1
|
Rinkevich B, Goulet TL. Micro-to multi-chimerism: the multiple facets of a singular phenomenon. Semin Immunopathol 2025; 47:17. [PMID: 39966117 DOI: 10.1007/s00281-025-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Natural chimeras are prevalent in nature (> 10 phyla of protists, plants, invertebrates, and vertebrates), disrupting the conventional believe that genetically homogeneous entities are selected to prevent conflicts within an organism. Chimerism emerges as a significant ecological/evolutionary mechanism, shaping the life history characteristics of metazoans, and it develops in various forms, one of which is called 'microchimerism'. Furthermore, chimerism is a pivotal phenomenon, presenting complex biological and ecological expressions akin to a "double-edged sword", bypassing both innate and adaptive immune responses. Considering the proportionate contribution of chimeric partners and their spatial arrangements within chimeras, unveils six somatic states of chimerism (purged-chimerism, sectorial-chimerism, mosaic-chimerism, mixed-chimerism, microchimerism and multi-chimerism) and three states of germline chimerism (mixed-chimerism, male/female chimerism and parasitic germline chimerism). These diverse chimeric states are categorized into two distinct series of continua, namely 'somatic cell chimerism' and 'germline chimerism' scenarios where dynamic chimeric states transit into other states, and vice versa, within a specific continuum that relies on the concept of an endless 'Escherian stairwell' of chimerism states. Also, the same chimera may portray simultaneously, different chimeric states in various parts/organs. We further reviewed the evolutionary perspectives for chimerism, raising five commonly shared features of chimerism (multichimerism, ontogenic windows, reproductive chimerism, transmissible chimerism, germline hitchhiking) and 'costs' and 'benefits' accrued to chimerism, shared between invertebrates and vertebrates, including humans. We contest that 'microchimerism' lacks any quantitative definition, represents just a single facet in the multi-facet panorama of chimeric phenomena that demonstrate transitions over time into other states. All of the above carry evolutionary and clinical implications.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 2336, Tel Shikmona, Haifa, 3102201, Israel.
| | - Tamar L Goulet
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677‑1848, USA
| |
Collapse
|
2
|
Canessa M, Trainito E, Bavestrello G, Petović S, Đorđević N, Mačić V. A large non-parasitic population of Savalia savaglia (Bertoloni, 1819) in the Boka Kotorska Bay (Montenegro). Sci Rep 2024; 14:7785. [PMID: 38565615 PMCID: PMC10987562 DOI: 10.1038/s41598-024-58101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
The golden coral Savalia savaglia is a long-living ecosystem engineer of Mediterranean circalittoral assemblages, able to induce necrosis of gorgonians' and black corals' coenenchyme and grow on their cleaned organic skeleton. Despite its rarity, in Boka Kotorska Bay (Montenegro) a shallow population of more than 1000 colonies was recorded close to underwater freshwater springs, which create very peculiar environmental conditions. In this context, the species was extremely abundant at two sites, while gorgonians were rare. The abundance and size of S. savaglia colonies and the diversity of the entire benthic assemblage were investigated by photographic sampling in a depth range of 0-35 m. Several living fragments of S. savaglia spread on the sea floor and small settled colonies (< 5 cm high) suggested a high incidence of asexual reproduction and a non-parasitic behaviour of this population. This was confirmed by studying thin sections of the basal portion of the trunk where the central core, generally represented by the remains of the gorgonian host skeleton, was lacking. The S. savaglia population of Boka Kotorska Bay forms the unique Mediterranean assemblage of the species deserving the definition of animal forest. Recently, temporary mitigation measures for anthropogenic impact were issued by the Government of Montenegro. Nevertheless, due to the importance of the sites the establishment of a permanent Marine Protected Area is strongly recommended.
Collapse
Affiliation(s)
- Martina Canessa
- Dipartimento Di Scienze Della Terra Dell'Ambiente E Della Vita (DISTAV), Università Di Genova, Corso Europa, 26 -16132, Genova, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Egidio Trainito
- Genoa Marine Centre-Stazione Zoologica Anton Dohrn, Ecologia E Biotecnologie Marine, Istituto Nazionale di Biologia, Villa del Principe, Piazza del Principe, 4 - 16126, Genova, Italy
| | - Giorgio Bavestrello
- Dipartimento Di Scienze Della Terra Dell'Ambiente E Della Vita (DISTAV), Università Di Genova, Corso Europa, 26 -16132, Genova, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Consorzio Nazionale Interuniversitario Per Le Scienze del Mare, Piazzale Flaminio 9, 00196, Roma, Italy
| | - Slavica Petović
- Institute of Marine Biology, University of Montenegro, Put I Bokeljske Brigade 68, 85330, Kotor, Montenegro
| | - Nikola Đorđević
- Institute of Marine Biology, University of Montenegro, Put I Bokeljske Brigade 68, 85330, Kotor, Montenegro
| | - Vesna Mačić
- Institute of Marine Biology, University of Montenegro, Put I Bokeljske Brigade 68, 85330, Kotor, Montenegro
| |
Collapse
|
3
|
Oury N, Magalon H. Investigating the potential roles of intra-colonial genetic variability in Pocillopora corals using genomics. Sci Rep 2024; 14:6437. [PMID: 38499737 PMCID: PMC10948807 DOI: 10.1038/s41598-024-57136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Intra-colonial genetic variability (IGV), the presence of more than one genotype in a single colony, has been increasingly studied in scleractinians, revealing its high prevalence. Several studies hypothesised that IGV brings benefits, but few have investigated its roles from a genetic perspective. Here, using genomic data (SNPs), we investigated these potential benefits in populations of the coral Pocillopora acuta from Reunion Island (southwestern Indian Ocean). As the detection of IGV depends on sequencing and bioinformatics errors, we first explored the impact of the bioinformatics pipeline on its detection. Then, SNPs and genes variable within colonies were characterised. While most of the tested bioinformatics parameters did not significantly impact the detection of IGV, filtering on genotype depth of coverage strongly improved its detection by reducing genotyping errors. Mosaicism and chimerism, the two processes leading to IGV (the first through somatic mutations, the second through fusion of distinct organisms), were found in 7% and 12% of the colonies, respectively. Both processes led to several intra-colonial allelic differences, but most were non-coding or silent. However, 7% of the differences were non-silent and found in genes involved in a high diversity of biological processes, some of which were directly linked to responses to environmental stresses. IGV, therefore, appears as a source of genetic diversity and genetic plasticity, increasing the adaptive potential of colonies. Such benefits undoubtedly play an important role in the maintenance and the evolution of scleractinian populations and appear crucial for the future of coral reefs in the context of ongoing global changes.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France.
