledge of structural diversity of the microcystin family of toxins.
Collapse
Affiliation(s)
- Xiaodan Ouyang
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, FI-00014, Helsinki, Finland
| | - Endrews Delbaje
- Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, 14040-903, Ribeirão Preto, Brazil
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland.
| |
Collapse
|
5
|
Padovan A, Kennedy K, Gibb K. A microcystin synthesis mcyE/ndaF gene assay enables early detection of microcystin production in a tropical wastewater pond. HARMFUL ALGAE 2023; 127:102476. [PMID: 37544676 DOI: 10.1016/j.hal.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023]
Abstract
Cyanobacteria can dominate the algal community in wastewater ponds, which can lead to the production of cyanotoxins and their release into the environment. We applied traditional and molecular techniques to identify cyanotoxin hazards and high-risk periods in a tropical wastewater treatment system. Potentially toxic cyanobacteria were identified by microscopy and amplicon sequencing over the course of a year. Toxin gene levels were monitored and compared to toxin production to identify likely toxin producing species and high-risk periods. Cyanobacteria were persistent in the effluent year-round, with Planktothrix and Microcystis the most abundant genera; Microcystis could not be resolved beyond genus using amplicon sequencing, but M. flos-aquae was identified as a dominant species by microscopy. Microcystin toxin was detected for the first time in treated effluent at the beginning of the wet season (December 2018), which correlated with an increase in Microcystis amplicon sequence abundance and elevated microcystin toxin gene (mcyE/ndaF) levels. Concomitantly, microscopy data showed an increase in M. flos-aquae but not M. aeruginosa. These data informed a refined sampling campaign in 2019 and results showed a strong correlation between mcyE/ndaF gene abundance, microcystin toxin levels and Microcystis amplicon sequence abundance. Microscopy data showed that in addition to M. flos-aquae, M. aeruginosa was also abundant in February and March 2019, with highest levels coinciding with toxin detection and toxin gene levels. M. aeruginosa was the most abundant Microcystis species detected in selected treated effluent samples by metagenomics analysis, and elevated levels coincided with toxin production. All microcystin genes in the biosynthesis pathway were detected, but microcystin genes from Planktothrix agardhii were not detected. Gene toxin assays were successfully used to predict microcystin production in this wastewater system. Changes in amplicon sequence relative abundance were a useful indicator of changes in the cyanobacterial community. We found that metagenomics was useful not just for identifying the most abundant Microcystis species, but the detection of microcystin biosynthesis genes helped confirm this genus as the most likely toxin producer in this system. We recommend toxin gene testing for the early detection of potential toxin producing cyanobacteria to manage the risk of toxicity and allow the implementation of risk management strategies.
Collapse
Affiliation(s)
- Anna Padovan
- Research Institute for the Environment and Livelihoods, Ellengowan Drive, Casuarina, Charles Darwin University, Darwin, NT, Australia.
| | - Karen Kennedy
- Power and Water Corporation, Water Services, P.O. Box 37471, Winnellie, NT, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Ellengowan Drive, Casuarina, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
6
|
A Novel Microcystin-Producing Cyanobacterial Species from the Genus Desmonostoc, Desmonostoc alborizicum sp. nov., Isolated from a Water Supply System of Iran. Curr Microbiol 2022; 80:49. [PMID: 36542171 DOI: 10.1007/s00284-022-03144-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A qanat or kariz is a slightly sloping underground aqueduct used to transport water from wells or aquifers to the surface for irrigation and drinking supply. A cyanobacterial strain was isolated from a cyanobacterial mat colonizing the wall of a qanat in Golestan province, Gorgan City, Iran. Fragments of 16S rRNA, mcyG, and mcyD genes were amplified and sequenced, as well as the 16S-23S internal transcribed spacer (ITS). After microscopic examination, the isolate was related to a morphotype of Nostoc sensu lato group, with similar characteristics to Desmonostoc. The 16S rRNA phylogenetic analysis placed the isolate into the typical cluster of the recently proposed genus Desmonostoc. Morphological analysis revealed distinctive characteristic and secondary 16S-23S rRNA structures derived from comparative analysis, which did not match known species of Desmonostoc. These results lead us to propose a novel Desmonostoc species, Desmonostoc alborizicum, which was described and compared with similar taxa. Furthermore, for the first time a potentially toxic species of Desmonostoc was isolated from a water supply, since the mcyD and mcyG genes of the microcystin synthetase (mcy) cluster were successfully sequenced. Using mass spectrometry, detectable amounts of the hepatotoxin microcystin-LR and -RR, along with demethylated variants, were present in cell extracts of the Desmonostoc strain. Our findings contribute to a deeper understanding of the diversity, systematics, and occurrence of the genus Desmonostoc.
Collapse
|
7
|
Dreher TW, Foss AJ, Davis EW, Mueller RS. 7-epi-cylindrospermopsin and microcystin producers among diverse Anabaena/Dolichospermum/Aphanizomenon CyanoHABs in Oregon, USA. HARMFUL ALGAE 2022; 116:102241. [PMID: 35710201 DOI: 10.1016/j.hal.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Several genomes of Nostocales ADA clade members from the US Pacific Northwest were recently sequenced. Biosynthetic genes for microcystin, cylindrospermopsin or anatoxin-a were present in 7 of the 15 Dolichospermum/Anabaena strains and none of the 5 Aphanizomenon flos-aquae (AFA) strains. Toxin analyses (ELISA and LC-MS/MS) were conducted to quantitate and identify microcystin (MC) and cylindrospermopsin (CYN) congeners/analogs in samples dominated by Dolichospermum spp. of known genome sequence. MC-LR was the main congener produced by Dolichospermum spp. from Junipers Reservoir, Lake Billy Chinook and Odell Lake, while a congener provisionally identified as [Dha7]MC-HtyR was produced by a Dolichospermum sp. in Detroit Reservoir. A second Dolichospermum sp. from Detroit Reservoir was found to produce 7-epi-CYN, with 7-deoxy-CYN also present, but no CYN. The monitoring history of each of these lakes indicates the capacity for high levels of cyanotoxins during periods when Dolichospermum spp. are the dominant cyanobacteria. The diversity of ADA strains found in the US Pacific NW emphasizes the importance of these cyanobacteria as potentially toxic HAB formers in this temperate climatic region. Our results linking congener and genetic identity add data points that will help guide development of improved tools for predicting congener specificity from cyanotoxin gene sequences.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | - Amanda J Foss
- GreenWater Laboratories, 205 Zeagler Drive, Suite 302, Palatka, FL 32177, USA.
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Booth TJ, Bozhüyük KAJ, Liston JD, Batey SFD, Lacey E, Wilkinson B. Bifurcation drives the evolution of assembly-line biosynthesis. Nat Commun 2022; 13:3498. [PMID: 35715397 PMCID: PMC9205934 DOI: 10.1038/s41467-022-30950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.
