1
|
Maas DL, Prost S, de Leeuw CA, Bi K, Smith LL, Purwanto P, Aji LP, Tapilatu RF, Gillespie RG, Becking LE. Sponge diversification in marine lakes: Implications for phylogeography and population genomic studies on sponges. Ecol Evol 2023; 13:e9945. [PMID: 37066063 PMCID: PMC10099488 DOI: 10.1002/ece3.9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
The relative influence of geography, currents, and environment on gene flow within sessile marine species remains an open question. Detecting subtle genetic differentiation at small scales is challenging in benthic populations due to large effective population sizes, general lack of resolution in genetic markers, and because barriers to dispersal often remain elusive. Marine lakes can circumvent confounding factors by providing discrete and replicated ecosystems. Using high-resolution double digest restriction-site-associated DNA sequencing (4826 Single Nucleotide Polymorphisms, SNPs), we genotyped populations of the sponge Suberites diversicolor (n = 125) to test the relative importance of spatial scales (1-1400 km), local environmental conditions, and permeability of seascape barriers in shaping population genomic structure. With the SNP dataset, we show strong intralineage population structure, even at scales <10 km (average F ST = 0.63), which was not detected previously using single markers. Most variation was explained by differentiation between populations (AMOVA: 48.8%) with signatures of population size declines and bottlenecks per lake. Although the populations were strongly structured, we did not detect significant effects of geographic distance, local environments, or degree of connection to the sea on population structure, suggesting mechanisms such as founder events with subsequent priority effects may be at play. We show that the inclusion of morphologically cryptic lineages that can be detected with the COI marker can reduce the obtained SNP set by around 90%. Future work on sponge genomics should confirm that only one lineage is included. Our results call for a reassessment of poorly dispersing benthic organisms that were previously assumed to be highly connected based on low-resolution markers.
Collapse
Affiliation(s)
- Diede L. Maas
- Marine Animal EcologyWageningen University & ResearchWageningenThe Netherlands
| | - Stefan Prost
- LOEWE Centre for Translational Biodiversity GenomicsSenckenberg Natural History MuseumFrankfurt am MainGermany
- South African National Biodiversity InstituteNational Zoological Gardens of South AfricaPretoriaSouth Africa
| | | | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Computational Genomics Resource Laboratory, California Institute for Quantitative BiosciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Lydia L. Smith
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | | | - Ludi P. Aji
- Marine Animal EcologyWageningen University & ResearchWageningenThe Netherlands
- Research Centre for Oceanography, Indonesian Institute of SciencesLembaga Ilmu Pengetahuan IndonesiaJakartaIndonesia
| | - Ricardo F. Tapilatu
- Marine Science and Fisheries Departments and Research Center of Pacific Marine ResourcesState University of PapuaManokwariIndonesia
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Leontine E. Becking
- Department of Environmental Science, Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Aquaculture and Fisheries, Naturalis Biodiversity CenterWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
2
|
Quek ZBR, Ng JY, Jain SS, Long JXS, Lim SC, Tun K, Huang D. Low genetic diversity and predation threaten a rediscovered marine sponge. Sci Rep 2022; 12:22499. [PMID: 36577798 PMCID: PMC9797562 DOI: 10.1038/s41598-022-26970-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Discovered in 1819 in the tropical waters off Singapore, the magnificent Neptune's cup sponge Cliona patera (Hardwicke, 1820) was harvested for museums and collectors until it was presumed extinct worldwide for over a century since 1907. Recently in 2011, seven living individuals were rediscovered in Singapore with six relocated to a marine protected area in an effort to better monitor and protect the population, as well as to enhance external fertilisation success. To determine genetic diversity within the population, we sequenced the complete mitochondrial genomes and nuclear ribosomal DNA of these six individuals and found extremely limited variability in their genes. The low genetic diversity of this rediscovered population is confirmed by comparisons with close relatives of C. patera and could compromise the population's ability to recover from environmental and anthropogenic pressures associated with the highly urbanised coastlines of Singapore. This lack of resilience is compounded by severe predation which has been shrinking sponge sizes by up to 5.6% every month. Recovery of this highly endangered population may require ex situ approaches and crossbreeding with other populations, which are also rare.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Juat Ying Ng
- grid.4280.e0000 0001 2180 6431School of Design and Environment, National University of Singapore, Singapore, Singapore ,grid.467827.80000 0004 0620 8814National Biodiversity Centre, National Parks Board, Singapore, Singapore
| | - Sudhanshi S. Jain
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J. X. Sean Long
- grid.462738.c0000 0000 9091 4551Republic Polytechnic, Singapore, Singapore
| | - Swee Cheng Lim
- grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Karenne Tun
