1
|
Wang X, Zahoor Khan M, Liu Z, Wang T, Shi X, Ren W, Zhan Y, Wang C. Utilizing mobile digital radiography for detection of thoracolumbar vertebrae traits in live donkeys. Front Vet Sci 2024; 11:1322921. [PMID: 38487711 PMCID: PMC10937342 DOI: 10.3389/fvets.2024.1322921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
It has been well-established that the number of vertebrae is associated with body size and meat productivity. In current study we utilized a digital radiography (DR) technology to detect the number of thoracolumbar vertebrae in live donkeys. For this purpose, we introduced for the first time a groundbreaking device designed by our team for assessing thoracolumbar vertebrae number traits in equids, employing a sample of 1,000 donkeys sourced from five distinct donkey farms. This assessment incorporates a range of crucial body metrics, including body height, length, and various other measurements. Subsequently, our study determined the number of thoracolumbar vertebrae in 112 donkeys, utilizing the DR system. These findings were further validated through post-mortem evaluations conducted by slaughtering the donkeys. Our findings demonstrated a remarkable resemblance between the thoracolumbar vertebrae numbers visualized through the DR system in live donkeys and those obtained via slaughter verification. In conclusion, this research underscores the accuracy and effectiveness of the DR system for the detection of thoracolumbar vertebrae in live donkeys, which might be helpful for assessing the body size and meat productivity. We also recommended the utilization of DR system for counting thoracolumbar vertebrae in other animals in live state and could be a useful addition to livestock business industry for the prediction of body size and meat productivity efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
3
|
Park J, Do KT, Park KD, Lee HK. Genome-wide association study using a single-step approach for teat number in Duroc, Landrace and Yorkshire pigs in Korea. Anim Genet 2023; 54:743-751. [PMID: 37814452 DOI: 10.1111/age.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 07/25/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
We investigated the genetic basis of teat number in sows, which is an important factor in their reproductive performance. We collected genotyping data from 20 353 pigs of three breeds (Duroc, Landrace and Yorkshire) using the Porcine SNP60K Bead Chip, and analyzed phenotypic data from 240 603 pigs. The heritability values of total teat number were 0.33 ± 0.02, 0.51 ± 0.01 and 0.50 ± 0.01 in Duroc, Landrace and Yorkshire pigs, respectively. A genome-wide association study was used to identify significant chromosomal regions associated with teat number in SSC7 and SSC9 in Duroc pig, SSC3, SSC7 and SSC18 in Landrace pig, and SSC7, SSC8 and SSC10 in Yorkshire pig. Among the markers, MARC0038565, located between the vertnin (VRTN) and synapse differentiation-inducing 1-like (SYNDIG1L) genes, showed the strongest association in the Duroc pig and was significant in all breeds. In Landrace and Yorkshire pigs, the most significant markers were located within the apoptosis resistant E3 ubiquitin protein ligase 1 (AREL1) and latent transforming growth factor beta-binding protein 2 (LTBP2) genes in SSC7, respectively. VRTN is a candidate gene regulating the teat number. Most markers were located in SSC7, indicating their significance in determining teat number and their potential as valuable genomic selection targets for improving this trait. Extensive linkage disequilibrium blocks were identified in SSC7, supporting their use in genomic selection strategies. Our study provides valuable insights into the genetic architecture of teat numbers in pigs, and helps identify candidate genes and genomic regions that may contribute to this economically important trait.