Collapse
Affiliation(s)
- Thomas J Booth
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Kenan A J Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Jonathon D Liston
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
9
|
Nowruzi B, Hutárová L, Absalón IB, Liu L. A new strain of Neowestiellopsis (Hapalosiphonaceae): first observation of toxic soil cyanobacteria from agricultural fields in Iran. BMC Microbiol 2022; 22:107. [PMID: 35436846 PMCID: PMC9014592 DOI: 10.1186/s12866-022-02525-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background In the present research, challenges arose when many reports have been published on the poisoning of humans due to the ingestion of crops of Crataegus plants contaminated with cyanobacterial toxins. The discovery of several poisonings around agricultural zones prompted us to study the toxic compounds in a strain of Neowestiellopsis which is the most abundant in the agricultural zones of Kermanshah province of Iran, using a polyphasic approach. Molecular procedure was followed to study these strains deeply. Material and methods To elucidate their systematic position, besides the 16S rRNA gene, the analyses of molecular toxicity markers, namely nos, mcy G, mcy D and internal transcribed spacer (ITS), were also used. Results Based on the results, for the first time, we record the presence of a gene cluster coding for the biosynthesis of a bioactive compound (Nostopeptolides) that is very rare in this family and the presence of toxic compounds (microcystin), which might account for the poisoning of humans. Conclusions This case is the first observation of a toxic soil strain from the genus Neowestiellopsis from agricultural fields in Iran. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02525-x.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Lenka Hutárová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Itzel Becerra Absalón
- Laboratorio de Ficología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Liwei Liu
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, P. R. China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Liu J, Chen L, Zhang X. Current research scenario for biological effect of exogenous factors on microcystin synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26190-26201. [PMID: 35089514 DOI: 10.1007/s11356-021-18256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In natural water bodies, numerous cyanobacteria have the potential to intracellularly synthesize cyanotoxins, among which microcystin (MC) is the ubiquitous toxin that has been well known to be carcinogenic for hepatocytes. MC synthesis is a complex process, which involves about 10 non-ribosomal proteins encoded by the mcy gene cluster. In the natural environments containing MC-producing cyanobacteria, a variety of external factors can affect the generation of MC by mediating the expression of synthesizing genes. These factors can be generally divided into biotic factors (e.g., daphnia, virioplankton, MC-degrading bacteria, algicidal bacteria) and abiotic factors (e.g., nutrients, physical factors, chemicals, phytochemicals, essential trace elements), which are of great significance to the effective reduction of MC. Furthermore, comparison of MC-synthesizing genes in different cyanobacterial strains was performed, and the related factors affecting MC synthesis were summarized. Then, the problems and gaps regarding the biological effect of exogenous factors on microcystin synthesis were discussed. This review article may provide new ideas for addressing the challenges and bottlenecks of MC management.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
| |
Collapse
|
11
|
Liu Y, Liu S, Xu C, Lin M, Li Y, Shen C, Liang Y, Sun X, Wang D, Lü P, Liu X. Epitopes prediction for microcystin-LR by molecular docking. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112925. [PMID: 34717216 DOI: 10.1016/j.ecoenv.2021.112925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is one of the most worldwide harmful cyanobacterial toxins. A lots of antibodies against MC-LR have been generated and characterized. However, the knowledge about the epitopes of MC-LR was still limited. The objective of this study was to analyze the epitopes of MC-LR and demonstrate the binding mode of MC-LR with its antibody. The variable genes of a mouse hybridoma cell line (Mab5H1-3B3) raised against MC-LR have been cloned and assembled in a single chain variable fragment (scFv), and then soluble expressed in E.coli BL21. Based on the scFv, the IC50 and IC10 for MC-LR were determined to be 7.45 nM and 0.30 nM by competitive ELISA. And the scFv also showed 115% and 112% cross-reactivities to MC-RR and MC-YR, and 59% to MC-LA. By molecular docking, the binding mode between MC-LR and its scFv was demonstrated. A hydrogen bond interaction was observed between the carbonyl group of Adda5 residue of MC-LR and its scFv, and the guanidyl group of Arg4 residue and phenyl group of Adda5 residue of MC-LR were also involved in the interaction. These predicted epitopes were supported by antibody cross-reactivity data. By comparing the antibody informatics of MC-LR scFv with its predicted paratopes, VH-CDR1 was crucial for MC-LR binding, and its specificity could be tuned by engineering in Vκ-CDR1 and Vκ-CDR3. These information would be useful for the hapten design for microcystins or improving the properties of MC-LR scFv in vitro.
Collapse
Affiliation(s)
- Yuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| | - Shu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Yihang Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Cheng Shen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Donglan Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xianjin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
12
|
Overlingė D, Toruńska-Sitarz A, Kataržytė M, Pilkaitytė R, Gyraitė G, Mazur-Marzec H. Characterization and Diversity of Microcystins Produced by Cyanobacteria from the Curonian Lagoon (SE Baltic Sea). Toxins (Basel) 2021; 13:toxins13120838. [PMID: 34941676 PMCID: PMC8703916 DOI: 10.3390/toxins13120838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
Microcystins (MCs) are the most widely distributed and structurally diverse cyanotoxins that can have significant health impacts on living organisms, including humans. The identification of MC variants and their quantification is very important for toxicological assessment. Within this study, we explored the diversity of MCs and their potential producers from the Curonian Lagoon. MC profiles were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, while the potential producers were detected based on the presence of genus-specific mcyE gene sequences. Among the numerous MCs detected, one new potential MC variant with m/z 1057 was partially characterized. Moreover, two other MCs with m/z 1075 and m/z 1068 might belong to new variants with serine (Ser), rarely detected in position one of the peptides. They might also represent MC-Y(OMe)R and MC-WR, respectively. However, the application of a low-resolution MS/MS system made the unambiguous identification of the MCs impossible. Based on this example, the problems of peptide structure identification are discussed in the work. Genetic analysis revealed that potential MCs producers include Dolichospermum/Anabaena, Microcystis spp., and Planktothrix agardhii. The diversity and temporal variations in MC profiles may indicate the presence of several chemotypes of cyanobacteria in the Curonian Lagoon.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipeda University, University Avenue 17, 92295 Klaipeda, Lithuania; (M.K.); (R.P.); (G.G.)