- grid.467827.80000 0004 0620 8814National Biodiversity Centre, National Parks Board, Singapore, Singapore
| | - Danwei Huang
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Centre for Nature-Based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Bray RA, Cutmore SC, Cribb TH. A paradigm for the recognition of cryptic trematode species in tropical Indo-west Pacific fishes: the problematic genus Preptetos (Trematoda: Lepocreadiidae). Int J Parasitol 2021; 52:169-203. [PMID: 34656610 DOI: 10.1016/j.ijpara.2021.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Molecular data have transformed approaches to trematode taxonomy by providing objective evidence for the delineation of species. However, although the data are objective, the interpretation of these data regarding species boundaries is subjective, especially when different markers conflict. Conserved markers can lead to an underestimation of richness and those used for finer species delineation have the capacity to inflate species recognition, perhaps unrealistically. Here we examine molecular and morphological evidence for species recognition in an especially confusing system, the lepocreadiid genus Preptetos Pritchard, 1960 in acanthuriform fishes of the tropical Indo-west Pacific. We consider species boundaries within this genus based on combined data (ITS2 and 28S rDNA; cox1 mtDNA and morphometrics) for substantial new collections. Delineation of species using only morphological data suggest fewer species than analysis of the sequence data; the latter suggests the presence of potential cryptic species and analysis of different markers suggests the presence of differing numbers of species. We conclude that an integrative interpretation creates the most satisfying taxonomic hypothesis. In the light of the new data, we have chosen and propose a model of trematode species recognition that demands reciprocal monophyly in the most discriminating available molecular marker plus distinction in morphology or host distribution. By invoking these criteria, we distinguish eight species in our new tropical Indo-west Pacific collections. Six of these are new (Preptetos allocaballeroi n. sp., Preptetos paracaballeroi n. sp., Preptetos pearsoni n. sp., Preptetos prudhoei n. sp., Preptetos quandamooka n. sp. and Preptetos zebravaranus n. sp.) and we continue to recognise Preptetos cannoni Barker, Bray & Cribb, 1993 and Preptetos laguncula Bray and Cribb, 1996. Notably; two of the new species, P. allocaballeroi n. sp. and P. paracaballeroi n. sp., are morphologically cryptic relative to each other. Our criteria lead us to recognise, as species, populations with unvarying morphology and similar host relationships but which may have a complex population structure over their range. In our view, this paradigm has the capacity to render tractable the interpretation of the species status of the huge trematode fauna of the tropical Indo-west Pacific.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Ngwakum BB, Payne RP, Teske PR, Janson L, Kerwath SE, Samaai T. Hundreds of new DNA barcodes for South African sponges. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1915896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Benedicta B. Ngwakum
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Robyn P. Payne
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Peter R. Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Liesl Janson
- Department of Forestry, Fisheries and the Environment, Oceans & Coasts Branch, Oceans & Coasts Research, Private Bag X4390, Cape Town, 8001, Western Cape, South Africa
| | - Sven E. Kerwath
- Department of Biological Sciences, University of Cape Town, Private Bag X 3, Rondebosch, Cape Town, 7701, South Africa
- Department of Forestry, Fisheries and the Environment, Fisheries Branch, Fisheries Research, Private Bag X2, Roggebaai, Cape Town, 8012, Western Cape, South Africa
| | - Toufiek Samaai
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, Cape Town, South Africa
- Department of Forestry, Fisheries and the Environment, Oceans & Coasts Branch, Oceans & Coasts Research, Private Bag X4390, Cape Town, 8001, Western Cape, South Africa
- Department of Biological Sciences, University of Cape Town, Private Bag X 3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
5
|
Klautau M, Lopes MV, Tavares G, Pérez T. Integrative taxonomy of calcareous sponges (Porifera: Calcarea) from Réunion Island, Indian Ocean. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
The Western Indian Ocean Province is reckoned for its rich marine diversity; however, sponges of the Mascarene Islands ecoregion are still poorly known. In La Réunion, only three species of class Calcarea have been registered. Hence, calcareous sponges were searched in seven sites representing various habitats of the Western coast of La Réunion, but found in only three of them. A total of 23 sponge samples was identified using morphological and molecular taxonomy. This sampling represents 11 species, all new records for the region, and seven of them are new to science: Ascandra mascarenica sp. nov., A. oceanusvitae sp. nov., Janusya indica gen. et sp. nov., Leucascus tenuispinae sp. nov., Lelapiella tertia sp. nov., Soleneiscus intermedius sp. nov. and Leucandra ornata sp. nov.; and a new genus, Janusya gen. nov.. Based on results from this and from previous studies, we propose the synonymization of the order Murrayonida with Clathrinida. A very low sampling effort has thus increased the number of calcareous sponge species from the Mascarenes Islands ecoregion by 69 % and from La Réunion by 367%.