- Laboratoire Cogitamus, Paris, France.
- KAUST Red Sea Research Center and Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France
- Laboratoire Cogitamus, Paris, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
4
|
Vasquez Kuntz KL, Kitchen SA, Conn TL, Vohsen SA, Chan AN, Vermeij MJA, Page C, Marhaver KL, Baums IB. Inheritance of somatic mutations by animal offspring. SCIENCE ADVANCES 2022; 8:eabn0707. [PMID: 36044584 PMCID: PMC9432832 DOI: 10.1126/sciadv.abn0707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/15/2022] [Indexed: 06/08/2023]
Abstract
Since 1892, it has been widely assumed that somatic mutations are evolutionarily irrelevant in animals because they cannot be inherited by offspring. However, some nonbilaterians segregate the soma and germline late in development or never, leaving the evolutionary fate of their somatic mutations unknown. By investigating uni- and biparental reproduction in the coral Acropora palmata (Cnidaria, Anthozoa), we found that uniparental, meiotic offspring harbored 50% of the 268 somatic mutations present in their parent. Thus, somatic mutations accumulated in adult coral animals, entered the germline, and were passed on to swimming larvae that grew into healthy juvenile corals. In this way, somatic mutations can increase allelic diversity and facilitate adaptation across habitats and generations in animals.
Collapse
Affiliation(s)
| | - Sheila A. Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Trinity L. Conn
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Samuel A. Vohsen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Andrea N. Chan
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J. A. Vermeij
- CARMABI Foundation, Willemstad, Curaçao
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Christopher Page
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Manoa, Honolulu, HI, USA
| | | | - Iliana B. Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Vidal-Dupiol J, Harscouet E, Shefy D, Toulza E, Rey O, Allienne JF, Mitta G, Rinkevich B. Frontloading of stress response genes enhances robustness to environmental change in chimeric corals. BMC Biol 2022; 20:167. [PMID: 35879753 PMCID: PMC9316358 DOI: 10.1186/s12915-022-01371-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Chimeras are genetically mixed entities resulting from the fusion of two or more conspecifics. This phenomenon is widely distributed in nature and documented in a variety of animal and plant phyla. In corals, chimerism initiates at early ontogenic states (larvae to young spat) and results from the fusion between two or more closely settled conspecifics. When compared to genetically homogenous colonies (non-chimeras), the literature has listed ecological and evolutionary benefits for traits at the chimeric state, further positioning coral chimerism as an evolutionary rescue instrument. However, the molecular mechanisms underlying this suggestion remain unknown. Results To address this question, we developed field monitoring and multi-omics approaches to compare the responses of chimeric and non-chimeric colonies acclimated for 1 year at 10-m depth or exposed to a stressful environmental change (translocation from 10- to 2-m depth for 48h). We showed that chimerism in the stony coral Stylophora pistillata is associated with higher survival over a 1-year period. Transcriptomic analyses showed that chimeras lose transcriptomic plasticity and constitutively express at higher level (frontload) genes responsive to stress. This frontloading may prepare the colony to face at any time environmental stresses which explain its higher robustness. Conclusions These results show that chimeras are environmentally robust entities with an enhanced ability to cope with environmental stress. Results further document the potential usefulness of chimeras as a novel reef restoration tool to enhance coral adaptability to environmental change, and confirm that coral chimerism can be an evolutionary rescue instrument. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01371-7.
Collapse
Affiliation(s)
- Jeremie Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France.
| | - Erwan Harscouet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dor Shefy
- Department of Life Sciences, Ben-Gurion University, Eilat Campus, 84105, Be'er Sheva, Israel.,Israel Oceanography & Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 9753, 3109701, Haifa, Israel.,The Interuniversity Institute of Eilat, P.O.B 469, 88103, Eilat, Israel
| | - Eve Toulza
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | | | - Guillaume Mitta
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,Univ Polynesie Francaise, ILM, IRD, Ifremer, Tahiti, F-98719, French Polynesia, France
| | - Baruch Rinkevich
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 9753, 3109701, Haifa, Israel
| |
Collapse
|
6
|
Shefy D, Guerrini G, Marom N, Shashar N, Rinkevich B. Settling in aggregation: Spatial planning consideration for brooding coral transplants. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105612. [PMID: 35338950 DOI: 10.1016/j.marenvres.2022.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Aggregated larval co-settlement has been documented in myriad marine invertebrate taxa, shaping adult population structures. Still, kinship settlement patterns in brooding corals have not been studied in detail, especially under scenarios of enhanced larval assemblies. Employing two sets of ex-situ experiments, planulae staining for kinship resolution and a computer random settlement simulation, we show that larval settlement of the coral Stylophora pistillata, a brooding species in the Gulf of Aqaba/Eilat, is mostly affected by the number of larval donors, and that larvae tend to aggregate (up to 50% tissue-contacts; distances <3 mm), compared to 3% predicted in a computer simulation, all without a kinship-bias. Field surveys on juvenile colonies revealed a similar clustering pattern. Although aggregated settlement inevitably carries disadvantages such as intraspecific competition, it may be bracketed in adult colonies with benefits such as enhanced fertilization and chimerism-related ecological advantages, including augmented colony size and survivorship. These improved life-history traits of brooding coral species that aggregate could be harnessed as applied ecological engineering tools in reef restoration acts.
Collapse
Affiliation(s)
- Dor Shefy
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev-Eilat Campus, Beer-Sheva, 84105, Israel; Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 3109701, Israel; The Interuniversity Institute for Marine Science, Eilat, 88000, Israel.
| | - Gabrielle Guerrini
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev-Eilat Campus, Beer-Sheva, 84105, Israel; Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 3109701, Israel
| | - Nir Marom
- The Interuniversity Institute for Marine Science, Eilat, 88000, Israel; Civil and Environmental Engineering, Technion, Haifa, 3200003, Israel
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev-Eilat Campus, Beer-Sheva, 84105, Israel
| | - Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 3109701, Israel.