- Correspondence:
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (A.T.-S.); (H.M.-M.)
| | - Marija Kataržytė
- Marine Research Institute, Klaipeda University, University Avenue 17, 92295 Klaipeda, Lithuania; (M.K.); (R.P.); (G.G.)
| | - Renata Pilkaitytė
- Marine Research Institute, Klaipeda University, University Avenue 17, 92295 Klaipeda, Lithuania; (M.K.); (R.P.); (G.G.)
| | - Greta Gyraitė
- Marine Research Institute, Klaipeda University, University Avenue 17, 92295 Klaipeda, Lithuania; (M.K.); (R.P.); (G.G.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (A.T.-S.); (H.M.-M.)
| |
Collapse
|
13
|
Williams EP, Bachvaroff TR, Place AR. A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates. Evol Bioinform Online 2021; 17:11769343211031871. [PMID: 34345159 PMCID: PMC8283056 DOI: 10.1177/11769343211031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products known.
Collapse
Affiliation(s)
- Ernest P Williams
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Allen R Place
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
14
|
Nowruzi B, Soares F. Alborzia kermanshahica gen. nov., sp. nov. (Chroococcales, Cyanobacteria), isolated from paddy fields in Iran. Int J Syst Evol Microbiol 2021; 71. [PMID: 34097598 DOI: 10.1099/ijsem.0.004828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S-23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus, but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola. The D1-D1', Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fabiana Soares
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
15
|
Baunach M, Chowdhury S, Stallforth P, Dittmann E. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Mol Biol Evol 2021; 38:2116-2130. [PMID: 33480992 PMCID: PMC8097286 DOI: 10.1093/molbev/msab015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing and matching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the Acore domains, yet domain interfaces and the flexible Asub domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.
Collapse
Affiliation(s)
- Martin Baunach
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
16
|
|
17
|
YAMAN G, YILMAZ M. Examination of Substrate Specificity of the First Adenylation Domain in mcyA Module Involved in Microcystin Biosynthesis. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.715530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Foss AJ, Miles CO, Wilkins AL, Rise F, Trovik KW, Cieslik K, Aubel MT. Analysis of total microcystins and nodularins by oxidative cleavage of their ADMAdda, DMAdda, and Adda moieties. Anal Chim Acta X 2020; 6:100060. [PMID: 33392496 PMCID: PMC7772689 DOI: 10.1016/j.acax.2020.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Microcystins (MCs) and nodularins (NODs) exhibit high structural variability, including modifications of the Adda (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid) moiety. Variations include 9-O-desmethylAdda (DMAdda) and 9-O-acetylDMAdda (ADMAdda) which, unless targeted, may go undetected. Therefore, reference standards were prepared of [ADMAdda5]MCs and [DMAdda5]MCs, which were analyzed using multiple approaches. The cross-reactivities of the [DMAdda5]- and [ADMAdda5]MC standards were similar to that of MC-LR when analyzed with a protein phosphatase 2A (PP2A) inhibition assay, but were <0.25% when analyzed with an Adda enzyme-linked immunosorbent assay (ELISA). Oxidative cleavage experiments identified compounds that could be used in the analysis of total MCs/NODs in a similar fashion to the 2R-methyl-3S-methoxy-4-phenylbutanoic acid (MMPB) technique. Products from oxidative cleavage of both the 4,5- and 6,7-ene of Adda, DMAdda and ADMAdda were observed, and three oxidation products, one from each Adda variant, were chosen for analysis and applied to three field samples and a Nostoc culture. Results from the oxidative cleavage method for total Adda, DMAdda, and ADMAdda were similar to those from the Adda-ELISA, PP2A inhibition, and LC-MS/MS analyses, except for the Nostoc culture where the Adda-ELISA greatly underestimated microcystin levels. This oxidative cleavage method can be used for routine analysis of field samples and to assess the presence of the rarely reported, but toxic, DMAdda/ADMAdda-containing MCs and NODs.
Collapse
Key Words
- ADMAdda
- ADMAdda, 3S-amino-9S-acetyloxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid
- Adda
- Adda, 3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid
- DMAdda
- DMAdda, 3S-amino-9S-hydroxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid
- MAPB, 2R-methyl-3S-acetyloxy-4-phenylbutanoic acid
- MHPB, 2R-methyl-3S-hydroxy-4-phenylbutanoic acid
- MMPB
- MMPB, 2R-methyl-3S-methoxy-4-phenylbutanoic acid
- MOMAPH, 2-methyl-3-oxo-4R-methyl-5S-acetyloxy-6-phenylhexanoic acid
- MOMHPH, 2-methyl-3-oxo-4R-methyl-5S-hydroxy-6-phenylhexanoic acid
- MOMMPH, 2-methyl-3-oxo-4R-methyl-5S-methoxy-6-phenylhexanoic acid
- Microcystin
- Microcystin, MC
- NOD, Nodularin
- Nodularin
Collapse
Affiliation(s)
- Amanda J. Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| | - Christopher O. Miles
- Measurement Science and Standards, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
- Norwegian Veterinary Institute, P. O. Box 750, Sentrum, N-0106, Oslo, Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute, P. O. Box 750, Sentrum, N-0106, Oslo, Norway
- Chemistry Department, University of Waikato, Private Bag 3105, 3240, Hamilton, New Zealand
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - Kristian W. Trovik
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - Kamil Cieslik
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| | - Mark T. Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| |
Collapse
|
19
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
20
|
Calcott MJ, Owen JG, Ackerley DF. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat Commun 2020; 11:4554. [PMID: 32917865 PMCID: PMC7486941 DOI: 10.1038/s41467-020-18365-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Non-ribosomal peptide synthetase (NRPS) enzymes form modular assembly-lines, wherein each module governs the incorporation of a specific monomer into a short peptide product. Modules are comprised of one or more key domains, including adenylation (A) domains, which recognise and activate the monomer substrate; condensation (C) domains, which catalyse amide bond formation; and thiolation (T) domains, which shuttle reaction intermediates between catalytic domains. This arrangement offers prospects for rational peptide modification via substitution of substrate-specifying domains. For over 20 years, it has been considered that C domains play key roles in proof-reading the substrate; a presumption that has greatly complicated rational NRPS redesign. Here we present evidence from both directed and natural evolution studies that any substrate-specifying role for C domains is likely to be the exception rather than the rule, and that novel non-ribosomal peptides can be generated by substitution of A domains alone. We identify permissive A domain recombination boundaries and show that these allow us to efficiently generate modified pyoverdine peptides at high yields. We further demonstrate the transferability of our approach in the PheATE-ProCAT model system originally used to infer C domain substrate specificity, generating modified dipeptide products at yields that are inconsistent with the prevailing dogma.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
21
|
Ballot A, Swe T, Mjelde M, Cerasino L, Hostyeva V, Miles CO. Cylindrospermopsin- and Deoxycylindrospermopsin-Producing Raphidiopsis raciborskii and Microcystin-Producing Microcystis spp. in Meiktila Lake, Myanmar. Toxins (Basel) 2020; 12:toxins12040232. [PMID: 32272622 PMCID: PMC7232193 DOI: 10.3390/toxins12040232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Meiktila Lake is a shallow reservoir located close to Meiktila city in central Myanmar. Its water is used for irrigation, domestic purposes and drinking water. No detailed study of the presence of cyanobacteria and their potential toxin production has been conducted so far. To ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Meiktila Lake, water samples were collected in March and November 2017 and investigated for physico-chemical and biological parameters. Phytoplankton composition and biomass determination revealed that most of the samples were dominated by the cyanobacterium Raphidiopsis raciborskii. In a polyphasic approach, seven isolated cyanobacterial strains were classified morphologically and phylogenetically as R. raciborskii, and Microcystis spp. and tested for microcystins (MCs), cylindrospermopsins (CYNs), saxitoxins and anatoxins by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–mass spectrometry (LC–MS). ELISA and LC–MS analyses confirmed CYNs in three of the five Raphidiopsis strains between 1.8 and 9.8 μg mg−1 fresh weight. Both Microcystis strains produced MCs, one strain 52 congeners and the other strain 20 congeners, including 22 previously unreported variants. Due to the presence of CYN- and MC-producing cyanobacteria, harmful effects on humans, domestic and wild animals cannot be excluded in Meiktila Lake.