Collapse
Affiliation(s)
- Michelle Klautau
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho 373, CEP, Rio de Janeiro, Brasil
| | - Matheus Vieira Lopes
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho 373, CEP, Rio de Janeiro, Brasil
| | - Gabriela Tavares
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho 373, CEP, Rio de Janeiro, Brasil
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale IMBE, UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Rue de la Batterie des Lions 13007 Marseille, France
| |
Collapse
|
6
|
Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean. Heredity (Edinb) 2020; 126:351-365. [PMID: 33122855 DOI: 10.1038/s41437-020-00379-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.
Collapse
|
7
|
Wooster MK, Voigt O, Erpenbeck D, Wörheide G, Berumen ML. Sponges of the Red Sea. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Renema W. Morphological diversity in the foraminiferal genus Marginopora. PLoS One 2018; 13:e0208158. [PMID: 30586401 PMCID: PMC6306156 DOI: 10.1371/journal.pone.0208158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Benthic foraminifera, and certainly symbiont-bearing (large) benthic foraminifera are generally considered to have large geographic ranges in combination with significant ecomorphological variation. With the advance of molecular phylogenetic approaches, supported or preceded by detailed morphological studies, it was demonstrated that this view needs to be reevaluated. In this paper I evaluate the morphology of five Marginopora populations from around the Coral Sea by microCT-scanning. I argue that ecomorphological and ontogenetic variation is smaller than geographic variation in morphology. This forms the basis for the description of three new species, M. santoensis nov. spec., M. charlottensis nov. spec., M. orpheusensis nov. spec. Quantitative morphological variation between M. rossi, M. orpheusensis nov. spec. and M. charlottensis nov. spec. is overlapping, but each species has unique morphological characters supporting recognition as new species. Support to distinguish the deep living (M. rossi, M. charlottensis nov. spec., M. orpheusensis nov. spec.) and shallow living (M. vertebralis) Marginopora populations as separate species is strong, but not enough molecular phylogenetic data are available to test the three new deep-living species on the Great Barrier Reef hypothesis. However, detailed understanding of ecophenotypic variation in M. santoensis nov. spec. supports the conclusion that it is unlikely that ecophenotypic variation can explain the morphological variation between the three species. I argue that the number of species in this genus is underestimated, and that there are at least five species in the Coral Sea area alone.
Collapse
Affiliation(s)
- Willem Renema
- Naturalis Biodiversity Center, RA Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
9
|
Taboada S, Riesgo A, Wiklund H, Paterson GLJ, Koutsouveli V, Santodomingo N, Dale AC, Smith CR, Jones DOB, Dahlgren TG, Glover AG. Implications of population connectivity studies for the design of marine protected areas in the deep sea: An example of a demosponge from the Clarion-Clipperton Zone. Mol Ecol 2018; 27:4657-4679. [PMID: 30378207 DOI: 10.1111/mec.14888] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
The abyssal demosponge Plenaster craigi inhabits the Clarion-Clipperton Zone (CCZ) in the northeast Pacific, a region with abundant seafloor polymetallic nodules with potential mining interest. Since P. craigi is a very abundant encrusting sponge on nodules, understanding its genetic diversity and connectivity could provide important insights into extinction risks and design of marine protected areas. Our main aim was to assess the effectiveness of the Area of Particular Environmental Interest 6 (APEI-6) as a potential genetic reservoir for three adjacent mining exploration contract areas (UK-1A, UK-1B and OMS-1A). As in many other sponges, COI showed extremely low variability even for samples ~900 km apart. Conversely, the 168 individuals of P. craigi, genotyped for 11 microsatellite markers, provided strong genetic structure at large geographical scales not explained by isolation by distance (IBD). Interestingly, we detected molecular affinities between samples from APEI-6 and UK-1A, despite being separated ~800 km. Although our migration analysis inferred very little progeny dispersal of individuals between areas, the major differentiation of OMS-1A from the other areas might be explained by the occurrence of predominantly northeasterly transport predicted by the HYCOM hydrodynamic model. Our study suggests that although APEI-6 does serve a conservation role, with species connectivity to the exploration areas, it is on its own inadequate as a propagule source for P. craigi for the entire eastern portion of the CCZ. Our new data suggest that an APEI located to the east and/or the south of the UK-1, OMS-1, BGR, TOML and NORI areas would be highly valuable.