| |
Collapse
|
7
|
Guerrini G, Shefy D, Douek J, Shashar N, Goulet TL, Rinkevich B. Spatial distribution of conspecific genotypes within chimeras of the branching coral Stylophora pistillata. Sci Rep 2021; 11:22554. [PMID: 34799589 PMCID: PMC8604976 DOI: 10.1038/s41598-021-00981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Chimerism is a coalescence of conspecific genotypes. Although common in nature, fundamental knowledge, such as the spatial distribution of the genotypes within chimeras, is lacking. Hence, we investigated the spatial distribution of conspecific genotypes within the brooding coral Stylophora pistillata, a common species throughout the Indo-Pacific and Red Sea. From eight gravid colonies, we collected planula larvae that settled in aggregates, forming 2–3 partner chimeras. Coral chimeras grew in situ for up to 25 months. Nine chimeras (8 kin, 1 non-related genotypes) were sectioned into 7–17 fragments (6–26 polyps/fragment), and genotyped using eight microsatellite loci. The discrimination power of each microsatellite-locus was evaluated with 330 ‘artificial chimeras,’ made by mixing DNA from three different S. pistillata genotypes in pairwise combinations. In 68% of ‘artificial chimeras,’ the second genotype was detected if it constituted 5–30% of the chimera. Analyses of S. pistillata chimeras revealed that: (a) chimerism is a long-term state; (b) conspecifics were intermixed (not separate from one another); (c) disproportionate distribution of the conspecifics occurred; (d) cryptic chimerism (chimerism not detected via a given microsatellite) existed, alluding to the underestimation of chimerism in nature. Mixed chimerism may affect ecological/physiological outcomes for a chimera, especially in clonal organisms, and challenges the concept of individuality, affecting our understanding of the unit of selection.
Collapse
Affiliation(s)
- Gabriele Guerrini
- Israel Oceanography and Limnological Research, National Institute, of Oceanography, Tel-Shikmona, P.O. Box 9753, 3109701, Haifa, Israel.,Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Eilat, Israel
| | - Dor Shefy
- Israel Oceanography and Limnological Research, National Institute, of Oceanography, Tel-Shikmona, P.O. Box 9753, 3109701, Haifa, Israel.,Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Eilat, Israel.,The Interuniversity Institute for Marine Science, 88000, Eilat, Israel
| | - Jacob Douek
- Israel Oceanography and Limnological Research, National Institute, of Oceanography, Tel-Shikmona, P.O. Box 9753, 3109701, Haifa, Israel
| | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Eilat, Israel
| | - Tamar L Goulet
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677-1848, USA.
| | - Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute, of Oceanography, Tel-Shikmona, P.O. Box 9753, 3109701, Haifa, Israel
| |
Collapse
|
8
|
Scucchia F, Malik A, Putnam HM, Mass T. Genetic and physiological traits conferring tolerance to ocean acidification in mesophotic corals. GLOBAL CHANGE BIOLOGY 2021; 27:5276-5294. [PMID: 34310005 DOI: 10.1111/gcb.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The integrity of coral reefs worldwide is jeopardized by ocean acidification (OA). Most studies conducted so far have focused on the vulnerability to OA of corals inhabiting shallow reefs while nothing is currently known about the response of mesophotic scleractinian corals. In this study, we assessed the susceptibility to OA of corals, together with their algal partners, inhabiting a wide depth range. We exposed fragments of the depth generalist coral Stylophora pistillata collected from either 5 or 45 m to simulated future OA conditions, and assessed key molecular, physiological and photosynthetic processes influenced by the lowered pH. Our comparative analysis reveals that mesophotic and shallow S. pistillata corals are genetically distinct and possess different symbiont types. Under the exposure to acidification conditions, we observed a 50% drop of metabolic rate in shallow corals, whereas mesophotic corals were able to maintain unaltered metabolic rates. Overall, our gene expression and physiological analyses show that mesophotic corals possess a greater capacity to cope with the effects of OA compared to their shallow counterparts. Such capability stems from physiological characteristics (i.e., biomass and lipids energetics), a greater capacity to regulate cellular acid-base parameters, and a higher baseline expression of cell adhesion and extracellular matrix genes. Moreover, our gene expression analysis suggests that the enhanced symbiont photochemical efficiency under high pCO2 levels could prevent acidosis of the host cells and it could support a greater translocation of photosynthates, increasing the energy pool available to the host. With this work, we provide new insights on the response to OA of corals living at mesophotic depths. Our investigation discloses key genetic and physiological traits underlying the potential for corals to cope with future OA conditions.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney school of Marine Sciences, University of Haifa, Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Assaf Malik
- Department of Marine Biology, Leon H. Charney school of Marine Sciences, University of Haifa, Haifa, Israel
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney school of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
9
|
Rinkevich B. Augmenting coral adaptation to climate change via coral gardening (the nursery phase). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112727. [PMID: 33957417 DOI: 10.1016/j.jenvman.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Unceasing climate change and anthropogenic impacts on coral reefs worldwide lead the needs for augmenting adaptive potential of corals. Currently, the most successful approach for restoring degraded reefs is 'coral gardening', where corals are farmed in underwater nurseries, then outplanted to damaged reefs. Dealing with enhanced coral adaptation, the 'coral gardening' approach is conceptually structured here within a hierarchical list of five encircling tiers that include all restoration activities, focusing on the nursery phase. Each tier encompasses all the activities performed in the levels below it hierarchically. The first is the 'coral mariculture' tier, followed by the 'ecological engineering' tier. The third is the adaptation-based reef restoration (ABRR) tier, preceding the fourth ('ecosystem seascape') and the fifth ('ecosystem services') tiers. The ABRR tier is further conceptualized and its constituent five classes (phenotypic plasticity, assisted migration, epigenetics, coral chimerism, holobiont modification) are detailed. It is concluded that the nursery phase of the 'gardening' tenet may further serve as a platform to enhance the adaptation capacities of corals to climate change through the five ABBR classes. Employing the 'gardening' tiers in reef restoration without considering ABRR will scarcely be able to meet global targets for healthy reef ecosystems in the future.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 9753, Haifa, 3109701, Israel.
| |
Collapse
|
10
|
Schweinsberg M, Gösser F, Tollrian R. The history, biological relevance, and potential applications for polyp bailout in corals. Ecol Evol 2021; 11:8424-8440. [PMID: 34257908 PMCID: PMC8258201 DOI: 10.1002/ece3.7740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Corals have evolved a variety of stress responses to changing conditions, many of which have been the subject of scientific research. However, polyp bailout has not received widespread scientific attention, despite being described more than 80 years ago. Polyp bailout is a drastic response to acute stress in which coral colonies break down, with individual and patches of polyps detaching from the colony and the calcareous skeleton Polyps retain their symbiotic partners, have dispersal ability, and may undergo secondary settlement and calcification. Polyp bailout has been described worldwide in a variety of anthozoan species, especially in Scleractinia. It can be induced by multiple natural stressors, but also artificially. Little is known about the evolutionary and ecological potential and consequences of breaking down modularity, the dispersal ability, and reattachment of polyps resulting from polyp bailout. It has been shown that polyp bailout can be used as a model system, with promise for implementation in various research topics. To date, there has been no compilation of knowledge on polyp bailout, which prompted us to review this interesting stress response and provide a basis to discuss research topics and priorities for the future.