Collapse
Affiliation(s)
- Jun Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Korea
| | - Kyoung-Tag Do
- Department of Animal Biotechnology, Jeju National University, Jeju, Korea
| | - Kyung-Do Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
4
|
Zhou F, Quan J, Ruan D, Qiu Y, Ding R, Xu C, Ye Y, Cai G, Liu L, Zhang Z, Yang J, Wu Z, Zheng E. Identification of Candidate Genes for Economically Important Carcass Cutting in Commercial Pigs through GWAS. Animals (Basel) 2023; 13:3243. [PMID: 37893967 PMCID: PMC10603759 DOI: 10.3390/ani13203243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
During the process of pork production, the carcasses of pigs are divided and sold, which provides better economic benefits and market competitiveness for pork production than selling the carcass as a whole. Due to the significant cost of post-slaughter phenotypic measurement, the genetic architecture of tenderloin weight (TLNW) and rib weight (RIBW)-important components of pig carcass economic value-remain unknown. In this study, we conducted genome-wide association studies (GWAS) for TLNW and RIBW traits in a population of 431 Duroc × Landrace × Yorkshire (DLY) pigs. In our study, the most significant single nucleotide polymorphism (SNP) associated with TLNW was identified as ASGA0085853 (3.28 Mb) on Sus scrofa chromosome 12 (SSC12), while for RIBW, it was Affx-1115046258 (172.45 Mb) on SSC13. Through haplotype block analysis, we discovered a novel quantitative trait locus (QTL) associated with TLNW, spanning a 5 kb region on SSC12, and a novel RIBW-associated QTL spanning 1.42 Mb on SSC13. Furthermore, we hypothesized that three candidate genes, TIMP2 and EML1, and SMN1, are associated with TLNW and RIBW, respectively. Our research not only addresses the knowledge gap regarding TLNW, but also serves as a valuable reference for studying RIBW. The identified SNP loci strongly associated with TLNW and RIBW may prove useful for marker-assisted selection in pig breeding programs.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 510642, China
| | - Langqing Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. J Anim Sci Biotechnol 2023; 14:136. [PMID: 37805653 PMCID: PMC10559557 DOI: 10.1186/s40104-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Yang L, Li X, Zhuang Z, Zhou S, Wu J, Xu C, Ruan D, Qiu Y, Zhao H, Zheng E, Cai G, Wu Z, Yang J. Genome-Wide Association Study Identifies the Crucial Candidate Genes for Teat Number in Crossbred Commercial Pigs. Animals (Basel) 2023; 13:1880. [PMID: 37889833 PMCID: PMC10251818 DOI: 10.3390/ani13111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 10/29/2023] Open
Abstract
The number of teats is a crucial reproductive trait with significant economic implications on maternal capacity and litter size. Consequently, improving this trait is essential to facilitate genetic selection for increased litter size. In this study, we performed a genome-wide association study (GWAS) of the number of teats in a three-way crossbred commercial Duroc × (Landrace × Yorkshire) (DLY) pig population comprising 1518 animals genotyped with the 50K BeadChip. Our analysis identified crucial quantitative trait loci (QTL) for the number of teats, containing the ABCD4 and VRTN genes on porcine chromosome 7. Our results establish SNP variants of ABCD4 and VRTN as new molecular markers for improving the number of teats in DLY pigs. Furthermore, the most significant noteworthy single nucleotide polymorphism (SNP) (7_97568284) was identified within the ABCD4 gene, exhibiting a significant association with the total teat number traits. This SNP accounted for a substantial proportion of the genetic variance, explaining 6.64% of the observed variation. These findings reveal a novel gene on SSC7 for the number of teats and provide a deeper understanding of the genetic mechanisms underlying reproductive traits.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Hua Zhao
- National S&T Innovation Center for Modern Agricultural Industry, Guangzhou 510642, China;
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (L.Y.); (X.L.); (Z.Z.); (S.Z.); (J.W.); (C.X.); (D.R.); (Y.Q.); (E.Z.); (G.C.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Ribani A, Taurisano V, Karatosidi D, Schiavo G, Bovo S, Bertolini F, Fontanesi L. Signatures of Admixture and Genetic Uniqueness in the Autochthonous Greek Black Pig Breed Deduced from Gene Polymorphisms Affecting Domestication-Derived Traits. Animals (Basel) 2023; 13:1763. [PMID: 37889646 PMCID: PMC10251807 DOI: 10.3390/ani13111763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 09/29/2023] Open
Abstract