Collapse
Affiliation(s)
- Andreas Ballot
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
- Correspondence:
| | - Thida Swe
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
- Forest Research Institute, 15013 Yezin, Myanmar
- Department of Natural Sciences and Environmental Health, University of South- Eastern Norway, Gullbringvegen 36, N-3800 Bø, Norway
| | - Marit Mjelde
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
| | - Leonardo Cerasino
- Department of Sustainable Agro-ecosystem and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
| | - Vladyslava Hostyeva
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
| | | |
Collapse
|
22
|
Götze S, Arp J, Lackner G, Zhang S, Kries H, Klapper M, García-Altares M, Willing K, Günther M, Stallforth P. Structure elucidation of the syringafactin lipopeptides provides insight in the evolution of nonribosomal peptide synthetases. Chem Sci 2019; 10:10979-10990. [PMID: 32953002 PMCID: PMC7472662 DOI: 10.1039/c9sc03633d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Modular biosynthetic machineries such as polyketide synthases (PKSs) or nonribosomal peptide synthetases (NRPSs) give rise to a vast structural diversity of bioactive metabolites indispensable in the treatment of cancer or infectious diseases. Here, we provide evidence for different evolutionary processes leading to the diversification of modular NRPSs and thus, their respective products. Discovery of a novel lipo-octapeptide family from Pseudomonas, the virginiafactins, and detailed structure elucidation of closely related peptides, the cichofactins and syringafactins, allowed retracing recombinational diversification of the respective NRPS genes. Bioinformatics analyses allowed us to spot an evolutionary snapshot of these processes, where recombination occurred both within the same and between different biosynthetic gene clusters. Our systems feature a recent diversification process, which may represent a typical paradigm to variations in modular biosynthetic machineries.
Collapse
Affiliation(s)
- Sebastian Götze
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Johannes Arp
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Gerald Lackner
- Independent Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Shuaibing Zhang
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Hajo Kries
- Independent Junior Research Group Biosynthetic Design of Natural Products , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Martin Klapper
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - María García-Altares
- Department Biomolecular Chemistry , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Karsten Willing
- Department Bio Pilot Plant , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Markus Günther
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Pierre Stallforth
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| |
Collapse
|
23
|
Berry D, Mace W, Grage K, Wesche F, Gore S, Schardl CL, Young CA, Dijkwel PP, Leuchtmann A, Bode HB, Scott B. Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proc Natl Acad Sci U S A 2019; 116:25614-25623. [PMID: 31801877 PMCID: PMC6926027 DOI: 10.1073/pnas.1913080116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) generate the core peptide scaffolds of many natural products. These include small cyclic dipeptides such as the insect feeding deterrent peramine, which is a pyrrolopyrazine (PPZ) produced by grass-endophytic Epichloë fungi. Biosynthesis of peramine is catalyzed by the 2-module NRPS, PpzA-1, which has a C-terminal reductase (R) domain that is required for reductive release and cyclization of the NRPS-tethered dipeptidyl-thioester intermediate. However, some PpzA variants lack this R domain due to insertion of a transposable element into the 3' end of ppzA We demonstrate here that these truncated PpzA variants utilize nonenzymatic cyclization of the dipeptidyl thioester to a 2,5-diketopiperazine (DKP) to synthesize a range of novel PPZ products. Truncation of the R domain is sufficient to subfunctionalize PpzA-1 into a dedicated DKP synthetase, exemplified by the truncated variant, PpzA-2, which has also evolved altered substrate specificity and reduced N-methyltransferase activity relative to PpzA-1. Further allelic diversity has been generated by recombination-mediated domain shuffling between ppzA-1 and ppzA-2, resulting in the ppzA-3 and ppzA-4 alleles, each of which encodes synthesis of a unique PPZ metabolite. This research establishes that efficient NRPS-catalyzed DKP biosynthesis can occur in vivo through nonenzymatic dipeptidyl cyclization and presents a remarkably clean example of NRPS evolution through recombinant exchange of functionally divergent domains. This work highlights that allelic variants of a single NRPS can result in a surprising level of secondary metabolite diversity comparable to that observed for some gene clusters.
Collapse
Affiliation(s)
- Daniel Berry
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Wade Mace
- Grasslands Research Centre, AgResearch Ltd., Palmerston North 4442, New Zealand
| | - Katrin Grage
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Frank Wesche
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sagar Gore
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | | | | | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Helge B Bode
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany;
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz (LOEWE) Centre for Translational Biodiversity Genomics, 60325 Frankfurt am Main, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand;
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
24
|
Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins (Basel) 2019; 11:E714. [PMID: 31817927 PMCID: PMC6950048 DOI: 10.3390/toxins11120714] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Zineb Labidi
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Amina Djabri
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Naila Yasmine Benayache
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro, B2N 5E3 Nova Scotia, Canada;
| |
Collapse
|
25
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
26
|
Jacinavicius FR, Pacheco ABF, Chow F, Verissimo da Costa GC, Kalume DE, Rigonato J, Schmidt EC, Sant'Anna CL. Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Yilmaz M, Foss AJ, Miles CO, Özen M, Demir N, Balcı M, Beach DG. Comprehensive multi-technique approach reveals the high diversity of microcystins in field collections and an associated isolate of Microcystis aeruginosa from a Turkish lake. Toxicon 2019; 167:87-100. [PMID: 31181296 DOI: 10.1016/j.toxicon.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Microcystins (MCs) are hepatotoxic and potentially carcinogenic cyanotoxins. They exhibit high structural variability, with nearly 250 variants described to date. This variability can result in incomplete detection of MC variants during lake surveys due to the frequent use of targeted analytical methods and a lack of standards available for identification and quantitation. In this study, Lake Uluabat in Turkey was sampled during the summer of 2015. Phylogenetic analysis of the environmental mcyA sequences suggested Microcystis spp. were the major MC contributors. A combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography with UV detection and mass spectrometry (LC-UV-MS), and a novel liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, together with thiol and periodate reactivity, revealed more than 36 MC variants in the lake samples and a strain of M. aeruginosa (AQUAMEB-24) isolated from Lake Uluabat. Only MCs containing arginine at position-4 were detected in the culture, while MC-LA, -LY, -LW and -LF were also detected in the lake samples, suggesting the presence of other MC producers in the lake. The previously unreported MCs MC-(H2)YR (dihydrotyrosine at position-2) (17), [epoxyAdda5]MC-LR, [DMAdda5]MC-RR (1) and [Mser7]MC-RR (8) were detected in the culture and/or field samples. This study is a good example of how commonly used targeted LC-MS methods can underestimate the diversity of MCs in freshwater lakes and cyanobacteria cultures and how untargeted LC-MS methods can be used to comprehensively assess MC diversity present in a new system.