Collapse
Affiliation(s)
| | - Fabian Gösser
- Department of Animal Ecology, Evolution and BiodiversityUniversity of BochumBochumGermany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and BiodiversityUniversity of BochumBochumGermany
| |
Collapse
|
11
|
Guerrini G, Shefy D, Shashar N, Shafir S, Rinkevich B. Morphometric and allometric rules of polyp's landscape in regular and chimeric coral colonies of the branching species Stylophora pistillata. Dev Dyn 2020; 250:652-668. [PMID: 33368848 DOI: 10.1002/dvdy.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Most studies on architectural rules in corals have focused on the branch and the colony level, unveiling a variety of allometric rules. Working on the branching coral Stylophora pistillata, here we further extend the astogenic directives of this species at the polyp level, to reveal allometric and morphometric rules dictating polyps' arrangement. RESULTS We identified a basic morphometric landscape as a six-polyp circlet developed around a founder polyp, with established distances between polyps (six equilateral triangles), reflecting a strong genetic-based background vs high plasticity on the population level. Testing these rules in regular and chimeric S. pistillata colonies, we revealed similar morphometric/allometric rules developed via a single astogenic pathway. In regular colonies, this pathway was driven by the presence/absence of intra-circlet budding polyps, while in chimeras, by the distances between the two founder polyps. In addition, we identified the intra-circlet budding as the origin of first branching, if BPC distances are kept <1.09 ± 0.25 mm. CONCLUSIONS The emerged allometric/morphometric rules indicate the existence of a positional information paradigm for polyps' landscape distribution, where each polyp creates its own positional field of morphogen gradients through six inductive sites, thus forming six positional fields for the development of the archetypal "six-polyp crown".
Collapse
Affiliation(s)
- Gabriele Guerrini
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel.,Marine Biology and Biotechnology Program, Department of Life Sciences, Ben- Gurion University of the Negev Eilat Campus, Beer-Sheva, Israel
| | - Dor Shefy
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel.,Marine Biology and Biotechnology Program, Department of Life Sciences, Ben- Gurion University of the Negev Eilat Campus, Beer-Sheva, Israel.,The Interuniversity Institute for Marine Science, Eilat, Israel
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben- Gurion University of the Negev Eilat Campus, Beer-Sheva, Israel
| | - Shai Shafir
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel.,Oranim Academic College of Education, 36006 Kiryat Tivon, Israel
| | - Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
12
|
Exploring Traits of Engineered Coral Entities to be Employed in Reef Restoration. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8121038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggregated settlement of coral larvae results in a complex array of compatible (chimerism) and incompatible (rejection) allogenic responses. Each chimeric assemblage is considered as a distinct biological entity, subjected to selection, however, the literature lacks the evolutionary and ecological functions assigned to these units of selection. Here, we examined the effects of creating chimera/rejecting partners in terms of growth and survival under prolonged field conditions. Bi/multichimeras, bi/multi-rejecting entities, and genetically homogenous colonies (GHC) of the coral Stylophora pistillata were monitored under prolonged field conditions in a mid-water floating nursery in the northern Red Sea. Results revealed an increased aerial size and aeroxial ecological volume for rejected and chimeric entities compared to GHCs. At age 18 months, there were no significant differences in these parameters among the entities and traits, and rejecting partners did not differ from GHC. However, survival probabilities were significantly higher for chimeras that further revealed disparate initiation of up-growing branches and high diversity of chimeric phenotypes. These results suggest enhanced fitness for chimerism, augmenting earlier alluded chimeric benefits that trail the increased size at crucial early life-stages. Adding chimerism to the tool-box of reef restoration may enhance coral fitness in mitigating anthropogenic/climate change impacts.
Collapse
|
13
|
Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom. J Mol Evol 2020; 88:482-500. [PMID: 32572694 DOI: 10.1007/s00239-020-09955-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022]
Abstract
Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self-nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia, self-nonself recognition is based on polymorphic surface markers encoded by two genes (alr1, alr2), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self-nonself recognition is controlled by a single polymorphic gene locus (BHF) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.
Collapse
|
14
|
Oury N, Gélin P, Magalon H. Together stronger: Intracolonial genetic variability occurrence in Pocillopora corals suggests potential benefits. Ecol Evol 2020; 10:5208-5218. [PMID: 32607144 PMCID: PMC7319244 DOI: 10.1002/ece3.5807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023] Open
Abstract
We investigated the occurrence of intracolonial genetic variability (IGV) in Pocillopora corals in the southwestern Indian Ocean. Ninety-six colonies were threefold-sampled from three sites in Reunion Island. Nubbins were genotyped using 13 microsatellite loci, and their multilocus genotypes compared. Over 50% of the colonies presented at least two different genotypes among their three nubbins, and IGV was found abundant in all sites (from 36.7% to 58.1%). To define the threshold distinguishing mosaicism from chimerism, we developed a new method based on different evolution models by computing the number of different alleles for the infinite allele model (IAM) and the Bruvo's distance for the stepwise mutation model (SMM). Colonies were considered as chimeras if their nubbins differed from more than four alleles and if the pairwise Bruvo's distance was higher than 0.12. Thus 80% of the IGV colonies were mosaics and 20% chimeras (representing almost 10% of the total sampling). IGV seems widespread in scleractinians and beyond the disabilities of this phenomenon reported in several studies, it should also bring benefits. Next steps are to identify these benefits and to understand processes leading to IGV, as well as factors influencing them.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
| | - Pauline Gélin
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS)Université de La RéunionSt Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
15
|
Ligson CA, Tabalanza TD, Villanueva RD, Cabaitan PC. Feasibility of early outplanting of sexually propagated
Acropora verweyi
for coral reef restoration demonstrated in the Philippines. Restor Ecol 2019. [DOI: 10.1111/rec.13054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Charlon A. Ligson
- The Marine Science InstituteUniversity of the Philippines Quezon City 1101 Philippines
| | - Tracy D. Tabalanza
- The Marine Science InstituteUniversity of the Philippines Quezon City 1101 Philippines
| | - Ronald D. Villanueva
- The Marine Science InstituteUniversity of the Philippines Quezon City 1101 Philippines
| | - Patrick C. Cabaitan
- The Marine Science InstituteUniversity of the Philippines Quezon City 1101 Philippines
| |
Collapse
|
16
|
Casso M, Tagliapietra D, Turon X, Pascual M. High fusibility and chimera prevalence in an invasive colonial ascidian. Sci Rep 2019; 9:15673. [PMID: 31666562 PMCID: PMC6821838 DOI: 10.1038/s41598-019-51950-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
The formation of chimeric entities through colony fusion has been hypothesized to favour colonisation success and resilience in modular organisms. In particular, it can play an important role in promoting the invasiveness of introduced species. We studied prevalence of chimerism and performed fusion experiments in Mediterranean populations of the worldwide invasive colonial ascidian Didemnum vexillum. We analysed single zooids by whole genome amplification and genotyping-by-sequencing and obtained genotypic information for more than 2,000 loci per individual. In the prevalence study, we analysed nine colonies and identified that 44% of them were chimeric, composed of 2–3 different genotypes. In the fusion experiment 15 intra- and 30 intercolony pairs were assayed but one or both fragments regressed and died in ~45% of the pairs. Among those that survived for the length of the experiment (30 d), 100% isogeneic and 31% allogeneic pairs fused. Fusion was unlinked to global genetic relatedness since the genetic distance between fused or non-fused intercolony pairs did not differ significantly. We could not detect any locus directly involved in allorecognition, but we cannot preclude the existence of a histocompatibility mechanism. We conclude that chimerism occurs frequently in D. vexillum and may be an important factor to enhance genetic diversity and promote its successful expansion.