Collapse
Affiliation(s)
- Sergi Taboada
- Life Sciences Department, The Natural History Museum, London, UK.,Departamento de Ciencias de la Vida, Ecología y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, London, UK
| | - Helena Wiklund
- Life Sciences Department, The Natural History Museum, London, UK
| | | | | | | | - Andrew C Dale
- The Scottish Association for Marine Science, Oban, UK
| | - Craig R Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas G Dahlgren
- NORCE, Uni Research, Bergen, Norway.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Adrian G Glover
- Life Sciences Department, The Natural History Museum, London, UK
| |
Collapse
|
10
|
Shaffer MR, Davy SK, Bell JJ. Hidden diversity in the genus Tethya: comparing molecular and morphological techniques for species identification. Heredity (Edinb) 2018; 122:354-369. [PMID: 30131516 DOI: 10.1038/s41437-018-0134-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/25/2018] [Accepted: 07/29/2018] [Indexed: 11/09/2022] Open
Abstract
Correctly determining species' identity is critical for estimating biodiversity and effectively managing marine populations, but is difficult for species that have few morphological traits or are highly plastic. Sponges are considered a taxonomically difficult group because they lack multiple consistent diagnostic features, which coupled with their common phenotypic plasticity, makes the presence of species complexes likely, but difficult to detect. Here, we investigated the evolutionary relationship of Tethya spp. in central New Zealand using both molecular and morphological techniques to highlight the potential for cryptic speciation in sponges. Phylogenetic reconstructions based on two mitochondrial markers (rnl, COI-ext) and one nuclear marker (18S) revealed three genetic clades, with one clade representing Tethya bergquistae and two clades belonging to what was a priori thought to be a single species, Tethya burtoni. Eleven microsatellite markers were also used to further resolve the T. burtoni group, revealing a division consistent with the 18S and rnl data. Morphological analysis based on spicule characteristics allowed T. bergquistae to be distinguished from T. burtoni, but revealed no apparent differences between the T. burtoni clades. Here, we highlight hidden genetic diversity within T. burtoni, likely representing a group consisting of incipient species that have undergone speciation but have yet to express clear morphological differences. Our study supports the notion that cryptic speciation in sponges may go undetected and diversity underestimated when using only morphology-based taxonomy, which has broad scale implications for conservation and management of marine systems.
Collapse
Affiliation(s)
- Megan R Shaffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| |
Collapse
|
11
|
Gabriel D, Draisma SGA, Schmidt WE, Schils T, Sauvage T, Maridakis C, Gurgel CFD, Harris DJ, Fredericq S. Beneath the hairy look: the hidden reproductive diversity of the Gibsmithia hawaiiensis complex (Dumontiaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2017; 53:1171-1192. [PMID: 28990202 DOI: 10.1111/jpy.12593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The tropical alga previously recognized as Gibsmithia hawaiiensis (Dumontiaceae, Rhodophyta) was recently suggested to represent a complex of species distributed throughout the Indo-Pacific Ocean and characterized by a peculiar combination of hairy (pilose) gelatinous lobes growing on cartilaginous stalks. Phylogenetic reconstructions based on three genetic markers are presented here with the inclusion of new samples. Further diversity is reported within the complex, with nine lineages spread in four major phylogenetic groups. The threshold between intra- and interspecific relationships was assessed by species delimitation methods, which indicate the existence of 8-10 putative species in the complex. Two species belonging to the G. hawaiiensis complex are described here: Gibsmithia malayensis sp. nov. from the Coral Triangle and Gibsmithia indopacifica sp. nov., widely distributed in the Central and Eastern Indo-Pacific. Morphological differences in the vegetative and reproductive structures of the newly described species are provided and compared to the previously described species of the complex. Additional lineages represent putative species, which await further investigation to clarify their taxonomic status. Gibsmithia hawaiiensis sensu stricto is confirmed to be endemic to the Hawaiian Islands, and Gibsmithia eilatensis is apparently confined to the Red Sea, with an expanded distribution in the region. New records of the G. hawaiiensis complex are reported from Egypt, Saudi Arabia, Indonesia, Philippines, and the Federated States of Micronesia, indicating that the complex is more broadly distributed than previously considered. The isolated position of Gibsmithia within the Dumontiaceae is corroborated by molecular data.
Collapse
Affiliation(s)
- Daniela Gabriel
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Research Network in Biodiversity and Evolutionary Biology, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - Stefano G A Draisma
- Faculty of Science, Excellence Center for Biodiversity of Peninsular Thailand, Seaweed and Seagrass Research Unit, Prince of Songkla University, Songkhla, 90112, Thailand
| | - William E Schmidt
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | - Tom Schils
- UOG Station, University of Guam Marine Laboratory, Mangilao, Guam, 96923, USA
| | - Thomas Sauvage
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | - Clio Maridakis
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Research Network in Biodiversity and Evolutionary Biology, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - C Frederico D Gurgel
- Center of Biological Sciences, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - D James Harris
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Research Network in Biodiversity and Evolutionary Biology, University of Porto, 4485-661, Vairão, Portugal
| | - Suzanne Fredericq
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| |
Collapse
|
12
|
Combosch DJ, Lemer S, Ward PD, Landman NH, Giribet G. Genomic signatures of evolution in Nautilus-An endangered living fossil. Mol Ecol 2017; 26:5923-5938. [PMID: 28872211 DOI: 10.1111/mec.14344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022]
Abstract
Living fossils are survivors of previously more diverse lineages that originated millions of years ago and persisted with little morphological change. Therefore, living fossils are model organisms to study both long-term and ongoing adaptation and speciation processes. However, many aspects of living fossil evolution and their persistence in the modern world remain unclear. Here, we investigate three major aspects of the evolutionary history of living fossils: cryptic speciation, population genetics and effective population sizes, using members of the genera Nautilus and Allonautilus as classic examples of true living fossils. For this, we analysed genomewide ddRAD-Seq data for all six currently recognized nautiloid species throughout their distribution range. Our analyses identified three major allopatric Nautilus clades: a South Pacific clade, subdivided into three subclades with no signs of admixture between them; a Coral Sea clade, consisting of two genetically distinct populations with significant admixture; and a widespread Indo-Pacific clade, devoid of significant genetic substructure. Within these major clades, we detected five Nautilus groups, which likely correspond to five distinct species. With the exception of Nautilus macromphalus, all previously described species are at odds with genomewide data, testifying to the prevalence of cryptic species among living fossils. Detailed FST analyses further revealed significant genome-wide and locus-specific signatures of selection between species and differentiated populations, which is demonstrated here for the first time in a living fossil. Finally, approximate Bayesian computation (ABC) simulations suggest large effective population sizes, which may explain the low levels of population differentiation commonly observed in living fossils.