Collapse
Affiliation(s)
- Mete Yilmaz
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey.
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| | - Mihriban Özen
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Bursa Uludağ University, Department of Biology, 16059, Bursa, Turkey.
| | - Nilsun Demir
- Ankara University, Department of Fisheries and Aquaculture Engineering, 06110, Ankara, Turkey.
| | - Muharrem Balcı
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Istanbul University, Department of Biology, 34134, İstanbul, Turkey.
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| |
Collapse
|
28
|
Shishido TK, Jokela J, Humisto A, Suurnäkki S, Wahlsten M, Alvarenga DO, Sivonen K, Fewer DP. The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Mar Drugs 2019; 17:md17050271. [PMID: 31067786 PMCID: PMC6562525 DOI: 10.3390/md17050271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023] Open
Abstract
Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic cyanobacterium Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity sequences, which could explain the activation of homo-amino acids which were present in 31% of the microcystins detected and included variants such as MC-LHty, MC-HphHty, MC-LHph and MC-HphHph. The mcy gene cluster did not encode enzymes for the synthesis of homo-amino acids but may instead activate homo-amino acids produced during the synthesis of anabaenopeptins. We observed the loss of microcystin during cultivation of a closely related strain, Phormidium sp. DVL1003c. This study increases the knowledge of benthic cyanobacterial strains that produce microcystin variants and broadens the structural diversity of known microcystins.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 5D, FI-0014 Helsinki, Finland.
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Anu Humisto
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Suvi Suurnäkki
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Danillo O Alvarenga
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| |
Collapse
|
29
|
Martins MD, Machado-de-Lima NM, Branco LHZ. Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). JOURNAL OF PHYCOLOGY 2019; 55:146-159. [PMID: 30362579 DOI: 10.1111/jpy.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
A new Phormidium-like genus was found during an investigation of Oscillatoriales diversity in Brazil. Eight aerophytic populations from south and southeastern regions were isolated in monospecific cultures and submitted to polyphasic evaluation. The populations presented homogeneous morphology with straight trichomes, not attenuated, and apical cell with thickened cell wall. Phylogenetic analyses based on 16S rRNA gene sequences showed that these populations, plus the Brazilian strain Phomidium sp. B-Tom from GenBank, formed a highly supported and distinctive clade, which corresponds to the new genus Pycnacronema, comprising six new species: P. brasiliensis (type species), P. arboriculum, P. conicum, P. marmoreum, P. rubrum, and P. savannensis. These results were confirmed and supported by rpoC1 and rbcL genes evaluated independently and by the concatenated analysis of 16S rRNA, rpoC1 and rbcL genes (for all species but P. savannensis). Secondary structures of the D1-D1', box-B, and V3 regions of the internal transcribed spacer were informative at specific level, being conserved in P. brasiliensis and variable among the other strains, also confirming the phylogenetic analyses. The generic name and specific epithets of the new taxa are proposed under the provisions of the International Code of Nomenclature of algae, fungi, and plants.
Collapse
Affiliation(s)
- Mariéllen Dornelles Martins
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| | - Náthali Maria Machado-de-Lima
- Microbiology Graduate Program (IBILCE/UNESP), Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| | - Luis Henrique Zanini Branco
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| |
Collapse
|
30
|
Cullen A, Pearson LA, Mazmouz R, Liu T, Soeriyadi AH, Ongley SE, Neilan BA. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Nat Prod Rep 2019; 36:1117-1136. [DOI: 10.1039/c8np00063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses cyanotoxin biosynthetic pathways and highlights the heterologous expression and biochemical studies used to characterise them.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Leanne A. Pearson
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Rabia Mazmouz
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Angela H. Soeriyadi
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Sarah E. Ongley
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| |
Collapse
|
31
|
Sant'Anna CL, Gama WA, Rigonato J, Correa G, Mesquita MC, Marinho MM. Phylogenetic connection among close genera of Aphanizomenonaceae (Cyanobacteria): Amphiheterocytum gen. nov., Cylindrospermopsis and Sphaerospermopsis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Caires TA, da Silva AM, Vasconcelos VM, Affe HM, de Souza Neta LC, Boness HV, Sant'Anna CL, Nunes JM. Biotechnological potential of Neolyngbya (Cyanobacteria), a new marine benthic filamentous genus from Brazil. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Panou M, Zervou SK, Kaloudis T, Hiskia A, Gkelis S. A Greek Cylindrospermopsis raciborskii strain: Missing link in tropic invader's phylogeography tale. HARMFUL ALGAE 2018; 80:96-106. [PMID: 30502817 DOI: 10.1016/j.hal.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii represents a challenge for researchers and it is extensively studied for its toxicity and invasive behaviour, which is presumably enhanced by global warming. Biogeography studies indicate a tropical origin for this species, with Greece considered as the expansion route of C. raciborskii in Europe. The widening of its geographic distribution and the isolation of strains showing high optimum growth temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. The dominance of species like C. raciborskii along with their ecotoxicology and potential human risk related problems, render the establishment of a clear phylogeography model essential. In the context of the present study, the characterization of Cylindrospermopsis raciborskii TAU-MAC 1414 strain, isolated from Lake Karla, with respect to its phylogeography and toxic potential, is attempted. Our research provides new insights on the origin of C. raciborskii in the Mediterranean region; C. raciborskii expanded in Mediterranean from North America, whilst the rest of the European strains may originate from Asia and Australia. Microcystin synthetase genes, phylogenetic closely related with Microcystis strains, were also present in C. raciborskii TAU-MAC 1414. We were unable to unambiguously confirm the presence of MC-LR, using LC-MS/MS. Our results are shedding light on the expansion and distribution of C. raciborskii, whilst they pose further questions on the toxic capacity of this species.