Collapse
Affiliation(s)
- Maria Casso
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain
| | - Davide Tagliapietra
- CNR - National Research Council of Italy, ISMAR - Institute of Marine Sciences, Venice, Italy
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
The Active Reef Restoration Toolbox is a Vehicle for Coral Resilience and Adaptation in a Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7070201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accelerating marks of climate change on coral-reef ecosystems, combined with the recognition that traditional management measures are not efficient enough to cope with climate change tempo and human footprints, have raised a need for new approaches to reef restoration. The most widely used approach is the “coral gardening” tenet; an active reef restoration tactic based on principles, concepts, and theories used in silviculture. During the relatively short period since its inception, the gardening approach has been tested globally in a wide range of reef sites, and on about 100 coral species, utilizing hundreds of thousands of nursery-raised coral colonies. While still lacking credibility for simulating restoration scenarios under forecasted climate change impacts, and with a limited adaptation toolkit used in the gardening approach, it is still deficient. Therefore, novel restoration avenues have recently been suggested and devised, and some have already been tested, primarily in the laboratory. Here, I describe seven classes of such novel avenues and tools, which include the improved gardening methodologies, ecological engineering approaches, assisted migration/colonization, assisted genetics/evolution, assisted microbiome, coral epigenetics, and coral chimerism. These are further classified into three operation levels, each dependent on the success of the former level. Altogether, the seven approaches and the three operation levels represent a unified active reef restoration toolbox, under the umbrella of the gardening tenet, focusing on the enhancement of coral resilience and adaptation in a changing world.
Collapse
|
18
|
|
19
|
Afiq-Rosli L, Huang D, Toh TC, Taira D, Ng CSL, Song T, Chou LM. Maximising genetic diversity during coral transplantation from a highly impacted source reef. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Rinkevich B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. GLOBAL CHANGE BIOLOGY 2019; 25:1198-1206. [PMID: 30680858 DOI: 10.1111/gcb.14576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Climate change and anthropogenic pressures inflict a wide range of profound damages on coral reef ecosystems, reshaping coral reef communities due to their physiological and ecological intolerance to the newly developing environmental conditions. Here, I present coral chimerism as an evolutionary rescue tool for accelerating adaptive responses to global climate change impacts. The "evolutionary rescue" power is contingent on the premise that coral chimerism counters the erosion of genetic and phenotypic diversity. Further benefits are gained when flexible chimeric entities alter their somatic constituents following changes in environmental conditions, synergistically presenting the best-fitting combination of their genetic components to endure in a capricious environment, exhibiting always their environmentally matched physiological characteristics. Chimerism should be considered as an integral part of the ecological engineering toolbox being developed for active reef restoration.
Collapse
|
21
|
Conlan JA, Humphrey CA, Severati A, Francis DS. Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits. PLoS One 2017; 12:e0188568. [PMID: 29182647 PMCID: PMC5705105 DOI: 10.1371/journal.pone.0188568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/09/2017] [Indexed: 12/04/2022] Open
Abstract
Heterotrophic feeding in newly-settled coral planulae can potentially improve survivorship and accelerate early development in some species; however, an optimal diet to facilitate this does not currently exist. This study evaluated the efficacy of three heterotrophic feeding regimes (enriched rotifers, unfiltered seawater, and a novel, particulate diet), against a wholly-phototrophic treatment on Acropora hyacinthus, A. loripes, A. millepora, and A. tenuis recruits, over 93 days post-settlement. The unfiltered seawater treatment recorded maximum survival for all species (A. hyacinthus 95.9±8.0%, A. loripes: 74.3±11.5%, A. millepora: 67±12.7%, A. tenuis: 53.2±11.3%), although not significant. Growth (% surface area gain) was also greatest in the unfiltered seawater, and this was significant for A. millepora (870±307%) and A. tenuis (693±91.8%) (p<0.05). Although total lipid concentration was relatively stable across treatments, the lipid class composition exhibited species-specific responses to each treatment. Lower saturated and higher polyunsaturated fatty acids appeared beneficial to recruit performance, particularly in the unfiltered seawater, which generally contained the highest levels of 20:5n-3 (EPA), 22:6n-3 (DHA), and 20:4n-6 (ARA). The present study demonstrates the capacity of a nutritionally adequate and readily accepted heterotrophic feeding regime to increase coral recruit survival, growth, and health, which can greatly reduce the time required in cost- and labour-intensive culture.