Collapse
Affiliation(s)
- David J Combosch
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Marine Laboratory, University of Guam, Mangilao, GU, USA
| | - Sarah Lemer
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Marine Laboratory, University of Guam, Mangilao, GU, USA
| | - Peter D Ward
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Neil H Landman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Lal MM, Southgate PC, Jerry DR, Bosserelle C, Zenger KR. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 Km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. BMC Genomics 2017; 18:66. [PMID: 28073363 PMCID: PMC5225542 DOI: 10.1186/s12864-016-3410-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species' distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The unique life history characteristics of many marine invertebrates such as high dispersal rates, stochastic survival and variable recruitment are also likely to influence how populations are organised. To examine the microevolutionary forces influencing population structure, connectivity and adaptive variation in a highly-dispersive bivalve, populations of the black-lip pearl oyster Pinctada margaritifera were examined across its ~18,000 km Indo-Pacific distribution. RESULTS Analyses utilising 9,624 genome-wide SNPs and 580 oysters, discovered differing patterns of significant and substantial broad-scale genetic structure between the Indian and Pacific Ocean basins. Indian Ocean populations were markedly divergent (F st = 0.2534-0.4177, p < 0.001), compared to Pacific Ocean oysters, where basin-wide gene flow was much higher (F st = 0.0007-0.1090, p < 0.001). Partitioning of genetic diversity (hierarchical AMOVA) attributed 18.1% of variance between ocean basins, whereas greater proportions were resolved within samples and populations (45.8% and 35.7% respectively). Visualisation of population structure at selectively neutral loci resolved three and five discrete genetic clusters for the Indian and Pacific Oceans respectively. Evaluation of genetic structure at adaptive loci for Pacific populations (89 SNPs under directional selection; F st = 0.1012-0.4371, FDR = 0.05), revealed five clusters identical to those detected at neutral SNPs, suggesting environmental heterogeneity within the Pacific. Patterns of structure and connectivity were supported by Mantel tests of isolation by distance (IBD) and independent hydrodynamic particle dispersal simulations. CONCLUSIONS It is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, IBD and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels. Overall population organisation is far more elaborate than generalised CPH predictions, however valuable insights for regional fishery management, and a greater understanding of range-wide genetic structure in a highly-dispersive marine invertebrate have been gained.
Collapse
Affiliation(s)
- Monal M. Lal
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| | - Paul C. Southgate
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
- Australian Centre for Pacific Islands Research, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558 QLD Australia
| | - Dean R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| | - Cyprien Bosserelle
- Geoscience Division, Secretariat of the Pacific Community, 241 Mead Road, Nabua, Suva Fiji Islands
| | - Kyall R. Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| |
Collapse
|
14
|
Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D, Guirguis AN, Paulay G, Schätzle S, Wörheide G. Molecular biodiversity of Red Sea demosponges. MARINE POLLUTION BULLETIN 2016; 105:507-514. [PMID: 26776057 DOI: 10.1016/j.marpolbul.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.
Collapse
Affiliation(s)
- Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany.
| | - Oliver Voigt
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Ali M Al-Aidaroos
- Faculty of Marine Sciences, King Abdulaziz University, P. O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Gabriele Büttner
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Daniela Catania
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Adel Naguib Guirguis
- Faculty of Marine Sciences, King Abdulaziz University, P. O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Gustav Paulay
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Simone Schätzle
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany; Bavarian State Collection for Paleontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany.