Collapse
Affiliation(s)
- Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Triantafyllos Kaloudis
- Water Quality Department, Athens Water Supply and Sewerage Company (EYDAP SA), 156 Oropou Str., 11146 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
34
|
de Alvarenga LV, Vaz MGMV, Genuário DB, Esteves-Ferreira AA, Almeida AVM, de Castro NV, Lizieri C, Souza JJLL, Schaefer CEGR, Nunes-Nesi A, Araújo WL. Extending the ecological distribution of Desmonostoc genus: proposal of Desmonostoc salinum sp. nov., a novel Cyanobacteria from a saline-alkaline lake. Int J Syst Evol Microbiol 2018; 68:2770-2782. [PMID: 29985124 DOI: 10.1099/ijsem.0.002878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria is an ancient phylum of oxygenic photosynthetic microorganisms found in almost all environments of Earth. In recent years, the taxonomic placement of some cyanobacterial strains, including those belonging to the genus Nostocsensu lato, have been reevaluated by means of a polyphasic approach. Thus, 16S rRNA gene phylogeny and 16S-23S internal transcribed spacer (ITS) secondary structures coupled with morphological, ecological and physiological data are considered powerful tools for a better taxonomic and systematics resolution, leading to the description of novel genera and species. Additionally, underexplored and harsh environments, such as saline-alkaline lakes, have received special attention given they can be a source of novel cyanobacterial taxa. Here, a filamentous heterocytous strain, Nostocaceae CCM-UFV059, isolated from Laguna Amarga, Chile, was characterized applying the polyphasic approach; its fatty acid profile and physiological responses to salt (NaCl) were also determined. Morphologically, this strain was related to morphotypes of the Nostocsensu lato group, being phylogenetically placed into the typical cluster of the genus Desmonostoc. CCM-UFV059 showed identity of the 16S rRNA gene as well as 16S-23S secondary structures that did not match those from known described species of the genus Desmonostoc, as well as distinct ecological and physiological traits. Taken together, these data allowed the description of the first strain of a member of the genus Desmonostoc from a saline-alkaline lake, named Desmonostoc salinum sp. nov., under the provisions of the International Code of Nomenclature for algae, fungi and plants. This finding extends the ecological coverage of the genus Desmonostoc, contributing to a better understanding of cyanobacterial diversity and systematics.
Collapse
Affiliation(s)
- Luna Viggiano de Alvarenga
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Diego Bonaldo Genuário
- 3Laboratório de Microbiologia Ambiental, EMBRAPA Meio Ambiente, 13820-000, Jaguariúna, São Paulo, Brazil
| | - Alberto A Esteves-Ferreira
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Allan V Martins Almeida
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Naira Valle de Castro
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Claudineia Lizieri
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,‡Present address: Instituto de Engenharia e Tecnologia, Centro Universitário de Belo Horizonte, UniBH, 30455-610, Belo Horizonte, Minas Gerais, Brazil
| | - José João L L Souza
- 4Departamento de Solos, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,5Departamento de Geografia, Universidade Federal do Rio Grande do Norte, 59300-000, Caicó, Rio Grande do Norte, Brazil
| | | | - Adriano Nunes-Nesi
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- 2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
35
|
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid. PLoS One 2017; 12:e0189684. [PMID: 29240815 PMCID: PMC5730197 DOI: 10.1371/journal.pone.0189684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Adenylation domains CcbC and LmbC control the specific incorporation of amino acid precursors in the biosynthesis of lincosamide antibiotics celesticetin and lincomycin. Both proteins originate from a common L-proline-specific ancestor, but LmbC was evolutionary adapted to use an unusual substrate, (2S,4R)-4-propyl-proline (PPL). Using site-directed mutagenesis of the LmbC substrate binding pocket and an ATP-[32P]PPi exchange assay, three residues, G308, A207 and L246, were identified as crucial for the PPL activation, presumably forming together a channel of a proper size, shape and hydrophobicity to accommodate the propyl side chain of PPL. Subsequently, we experimentally simulated the molecular evolution leading from L-proline-specific substrate binding pocket to the PPL-specific LmbC. The mere change of three amino acid residues in originally strictly L-proline-specific CcbC switched its substrate specificity to prefer PPL and even synthetic alkyl-L-proline derivatives with prolonged side chain. This is the first time that such a comparative study provided an evidence of the evolutionary relevant adaptation of the adenylation domain substrate binding pocket to a new sterically different substrate by a few point mutations. The herein experimentally simulated rearrangement of the substrate binding pocket seems to be the general principle of the de novo genesis of adenylation domains' unusual substrate specificities. However, to keep the overall natural catalytic efficiency of the enzyme, a more comprehensive rearrangement of the whole protein would probably be employed within natural evolution process.
Collapse
|
36
|
Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon 2017; 141:43-50. [PMID: 29154789 DOI: 10.1016/j.toxicon.2017.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 01/13/2023]
Abstract
Microcystins (MCs) are serine/threonine phosphatase inhibitors synthesized by several members of the phylum Cyanobacteria. Mining the draft genome sequence of the nostocalean MC-producing Fischerella sp. strain CENA161 led to the identification of three contigs containing mcy genes. Subsequent PCR and Sanger sequencing allowed the assembling of its complete biosynthetic mcy gene cluster with 55,016 bases in length. The cluster encoding ten genes (mcyA-J) with a central bidirectional promoter was organized in a similar manner as found in other genera of nostocalean cyanobacteria. However, the nucleotide sequence of the mcy gene cluster of Fischerella sp. CENA161 showed significant differences from all the other MC-producing cyanobacterial genera, sharing only 85.2 to 74.1% identities. Potential MC variants produced by Fischerella sp. CENA161 were predicted by the analysis of the adenylation domain binding pockets and further investigated by LC-MS/MS analysis. To our knowledge, this study presents the first complete mcy cluster characterization from a strain of the genus Fischerella, providing new insight into the distribution and evolution of MCs in the phylum Cyanobacteria.
Collapse
|
37
|
Meyer S, Kehr JC, Mainz A, Dehm D, Petras D, Süssmuth RD, Dittmann E. Biochemical Dissection of the Natural Diversification of Microcystin Provides Lessons for Synthetic Biology of NRPS. Cell Chem Biol 2017; 23:462-71. [PMID: 27105282 DOI: 10.1016/j.chembiol.2016.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022]
Abstract
The cyanobacterial hepatotoxin microcystin is assembled at a non-ribosomal peptide synthetase (NRPS) complex. The enormous structural diversity of this peptide, which is also found in closely related strains, is the result of frequent recombination events and point mutations. Here, we have compared the in vitro activation profiles of related monospecific and multispecific modules that either strictly incorporate leucine or arginine or incorporate chemically diverse amino acids in parallel into microcystin. By analyzing di- and tri-domain proteins we have dissected the role of adenylation and condensation domains for substrate specificity. We have further analyzed the role of subdomains and provide evidence for an extended gatekeeping function for the condensation domains of multispecific modules. By reproducing natural point mutations, we could convert a monospecific module into a multispecific module. Our findings may inspire novel synthetic biology approaches and demonstrate how recombination platforms of NRPSs have developed in nature.