Collapse
Affiliation(s)
- Jessica A. Conlan
- Deakin University, Geelong, Australia, School of Life and Environmental Sciences, Warrnambool Campus, Warrnambool, Victoria, Australia
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| | - Craig A. Humphrey
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrea Severati
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David S. Francis
- Deakin University, Geelong, Australia, School of Life and Environmental Sciences, Warrnambool Campus, Warrnambool, Victoria, Australia
| |
Collapse
|
22
|
Dubé CE, Planes S, Zhou Y, Berteaux-Lecellier V, Boissin E. On the occurrence of intracolonial genotypic variability in highly clonal populations of the hydrocoral Millepora platyphylla at Moorea (French Polynesia). Sci Rep 2017; 7:14861. [PMID: 29093527 PMCID: PMC5665921 DOI: 10.1038/s41598-017-14684-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Intracolonial genotypic variability is described in many colonial organisms and arises from mosaicism (somatic mutation) and/or chimerism (allogenic fusion). Both processes provide an additional source of genotypic variation in natural populations and raise questions on the biological significance of colonies having more than one genotype. Using fifteen microsatellite markers, we screened for potential genetic heterogeneity within Millepora platyphylla colonies, a hydrocoral species known for its extensive morphological plasticity among reef habitats. We aimed to determine whether mosaicism and chimerism were related to specific reef habitats and/or colony morphologies. Our results show that intracolonial genotypic variability was common (31.4%) in M. platyphylla at Moorea, French Polynesia, with important variations in its frequency among habitats (0–60%), while no effect of morphology was observed. Mosaicism seemed responsible for most of the genetic heterogeneity (87.5%), while chimerism was rarer. Some mosaics were shared among fire coral clones indicating that mutations could be spread via colony fragmentation. Further, the genotypic variability among clones suggests that colonies produced asexually through fragmentation have the potential to accumulate their own mutations over time. Such mutation dynamics might have important implications for the adaptive potential of long-lived reef-builder populations that are predominantly sustained through asexual reproduction.
Collapse
Affiliation(s)
- Caroline E Dubé
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France. .,Laboratoire d'Excellence "CORAIL", USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence "CORAIL", USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Yuxiang Zhou
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence "CORAIL", USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Véronique Berteaux-Lecellier
- Laboratoire d'Excellence "CORAIL", USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.,UMR 250/9220 ENTROPIE, IRD-UR-CNRS, LabEx "CORAIL", 101 Promenade Roger-Laroque, BP A5, 98848, Nouméa, New-Caledonia, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence "CORAIL", USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| |
Collapse
|
23
|
Conlan JA, Humphrey CA, Severati A, Francis DS. Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits. PLoS One 2017. [PMID: 29182647 DOI: 10.1371/journal.pone.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Heterotrophic feeding in newly-settled coral planulae can potentially improve survivorship and accelerate early development in some species; however, an optimal diet to facilitate this does not currently exist. This study evaluated the efficacy of three heterotrophic feeding regimes (enriched rotifers, unfiltered seawater, and a novel, particulate diet), against a wholly-phototrophic treatment on Acropora hyacinthus, A. loripes, A. millepora, and A. tenuis recruits, over 93 days post-settlement. The unfiltered seawater treatment recorded maximum survival for all species (A. hyacinthus 95.9±8.0%, A. loripes: 74.3±11.5%, A. millepora: 67±12.7%, A. tenuis: 53.2±11.3%), although not significant. Growth (% surface area gain) was also greatest in the unfiltered seawater, and this was significant for A. millepora (870±307%) and A. tenuis (693±91.8%) (p<0.05). Although total lipid concentration was relatively stable across treatments, the lipid class composition exhibited species-specific responses to each treatment. Lower saturated and higher polyunsaturated fatty acids appeared beneficial to recruit performance, particularly in the unfiltered seawater, which generally contained the highest levels of 20:5n-3 (EPA), 22:6n-3 (DHA), and 20:4n-6 (ARA). The present study demonstrates the capacity of a nutritionally adequate and readily accepted heterotrophic feeding regime to increase coral recruit survival, growth, and health, which can greatly reduce the time required in cost- and labour-intensive culture.
Collapse
Affiliation(s)
- Jessica A Conlan
- Deakin University, Geelong, Australia, School of Life and Environmental Sciences, Warrnambool Campus, Warrnambool, Victoria, Australia
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Craig A Humphrey
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrea Severati
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David S Francis
- Deakin University, Geelong, Australia, School of Life and Environmental Sciences, Warrnambool Campus, Warrnambool, Victoria, Australia
| |
Collapse
|
24
|
Sheikh MA, Juma FS, Staehr P, Dahl K, Rashid RJ, Mohammed MS, Ussi AM, Ali HR. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar. MARINE POLLUTION BULLETIN 2016; 109:586-590. [PMID: 27234364 DOI: 10.1016/j.marpolbul.2016.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies.
Collapse
Affiliation(s)
- Mohammed A Sheikh
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania.
| | - Fatma S Juma
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania
| | - Peter Staehr
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Building B1.04, 4000 Roskilde, Denmark
| | - Karsten Dahl
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Building B1.04, 4000 Roskilde, Denmark
| | - Rashid J Rashid
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania
| | - Mohammed S Mohammed
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania
| | - Ali M Ussi
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania
| | - Hassan R Ali
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania.
| |
Collapse
|
25
|
Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9849-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Rinkevich B, Shaish L, Douek J, Ben-Shlomo R. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity. Sci Rep 2016; 6:19493. [PMID: 26758405 PMCID: PMC4725755 DOI: 10.1038/srep19493] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits' absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Lee Shaish
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.,Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, 31905, Israel
| | - Jacob Douek
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel
| | - Rachel Ben-Shlomo
- Department of Biology, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
27
|
Rinkevich B. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 162:199-205. [PMID: 26241935 DOI: 10.1016/j.jenvman.2015.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses.