| |
Collapse
|
15
|
Comparative phylogeography of the western Indian Ocean reef fauna. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Voigt O, Wörheide G. A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0247-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Kwan JC, Tianero MDB, Donia MS, Wyche TP, Bugni TS, Schmidt EW. Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella. PLoS One 2014; 9:e95850. [PMID: 24788869 PMCID: PMC4008419 DOI: 10.1371/journal.pone.0095850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/31/2014] [Indexed: 12/19/2022] Open
Abstract
Natural products (secondary metabolites) found in marine invertebrates are often thought to be produced by resident symbiotic bacteria, and these products appear to play a major role in the symbiotic interaction of bacteria and their hosts. In these animals, there is extensive variation, both in chemistry and in the symbiotic bacteria that produce them. Here, we sought to answer the question of what factors underlie chemical variation in the ocean. As a model, we investigated the colonial tunicate Lissoclinum patella because of its rich and varied chemistry and its broad geographic range. We sequenced mitochondrial cytochrome c oxidase 1 (COXI) genes, and found that animals classified as L. patella fall into three phylogenetic groups that may encompass several cryptic species. The presence of individual natural products followed the phylogenetic relationship of the host animals, even though the compounds are produced by symbiotic bacteria that do not follow host phylogeny. In sum, we show that cryptic populations of animals underlie the observed chemical diversity, suggesting that the host controls selection for particular secondary metabolite pathways. These results imply novel approaches to obtain chemical diversity from the oceans, and also demonstrate that the diversity of marine natural products may be greatly impacted by cryptic local extinctions.
Collapse
Affiliation(s)
- Jason C. Kwan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Ma. Diarey B. Tianero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abdul Wahab M, Fromont J, Whalan S, Webster N, Andreakis N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics? Mol Phylogenet Evol 2014; 73:23-39. [DOI: 10.1016/j.ympev.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 11/22/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
19
|
DeBiasse MB, Nelson BJ, Hellberg ME. Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef spongeCallyspongia vaginalis. Mol Ecol 2013; 23:225-38. [DOI: 10.1111/mec.12584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Melissa B. DeBiasse
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - Bradley J. Nelson
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - Michael E. Hellberg
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| |
Collapse
|
20
|
Becking LE, Erpenbeck D, Peijnenburg KTCA, de Voogd NJ. Phylogeography of the sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations. PLoS One 2013; 8:e75996. [PMID: 24098416 PMCID: PMC3788070 DOI: 10.1371/journal.pone.0075996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.
Collapse
Affiliation(s)
- Leontine E. Becking
- Naturalis Biodiversity Center, Department Marine Zoology, Leiden, The Netherlands
- Institute for Marine Resources and Ecosystem Studies (IMARES), Maritime Department, Den Helder, The Netherlands
- * E-mail:
| | - Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology & GeoBio-Center, Ludwig-Maximilians-University, Munich, Germany
| | - Katja T. C. A. Peijnenburg
- Naturalis Biodiversity Center, Department Marine Zoology, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole J. de Voogd
- Naturalis Biodiversity Center, Department Marine Zoology, Leiden, The Netherlands
| |
Collapse
|
21
|
Swierts T, Peijnenburg KTCA, de Leeuw C, Cleary DFR, Hörnlein C, Setiawan E, Wörheide G, Erpenbeck D, de Voogd NJ. Lock, stock and two different barrels: comparing the genetic composition of morphotypes of the indo-pacific sponge Xestospongia testudinaria. PLoS One 2013; 8:e74396. [PMID: 24069308 PMCID: PMC3771914 DOI: 10.1371/journal.pone.0074396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022] Open
Abstract
The giant barrel sponge Xestospongiatestudinaria is an ecologically important species that is widely distributed across the Indo-Pacific. Little is known, however, about the precise biogeographic distribution and the amount of morphological and genetic variation in this species. Here we provide the first detailed, fine-scaled (<200 km(2)) study of the morphological and genetic composition of X. testudinaria around Lembeh Island, Indonesia. Two mitochondrial (CO1 and ATP6 genes) and one nuclear (ATP synthase β intron) DNA markers were used to assess genetic variation. We identified four distinct morphotypes of X. testudinaria around Lembeh Island. These morphotypes were genetically differentiated with both mitochondrial and nuclear markers. Our results indicate that giant barrel sponges around Lembeh Island, which were all morphologically identified as X. testudinaria, consist of at least two different lineages that appear to be reproductively isolated. The first lineage is represented by individuals with a digitate surface area, CO1 haplotype C5, and is most abundant around the harbor area of Bitung city. The second lineage is represented by individuals with a predominantly smooth surface area, CO1 haplotype C1 and can be found all around Lembeh Island, though to a lesser extent around the harbor of Bitung city. Our findings of two additional unique genetic lineages suggests the presence of an even broader species complex possibly containing more than two reproductively isolated species. The existence of X. testudinaria as a species complex is a surprising result given the size, abundance and conspicuousness of the sponge.