Collapse
Affiliation(s)
- Sabine Meyer
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Jan-Christoph Kehr
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Dehm
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
38
|
Otten TG, Paerl HW, Dreher TW, Kimmerer WJ, Parker AE. The molecular ecology of
Microcystis
sp. blooms in the San Francisco Estuary. Environ Microbiol 2017; 19:3619-3637. [DOI: 10.1111/1462-2920.13860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Timothy G. Otten
- Department of MicrobiologyOregon State University226 Nash Hall, Corvallis OR97331 USA
- Institute of Marine SciencesUniversity of North Carolina at Chapel Hill3431 Arendell St, Morehead City NC28557 USA
| | - Hans W. Paerl
- Institute of Marine SciencesUniversity of North Carolina at Chapel Hill3431 Arendell St, Morehead City NC28557 USA
| | - Theo W. Dreher
- Department of MicrobiologyOregon State University226 Nash Hall, Corvallis OR97331 USA
| | - Wim J. Kimmerer
- Romburg Tiburon CenterSan Francisco State University3150 Paradise Dr, Tiburon CA94920 USA
| | - Alexander E. Parker
- Romburg Tiburon CenterSan Francisco State University3150 Paradise Dr, Tiburon CA94920 USA
- California State University Maritime Academy200 Maritime Academy Drive, Vallejo CA94590 USA
| |
Collapse
|
39
|
Akter S, Vehniäinen M, Spoof L, Nybom S, Meriluoto J, Lamminmäki U. Broad-Spectrum Noncompetitive Immunocomplex Immunoassay for Cyanobacterial Peptide Hepatotoxins (Microcystins and Nodularins). Anal Chem 2016; 88:10080-10087. [DOI: 10.1021/acs.analchem.6b02470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sultana Akter
- Molecular
Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Markus Vehniäinen
- Molecular
Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| | - Lisa Spoof
- Biochemistry,
Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Sonja Nybom
- Biochemistry,
Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Jussi Meriluoto
- Biochemistry,
Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Urpo Lamminmäki
- Molecular
Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
40
|
Bouhaddada R, Nélieu S, Nasri H, Delarue G, Bouaïcha N. High diversity of microcystins in a Microcystis bloom from an Algerian lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:836-844. [PMID: 27394081 DOI: 10.1016/j.envpol.2016.06.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Microcystins (MCs) are cyanobacterial heptapeptides, produced by several genera and species of cyanobacteria, which have been involved in poisoning of animals throughout the world and have also been implicated in human health problems. They are regarded as the most frequently occurring and widespread of the cyanotoxins, with more than 100 MC variants reported to date including the present study. The lake des Oiseaux is a shallow permanent freshwater lake located in north-eastern Algeria. It is an important natural reserve playing a major role for the migratory birds after the crossing of the Mediterranean Sea and from the Sahara desert. In recent years, possibly related to increased eutrophication of the lake, massive blooms of cyanobacteria identified as Microcystis spp. have been observed. A bloom sample collected in September 2013 was analyzed by the serine/threonine phosphatase PP2A inhibition assay and liquid chromatography-mass spectrometry to determine respectively, the total concentration of MCs and the different variants of these toxins present. The results revealed that the Microcystis spp. bloom sample contained microcystins of which 21 putatively congeners were detected. Among these, 12 known microcystins (MC-RR, MC-LR, MC-FR, MC-WR, MC-YR, MC-LA, MC-(H4)YR, MC-HilR, [Asp(3)]MC-RAba, and [Glu(OCH3)(6)]MC-LR) and two new congeners ([Asp(3)]MC-HarAba and [Glu(OCH3)(6)]MC-FR) were characterized, considering their molecular mass and the fragment ions produced by collision-induced dissociation of the [M+H](+) ions. MC-RR was the major (43.4%) in the bloom sample.
Collapse
Affiliation(s)
- Ratiba Bouhaddada
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d'El Taref, Algeria
| | - Sylvie Nélieu
- UMR 1402 ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Hichem Nasri
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d'El Taref, Algeria
| | - Ghislaine Delarue
- UMR 1402 ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
41
|
Pacheco ABF, Guedes IA, Azevedo SMFO. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins (Basel) 2016; 8:toxins8060172. [PMID: 27338471 PMCID: PMC4926139 DOI: 10.3390/toxins8060172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk.
Collapse
Affiliation(s)
- Ana Beatriz F Pacheco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Iame A Guedes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| |
Collapse
|
42
|
Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol 2016; 23:642-652. [PMID: 26433696 DOI: 10.1016/j.tim.2015.07.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.
Collapse
Affiliation(s)
- Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
43
|
Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. HARMFUL ALGAE 2016; 54:69-86. [PMID: 27307781 PMCID: PMC4892429 DOI: 10.1016/j.hal.2016.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/22/2023]
Abstract
Bloom-forming cyanobacteria Planktothrix agardhii and P. rubescens are regularly involved in the occurrence of cyanotoxin in lakes and reservoirs. Besides microcystins (MCs), which inhibit eukaryotic protein phosphatase 1 and 2A, several families of bioactive peptides are produced, thereby resulting in impressive secondary metabolite structural diversity. This review will focus on the current knowledge of the phylogeny, morphology, and ecophysiological adaptations of Planktothrix as well as the toxins and bioactive peptides produced. The relatively well studied ecophysiological adaptations (buoyancy, shade tolerance, nutrient storage capacity) can partly explain the invasiveness of this group of cyanobacteria that bloom within short periods (weeks to months). The more recent elucidation of the genetic basis of toxin and bioactive peptide synthesis paved the way for investigating its regulation both in the laboratory using cell cultures as well as under field conditions. The high frequency of several toxin and bioactive peptide synthesis genes observed within P. agardhii and P. rubescens, but not for other Planktothrix species (e.g. P. pseudagardhii), suggests a potential functional linkage between bioactive peptide production and the colonization potential and possible dominance in habitats. It is hypothesized that, through toxin and bioactive peptide production, Planktothrix act as a niche constructor at the ecosystem scale, possibly resulting in an even higher ability to monopolize resources, positive feedback loops, and resilience under stable environmental conditions. Thus, refocusing harmful algal bloom management by integrating ecological and phylogenetic factors acting on toxin and bioactive peptide synthesis gene distribution and concentrations could increase the predictability of the risks originating from Planktothrix blooms.