Collapse
Affiliation(s)
- Baruch Rinkevich
- National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| |
Collapse
|
28
|
Schweinsberg M, Weiss LC, Striewski S, Tollrian R, Lampert KP. More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Mol Ecol 2015; 24:2673-85. [DOI: 10.1111/mec.13200] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Maximilian Schweinsberg
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Linda C. Weiss
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Sebastian Striewski
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Kathrin P. Lampert
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| |
Collapse
|
29
|
Jiang L, Lei XM, Liu S, Huang H. Fused embryos and pre-metamorphic conjoined larvae in a broadcast spawning reef coral. F1000Res 2015; 4:44. [PMID: 25901279 PMCID: PMC4392822 DOI: 10.12688/f1000research.6136.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Fusion of embryos or larvae prior to metamorphosis is rarely known to date in colonial marine organisms. Here, we document for the first time that the embryos of the broadcast spawning coral
Platygyra daedalea could fuse during blastulation and further develop into conjoined larvae, and the settlement of conjoined larvae immediately resulted in inborn juvenile colonies. Fusion of embryos might be an adaptive strategy to form pre-metamorphic chimeric larvae and larger recruits, thereby promoting early survival. However, future studies are needed to explore whether and to what extent fusion of coral embryos occurs in the field, and fully evaluate its implications.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China ; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China ; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Ming Lei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Sheng Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China ; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|
30
|
Czárán T, Hoekstra RF, Aanen DK. Selection against somatic parasitism can maintain allorecognition in fungi. Fungal Genet Biol 2014; 73:128-37. [PMID: 25305337 DOI: 10.1016/j.fgb.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Abstract
Fusion between multicellular individuals is possible in many organisms with modular, indeterminate growth, such as marine invertebrates and fungi. Although fusion may provide various benefits, fusion usually is restricted to close relatives by allorecognition, also called heterokaryon or somatic incompatibility in fungi. A possible selective explanation for allorecognition is protection against somatic parasites. Such mutants contribute less to colony functions but more to reproduction. However, previous models testing this idea have failed to explain the high diversity of allorecognition alleles in nature. These models did not, however, consider the possible role of spatial structure. We model the joint evolution of allorecognition and somatic parasitism in a multicellular organism resembling an asexual ascomycete fungus in a spatially explicit simulation. In a 1000-by-1000 grid, neighbouring individuals can fuse, but only if they have the same allotype. Fusion with a parasitic individual decreases the total reproductive output of the fused individuals, but the parasite compensates for this individual-level fitness reduction by a disproportional share of the offspring. Allorecognition prevents the invasion of somatic parasites, and vice versa, mutation towards somatic parasitism provides the selective conditions for extensive allorecognition diversity. On the one hand, if allorecognition diversity did not build up fast enough, somatic parasites went to fixation; conversely, once parasites had gone to fixation no allorecognition diversity built up. On the other hand, the mere threat of parasitism could select for high allorecognition diversity, preventing invasion of somatic parasites. Moderate population viscosity combined with weak global dispersal was optimal for the joint evolution of allorecognition and protection against parasitism. Our results are consistent with the widespread occurrence of allorecognition in fungi and the low degree of somatic parasitism. We discuss the implications of our results for allorecognition in other organism groups.
Collapse
Affiliation(s)
- Tamas Czárán
- MTA-ELTE Research Group of Theoretical Biology and Evolutionary Ecology, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| | - Rolf F Hoekstra
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
31
|
Sun Z, Hamel JF, Mercier A. Marked shifts in offspring size elicited by frequent fusion among siblings in an internally brooding marine invertebrate. Am Nat 2012; 180:E151-60. [PMID: 23070329 DOI: 10.1086/667862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While offspring size is a widely studied concept in evolutionary ecology, mechanisms affecting offspring phenotype in species with postzygotic parental care are incompletely understood. We examined the impact of sibling fusion on ontogenetic shifts in offspring size in the brooding sea anemone Urticina felina. Fusion occurred among brood-protected embryos in U. felina, whereas it occurred postrelease among settlers of corals studied here and previously. Two fusion products were evidenced: morphologically aberrant offspring and large homogeneous offspring coined "megalarvae." The frequent occurrence (∼77%) of megalarvae identifies them as the primary fusion product, which drove an increase in offspring size and within-clutch size variation before release. Lipid signatures suggest that morphologically aberrant juveniles represent by-products that do not reach adulthood. Not only were occurrences of megalarvae common in the populations studied, they increased with maternal fecundity, suggesting that sibling fusion may be a form of kin cooperation integral to the reproductive success of U. felina, warranting investigation in other live-bearing invertebrate taxa.
Collapse
Affiliation(s)
- Zhao Sun
- Ocean Sciences Centre, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | | | | |
Collapse
|
32
|
Oren M, Paz G, Douek J, Rosner A, Amar KO, Rinkevich B. Marine invertebrates cross phyla comparisons reveal highly conserved immune machinery. Immunobiology 2012; 218:484-95. [PMID: 22884351 DOI: 10.1016/j.imbio.2012.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/15/2022]
Abstract
Naturally occurring histocompatibility responses, following tissue-to-tissue allogeneic contacts, are common among numerous colonial marine invertebrate taxa, including sponges, cnidarians, bryozoans and ascidians. These responses, often culminating in either tissue fusions or rejections, activate a wide array of innate immune components. By comparing two allorejection EST libraries, developed from alloincompatible challenged colonies of the stony coral Stylophora pistillata and the ascidian Botryllus schlosseri, we revealed a common basis for innate immunity in these two evolutionary distant species. Two prominent genes within this common basis were the immunophilins, Cyclophilin A (CypA) and FK506-binding protein (FKBP). In situ hybridizations revealed that mRNA expression of the coral and ascidian immunophilins was restricted to specific allorecognition effector cell populations (nematoblasts and nematocytes in the coral and morula cells in the ascidian). The expressions were limited to only some of the effector cells within a population, disclosing disparities in numbers and location between naïve colonies and their immune challenged counterparts. Administration of the immunosuppression drug Cyclosporine-A during ascidian's allogeneic assays inhibited both fusion and rejection reactions, probably through the inhibition of ascidian's immunocytes (morula cells) movement and activation. Our results, together with previous published data, depict an immunophilins-based immune mechanism, which is similarly activated in allogeneic responses of distantly related animals from sponges to humans.
Collapse
Affiliation(s)
- Matan Oren
- Israel National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Douek J, Amar KO, Rinkevich B. Maternal-larval population genetic traits in Stylophora pistillata, a hermaphroditic brooding coral species. Genetica 2012; 139:1531-42. [PMID: 22552536 DOI: 10.1007/s10709-012-9653-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Aspects of maternal-planula larval genetics in the monoecious scleractinian coral Stylophora pistillata (Red Sea, Eilat) were studied by amplified fragment length polymorphism (AFLP) methodology in two successive reproductive seasons. In total, 293 planulae and 10 adult colonies were analyzed. In June 2006, 147 planulae were collected from 10 shallow water colonies. In March, April and June 2007, 146 additional planulae were sampled from five of the ten 2006 sampled colonies. All AFLP products showed unalike band profiles indicating a fully sexual production pattern. We used 181 and 210 putative AFLP loci, of which the overall level of polymorphism in 2006 was 92 and 99 % in 2007 (respectively). Differences were also observed between 2006 and 2007 reproductive seasons in terms of total average gene diversity (0.191 vs. 0.247, respectively), suggesting fast turnover of sperm donor genotypes. In addition, increased numbers of potential sperm donor colonies in the vicinity of gravid females showed no impact on genetic differentiation levels in released larvae. UPGMA tree revealed clustering of maternal genotypes and their offspring, suggesting, as expected, high relatedness between planulae and their mothers. In addition, the average heterozygosity of each group of siblings was persistently lower than heterozygosity calculated for the respective maternal colony, suggesting the possibility of partial inbreeding. This trend of reduced genetic heterogeneity in Stylophora pistillata is an alarming sign for populations residing in the northern Red Sea coral reefs.