Collapse
Affiliation(s)
- Thomas Swierts
- Marine Zoology, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Katja T. C. A. Peijnenburg
- Marine Zoology, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Christiaan de Leeuw
- Marine Zoology, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel F. R. Cleary
- Departamento de Biologia, CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - Christine Hörnlein
- Yerseke Marine Microbiology, Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
| | - Edwin Setiawan
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig- Maximilians-Universität München, München, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig- Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig- Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | | |
Collapse
|
22
|
Karlińska-Batres K, Wörheide G. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef. MICROBIAL ECOLOGY 2013; 65:740-752. [PMID: 23525793 DOI: 10.1007/s00248-013-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).
Collapse
Affiliation(s)
- Klementyna Karlińska-Batres
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
23
|
ANDREAKIS NIKOS, LUTER HEIDIM, WEBSTER NICOLES. Cryptic speciation and phylogeographic relationships in the elephant ear spongeIanthella basta(Porifera, Ianthellidae) from northern Australia. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2012.00848.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 2012; 64:271-84. [DOI: 10.1016/j.ympev.2012.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/31/2012] [Accepted: 03/31/2012] [Indexed: 11/22/2022]
|
25
|
Monorchiids (Platyhelminthes: Digenea) of chaetodontid fishes (Perciformes): Biogeographical patterns in the tropical Indo-West Pacific. Parasitol Int 2012; 61:288-306. [DOI: 10.1016/j.parint.2011.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 11/20/2022]
|
26
|
Belinky F, Szitenberg A, Goldfarb I, Feldstein T, Wörheide G, Ilan M, Huchon D. ALG11 – A new variable DNA marker for sponge phylogeny: Comparison of phylogenetic performances with the 18S rDNA and the COI gene. Mol Phylogenet Evol 2012; 63:702-13. [DOI: 10.1016/j.ympev.2012.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
|
27
|
Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA. Global diversity of sponges (Porifera). PLoS One 2012; 7:e35105. [PMID: 22558119 PMCID: PMC3338747 DOI: 10.1371/journal.pone.0035105] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.
Collapse
Affiliation(s)
- Rob W M Van Soest
- Netherlands Centre for Biodiversity Naturalis, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Knowledge of the functioning, health state, and capacity for recovery of marine benthic organisms and assemblages has become essential to adequately manage and preserve marine biodiversity. Molecular tools have allowed an entirely new way to tackle old and new questions in conservation biology and ecology, and sponge science is following this lead. In this review, we discuss the biological and ecological studies of sponges that have used molecular markers during the past 20 years and present an outlook for expected trends in the molecular ecology of sponges in the near future. We go from (1) the interface between inter- and intraspecies studies, to (2) phylogeography and population level analyses, (3) intra-population features such as clonality and chimerism, and (4) environmentally modulated gene expression. A range of molecular markers has been assayed with contrasting success to reveal cryptic species and to assess the genetic diversity and connectivity of sponge populations, as well as their capacity to respond to environmental changes. We discuss the pros and cons of the molecular gene partitions used to date and the prospects of a plentiful supply of new markers for sponge ecological studies in the near future, in light of recently available molecular technologies. We predict that molecular ecology studies of sponges will move from genetics (the use of one or some genes) to genomics (extensive genome or transcriptome sequencing) in the forthcoming years and that sponge ecologists will take advantage of this research trend to answer ecological and biological questions that would have been impossible to address a few years ago.
Collapse
Affiliation(s)
- Maria J Uriz
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Girona, Spain.
| | | |
Collapse
|
29
|
Cárdenas P, Pérez T, Boury-Esnault N. Sponge systematics facing new challenges. ADVANCES IN MARINE BIOLOGY 2012; 61:79-209. [PMID: 22560778 DOI: 10.1016/b978-0-12-387787-1.00010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species (potential new species revealed by molecular studies) is raised, and we show how they could be dealt with. Finally, we present a general strategy to help us succeed in building a Porifera tree along with the corresponding revised Porifera classification.