Collapse
Affiliation(s)
- Rainer Kurmayer
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria.
| | - Li Deng
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Elisabeth Entfellner
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
44
|
D'Agostino PM, Woodhouse JN, Makower AK, Yeung ACY, Ongley SE, Micallef ML, Moffitt MC, Neilan BA. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:3-13. [PMID: 26663762 DOI: 10.1111/1758-2229.12366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Jason N Woodhouse
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - A Katharina Makower
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
| | - Anna C Y Yeung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Melinda L Micallef
- School of Science and Health, University of Western Sydney, Sydney, NSW, 2571, Australia
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Sydney, NSW, 2571, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| |
Collapse
|
45
|
Wang H, Sivonen K, Fewer DP. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Curr Opin Genet Dev 2015; 35:79-85. [PMID: 26605685 DOI: 10.1016/j.gde.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022]
Abstract
Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes.
Collapse
Affiliation(s)
- Hao Wang
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
46
|
Foss AJ, Aubel MT. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS). Toxicon 2015. [DOI: 10.1016/j.toxicon.2015.07.332] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Li G, Yan W, Dang Y, Li J, Liu C, Wang J. The role of calcineurin signaling in microcystin-LR triggered neuronal toxicity. Sci Rep 2015; 5:11271. [PMID: 26059982 PMCID: PMC4462030 DOI: 10.1038/srep11271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing neurotoxicity, but the exact mechanisms of action still remain unclear. Using proteomic analysis, forty-five proteins were identified to be significantly altered in hippocampal neurons of rats treated with MCLR. Among them, Ca(2+)-activated phosphatase calcineurin (CaN) and the nuclear factor of activated T-cells isoform c3 (NFATc3) were up-regulated remarkably. Validation of the changes in CaN and NFATc3 expression by Western blotting demonstrated CaN cleavage and subsequent NFATc3 nuclear translocation were generated, suggesting that exposure to MCLR leads to activation of CaN, which in turn activates NFATc3. Activation of CaN signaling has been reported to result in apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. In agreement with this, our results revealed that treatment of neurons with the CaN inhibitor FK506 blocked the reduction in Bad dephosphorylation and cytochrome c (cyt c) release triggered by MCLR. Consistent with these biochemical results, we observed a marked decrease in apoptotic and necrotic cell death after MCLR exposure in the presence of FK506, supporting the hypothesis that MCLR appeared to cause neuronal toxicity by activation of CaN and the CaN-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs 2014; 12:5372-95. [PMID: 25402827 PMCID: PMC4245536 DOI: 10.3390/md12115372] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023] Open
Abstract
Microcystins (MCs) are cyclic peptides produced by cyanobacteria, which can be harmful to humans and animals when ingested. Differences in the coding of the non‑ribosomal peptide synthetase/polyketide synthase enzyme complex responsible for microcystin production have resulted in more than 100 microcystin variants being reported to date. The microcystin diversity of Microcystis CAWBG11 was investigated using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-mass spectrometry. This revealed that CAWBG11 simultaneously produced 21 known microcystins and six new congeners: [Asp3] MC-RA, [Asp3] MC-RAba, [Asp3] MC-FA, [Asp3] MC-WA, MC-FAba and MC-FL. The new congeners were putatively characterized by tandem mass spectrometry and chemical derivatization. A survey of the microcystin congeners produced by 49 cyanobacterial strains documented in scientific literature showed that cyanobacteria generally produce four microcystin congeners, but strains which produce up to 47 microcystin congeners have been reported. Microcystis CAWBG11 (which produces at least 27 congeners) was positioned in the top ten percentile of the strains surveyed, and showed fluidity of the amino acids incorporated into both position two and position four.
Collapse
|
49
|
Liu L, Jokela J, Wahlsten M, Nowruzi B, Permi P, Zhang YZ, Xhaard H, Fewer DP, Sivonen K. Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium Nostoc sp. Strain FSN. JOURNAL OF NATURAL PRODUCTS 2014; 77:1784-1790. [PMID: 25069058 DOI: 10.1021/np500106w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new trypsin inhibitors, nostosin A (1) and B (2), were isolated from a hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the Golestan Province of Iran. Nostosins A (1) and B (2) are composed of three subunits, 2-hydroxy-4-(4-hydroxyphenyl)butanoic acid (Hhpba), L-Ile, and L-argininal (1) or argininol (2). Nostosins A (1) and B (2) exhibited IC50 values of 0.35 and 55 μM against porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial role in the efficient inhibition of trypsin. Molecular docking of nostosin A (1) (449 Da), leupeptin (426 Da, IC50 0.5 μM), and spumigin E (610 Da, IC50 < 0.1 μM) with trypsin suggested prominent binding similarity between nostosin A (1) and leupeptin but only partial binding similarity with spumigin E. The number of hydrogen bonds between ligands and trypsin increased according to the length and size of the ligand molecule, and the docking affinity values followed the measured IC50 values. Nostosin A (1) is the first highly potent three-subunit trypsin inhibitor with potency comparable to the known commercial trypsin inhibitor leupeptin. These findings expand the known diversity of short-chain linear peptide protease inhibitors produced by cyanobacteria.
Collapse
Affiliation(s)
- Liwei Liu
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Jouni Jokela
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Matti Wahlsten
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Bahareh Nowruzi
- Department of Biology, Faculty of Science, Tarbiat Moallem University , 49 Dr. Mofatteh Avenue, P.O. Box 158153587, 15614, Tehran, Iran
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , P.O. Box 65, 00014, Helsinki, Finland
| | - Yue Zhou Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
50
|
The genetic basis for O-acetylation of the microcystin toxin in cyanobacteria. ACTA ACUST UNITED AC 2014; 20:861-9. [PMID: 23890004 DOI: 10.1016/j.chembiol.2013.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/21/2023]
Abstract
Microcystins are a family of cyclic peptide toxins produced by cyanobacteria. They are responsible for the toxicosis and death of wild and domestic animals throughout the world. They display extensive variation in amino acid composition and functional group chemistry. O-acetylated microcystins are frequently produced by free-living and symbiotic strains of the genus Nostoc. Here, we show that the production of acetylated microcystins is catalyzed by an acetyl-coenzyme A-dependent O-acetyltransferase (McyL) encoded in the 57 kb microcystin synthetase gene cluster of Nostoc sp. 152. Phylogenetic analysis demonstrates that McyL belongs to a family of enzymes that inactivate antibiotics through O-acetylation. The McyL enzyme has a relaxed substrate specificity, allowing the preparation of semisynthetic microcystins. This study sheds light on the evolutionary origins and genetic diversity of an important class of enzymes involved in antibiotic resistance.
Collapse
|