Collapse
Affiliation(s)
- Jacob Douek
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, Haifa, Israel.
| | | | | |
Collapse
|
34
|
Rinkevich B. Neglected biological features in cnidarians self-nonself recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:46-59. [PMID: 22399373 DOI: 10.1007/978-1-4614-1680-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cnidarian taxa, currently of the most morphologically simplest extant metazoans, exhibit many salient properties of innate immunity that are shared by most Animalia. One hallmark constituent of immunity exhibit by most cnidarians is histocompatibility, marked by wide spectrum of allogeneic and xenogeneic effector arms, progressing into tissue fusions or inflammatory rejections. Scientific propensity on cnidarians immunity, while discussing historecognition as the ground for immunity in these organisms, concentrates on host-parasitic and disease oriented studies, or focuses on genome approaches that search for gene homologies with the vertebrates. Above tendency for mixing up between historecognition and host-parasitic/disease, highlights a serious obstacle for the progress in our understanding of cnidarian immunobiology. Here I critically overview four 'forgotten' cnidarian immune features, namely, specificity, immunological memory, allogeneic maturation and natural chimerism, presenting insights into perspectives that are prerequisite for any discussion on cnidarian evolution. It is evident that cnidarian historecognition embraces elements that the traditional field of vertebrate immunology has never encountered (i.e., variety of cytotoxic outcomes, different types of effector mechanisms, chimerism, etc.). Also, cnidarian immune features dictating that different individuals within the same species seem to respond differently to the same immunological challenge, is far from that recorded in the vertebrates' adaptive immunity. While above features may be connected to host-parasitic and disease phenomena and effector arms, they clearly attest to their unique critical roles in shaping cnidarians historecognition, calling for improved distinction between historecognition and host-response/ disease disciplines. The research on cnidarians immunity still suffers from the lack of accepted synthesis of what historecognition is or does. Mounting of an immune response against conspecifics or xenogeneic organisms should therefore be clearly demarcated from other paths of immunity, till cnidarian innate immunity as a whole is expounded.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, Haifa, Israel.
| |
Collapse
|
35
|
Puill-Stephan E, van Oppen MJH, Pichavant-Rafini K, Willis BL. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora. Proc Biol Sci 2011; 279:699-708. [PMID: 21752820 DOI: 10.1098/rspb.2011.1035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.
Collapse
Affiliation(s)
- E Puill-Stephan
- AIMS@JCU, James Cook University, Douglas Campus, Townsville, Queensland 4810, Australia
| | | | | | | |
Collapse
|
36
|
Mercier A, Sun Z, Hamel JF. Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina. Proc Biol Sci 2011; 278:3517-22. [PMID: 21508035 DOI: 10.1098/rspb.2011.0605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The concept of intraorganismal genetic heterogeneity resulting from allogeneic fusion (i.e. chimerism) has almost exclusively been explored in modular organisms that have the capacity to reproduce asexually, such as colonial ascidians and corals. Apart from medical conditions in mammals, the natural development of chimeras across ontogenetic stages has not been investigated in any unitary organism incapable of asexual propagation. Furthermore, chimerism was mainly studied among gregarious settlers to show that clustering of genetically similar individuals upon settlement promotes the occurrence of multi-chimeras exhibiting greater fitness. The possible occurrence of chimeric embryos and larvae prior to settlement has not received any attention. Here we document for the first time the presence of natural chimeras in brooded embryos and larvae of a unitary cnidarian, the sea anemone Urticina felina. Rates of visible bi- and multi-chimerism of up to 3.13 per cent were measured in the broods of 16 females. Apart from these sectorial chimeras, monitored fusion events also yielded homogeneous chimeric entities (mega-larvae) suggesting that the actual rates of natural chimerism in U. felina are greater than predicted by visual assessment. In support of this assumption, the broods of certain individuals comprised a dominant proportion (to 90%) of inexplicably large embryos and larvae (relative to oocyte size). Findings of fusion and chimerism in a unitary organism add a novel dimension to the framework within which the mechanisms and evolutionary significance of genetic heterogeneity in animal taxa can be explored.
Collapse
Affiliation(s)
- Annie Mercier
- Ocean Sciences Centre, Memorial University, Saint John's, Newfoundland and Labrador A1C 5S7, Canada.
| | | | | |
Collapse
|
37
|
Buenau KE, Price NN, Nisbet RM. Local interactions drive size dependent space competition between coral and crustose coralline algae. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18972.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Oren M, Amar KO, Douek J, Rosenzweig T, Paz G, Rinkevich B. Assembled catalog of immune-related genes from allogeneic challenged corals that unveils the participation of vWF-like transcript. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:630-637. [PMID: 20080125 DOI: 10.1016/j.dci.2010.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/09/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
While reef-building corals portray highly complex and specific allorecognition responses, still, no available synthesis on historecognition at the molecular level exists for this group of organisms. Here, we present the first subtractive library of expressed sequence tags (ESTs) from allogeneic challenged coral (Stylophora pistillata) colonies revealing the differential expression of a wide range of immune-related genes. 1760 unique ESTs were clustered and assembled into 230 contigs and 1530 singlets with 28% that showed homology (E-value < or =0.005) to known database sequences, of which 16% (n=80) homologues were identified as immune-relevant genes, encoding for stress proteins, pattern recognition receptors and complement proteins, proteases, cell adhesion proteins, cytokine related proteins, programmed cell death and proteasome-associated proteins. Transcripts that were subjected to quantitative RT-PCR, further supported the library data. In situ hybridization analyses elucidated specific and enhanced expressions of von Willebrand factor-like transcript during S. pistillata allogeneic rejection. Availability of such genome-wide expression tools may lead to significant advances in the research of coral historecognition and comparative immunology.
Collapse
Affiliation(s)
- M Oren
- Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | | | | | |
Collapse
|
39
|
Puill-Stephan E, Willis BL, van Herwerden L, van Oppen MJH. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS One 2009; 4:e7751. [PMID: 19888471 PMCID: PMC2767510 DOI: 10.1371/journal.pone.0007751] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/14/2009] [Indexed: 11/18/2022] Open
Abstract
Background Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. Methodology/Principal Findings The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall), based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. Conclusions/Significance While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.
Collapse
Affiliation(s)
- Eneour Puill-Stephan
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Laboratoire Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, Brest, France
| | - Bette L. Willis
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Lynne van Herwerden
- Molecular Evolution and Ecology Laboratory, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|