Collapse
Affiliation(s)
- P Cárdenas
- Département Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, UMR 7208 "BOrEA", Paris, France
| | | | | |
Collapse
|
30
|
Differentiation between populations of Japanese grenadier anchovy (Coilia nasus) in Northwestern Pacific based on ISSR markers: Implications for biogeography. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Syst Parasitol 2010; 77:185-204. [DOI: 10.1007/s11230-010-9266-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/27/2010] [Indexed: 11/27/2022]
|
32
|
Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schönberg CHL, Breeuwer JAJ, van Soest RWM. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 2010; 56:13-20. [PMID: 20363344 DOI: 10.1016/j.ympev.2010.03.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 03/02/2010] [Accepted: 03/29/2010] [Indexed: 12/01/2022]
Affiliation(s)
- J R Xavier
- Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam (IBED), Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Zhan X, Wang N, Chang J, Zhang Z. Effect of geological vicariance on mitochondrial DNA differentiation in Common Pheasant populations of the Loess Plateau and eastern China. Mol Phylogenet Evol 2010; 55:409-17. [DOI: 10.1016/j.ympev.2009.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 12/24/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
|
34
|
Reveillaud J, Remerie T, van Soest R, Erpenbeck D, Cárdenas P, Derycke S, Xavier JR, Rigaux A, Vanreusel A. Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Mol Phylogenet Evol 2010; 56:104-14. [PMID: 20382244 DOI: 10.1016/j.ympev.2010.03.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/24/2010] [Accepted: 03/29/2010] [Indexed: 11/16/2022]
Abstract
Coral reefs constitute the most diverse ecosystem of the marine realm and an increasing number of studies are focusing on coral species boundaries, distribution, and on processes that control species ranges. However, less attention has been paid to coral associated species. Deep-sea sponges dominate cold-water coral ecosystems, but virtually nothing is known about their molecular diversity. Moreover, species boundaries based on morphology may sometimes be inadequate, since sponges have few diagnostic characters. In this study, we investigated the molecular diversity within the genus Hexadella (Porifera, Demospongiae, Verongida, Ianthellidae) from the European shallow-water environment to the deep-sea coral ecosystems. Three molecular markers were used: one mitochondrial (COI) and two nuclear gene fragments (28S rDNA and the ATPS intron). Phylogenetic analyses revealed deeply divergent deep-sea clades congruent across the mitochondrial and nuclear markers. One clade contained specimens from the Irish, the Scottish, and the Norwegian margins and the Greenland Sea (Hexadella dedritifera) while another clade contained specimens from the Ionian Sea, the Bay of Biscay, and the Irish margin (H. cf. dedritifera). Moreover, these deeply divergent deep-sea clades showed a wide distribution suggesting a connection between the reefs. The results also point to the existence of a new deep-sea species (Hexadella sp.) in the Mediterranean Sea and of a cryptic shallow-water species (Hexadella cf. pruvoti) in the Gorringe Bank. In contrast, low genetic differentiation between H. cf. dedritifera and H. pruvoti from the Mediterranean Sea was observed. All Hexadella racovitzai specimens from the Mediterranean Sea (shallow and deep) to the Atlantic formed a monophyletic group.
Collapse
|
35
|
Luan PT, Lan T, Peng D, Yu L, Zhang YP. [Intra-individual allele heterozygotes in phylogenetic analysis]. YI CHUAN = HEREDITAS 2009; 31:875-81. [PMID: 19819839 DOI: 10.3724/sp.j.1005.2009.00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The study of evolutionary relationships among organisms is vital in evolutionary biology. To reconstruct a reliable species phylogeny, one of the most important issues is to choose proper molecular markers and take full advantage of phylogenetic information contained in these markers. Intra-individual allele heterozygotes (IIAHs) have been commonly detected in intron phylogenetic studies. How to incorporate IIAHs into phylogenetic framework has been a focus in current studies. In this review, the conception, isolation, and analytic methods of IIAHs in phylogeny were summarized.
Collapse
Affiliation(s)
- Peng-Tao Luan
- Laboratory of Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China.
| | | | | | | | | |
Collapse
|
36
|
VALDERRAMA DIEGO, ROSSI ANDRÉLINHARES, SOLÉ-CAVA ANTONIOMATEO, RAPP HANSTORE, KLAUTAU MICHELLE. Revalidation ofLeucetta floridana(Haeckel, 1872) (Porifera, Calcarea): a widespread species in the tropical western Atlantic. Zool J Linn Soc 2009. [DOI: 10.1111/j.1096-3642.2009.00522.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Fredua-Agyeman R, Adamski D, Liao RJ, Morden C, Borthakur D. Development and characterization of microsatellite markers for analysis of population differentiation in the tree legume Acacia koa (Fabaceae: Mimosoideae) in the Hawaiian Islands. Genome 2009; 51:1001-15. [PMID: 19088813 DOI: 10.1139/g08-087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this research was to develop and use microsatellite markers to characterize the high-value timber tree Acacia koa (koa), which is endemic to the Hawaiian Islands. Genomic DNA fragments of 300-1000 bp were cloned and sequenced following enrichment for microsatellite motifs by PCR using 7 oligonucleotide repeat primers in separate reactions. Among 96 sequences analyzed, 63 contained unique microsatellite motifs flanked by variable sequences. A dual PCR method involving a primer walking step was used to develop 15 primer pairs. Another 16 primer pairs were developed directly from the variable sequences on both sides of the microsatellite motifs. These 31 primer pairs were tested on 172 koa plants representing 11 populations collected from 4 of the major Hawaiian Islands. Nine of the primers that identified polymorphic microsatellite loci and 3 that detected unique alleles exclusively in some populations were used for genetic diversity studies of koa. Cluster analysis and multidimensional scaling of the allelic phenotype data revealed that koa from Kauai formed a distinct group separate from koa of the neighboring islands of Oahu, Maui, and Hawaii. The oldest of the four islands, Kauai, also had the most diverse populations of koa.
Collapse
Affiliation(s)
- Rudolph Fredua-Agyeman
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Agricultural Science 218, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|