The Greek Black Pig (or Greek Pig) is the only recognized autochthonous pig breed raised in Greece, usually in extensive or semi-extensive production systems. According to its name, the characteristic breed coat color is solid black. In this study, with the aim to start a systematic genetic characterization of the Greek Black Pig breed, we investigated polymorphisms in major genes well known to affect exterior and production traits (MC1R, KIT, NR6A1, VRTN and IGF2) and compared these data with population genetic information available in other Mediterranean and Western Balkan pig breeds and wild boars. None of the investigated gene markers were fixed for one allele, suggesting that, in the past, this breed experienced introgression from wild boars and admixture from cosmopolitan pig breeds, enriching the breed genetic pool that should be further investigated to design appropriate conservation genetic strategies. We identified a new MC1R allele, containing two missense mutations already reported in two other independent alleles, but here present in the same haplotype. This allele might be useful to disclose biological information that can lead to better understanding the cascade transmission of signals to produce melanin pigments. This study demonstrated that autochthonous genetic resources can be an interesting reservoir of unexpected genetic variants.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Despoina Karatosidi
- Research Institute of Animal Science, General Directorate of Hellenic Agricultural Organisation “Demeter”, Paralimni Giannitsa, 58100 Pella, Greece;
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| |
Collapse
|
8
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tang Q, Wang K, Tan S, Fang M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int J Mol Sci 2023; 24:ijms24087257. [PMID: 37108419 PMCID: PMC10138716 DOI: 10.3390/ijms24087257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91006, USA
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyi Tan
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Liu K, Hou L, Yin Y, Wang B, Liu C, Zhou W, Niu P, Li Q, Huang R, Li P. Genome-wide association study reveals new QTL and functional candidate genes for the number of ribs and carcass length in pigs. Anim Genet 2023. [PMID: 36911996 DOI: 10.1111/age.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
The number of ribs (NR) and carcass length (CL) are important economic traits in pig breeding programs. Pigs with a higher NR and longer CL produce greater pork yields. In the present study, Suhuai pigs with NR and CL phenotypes were genotyped using the Neogen® GGP Porcine 80 K SNP array to identify the QTL affecting NR and CL and dissect the candidate genes for the two traits. The SNP-chip data was imputed to the whole-genome sequence (iWGS) to increase the probability of identifying causal variants. Through genome-wide association studies (GWAS) based on both chip and iWGS data, significant SNPs were detected on Sus scrofa chromosome (SSC) 1, SSC4 and SSC7 for NR and on SSC5, SSC16 and SSC17 for CL. Moreover, two SNPs (H3GA0022644 and WU_10.2_7_103460706) on SSC7 detected in chip-based GWAS were significantly associated with both NR and CL. Through Bayes fine mapping, one reported QTL for NR on SSC7 and two reported QTL for CL on SSC17 were verified, and two new QTL (SSC1: 14.05-15.84 Mb and SSC4: 64.83-66.59 Mb) affecting NR and two new QTL (SSC5: 58.31-59.84 Mb and SSC16: 22.98-23.43 Mb) affecting CL were detected. According to the biological functions of genes, MTHFD1L on SSC1 and SULF1 on SSC4 are novel functional candidate genes for NR, and EMP1 on SSC5 and EGFLAM on SSC16 are novel functional candidate genes for CL. Overall, our findings provide a basis for identifying new causal genes and mutations affecting NR and CL.
Collapse
Affiliation(s)
- Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Liming Hou
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Yanzhen Yin
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Binbin Wang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qiang Li
- Huaiyin Xinhuai Pig Breeding Farm of Huaian City, Huaian, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| |
Collapse
|
10
|
Transcriptomics and Selection Pressure Analysis Reveals the Influence Mechanism of PLIN1 Protein on the Development of Small Size in Min Pigs. Int J Mol Sci 2023; 24:ijms24043947. [PMID: 36835359 PMCID: PMC9960057 DOI: 10.3390/ijms24043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Body size is an important biological phenotypic trait that has attracted substantial attention. Small domestic pigs can serve as excellent animal models for biomedicine and also help meet sacrificial culture needs in human societies. Although the mechanisms underlying vertebral development regulating body size variation in domestic pigs during the embryonic period have been well described, few studies have examined the genetic basis of body size variation in post embryonic developmental stages. In this study, seven candidate genes-PLIN1, LIPE, PNPLA1, SCD, FABP5, KRT10 and IVL-significantly associated with body size were identified in Min pigs, on the basis of weighted gene co-expression network analysis (WGCNA), and most of their functions were found to be associated with lipid deposition. Six candidate genes except for IVL were found to have been subjected to purifying selection. PLIN1 had the lowest ω value (0.139) and showed heterogeneous selective pressure among domestic pig lineages with different body sizes (p < 0.05). These results suggested that PLIN1 is an important genetic factor regulating lipid deposition and consequently affecting body size variation in pigs. The culture of whole pig sacrifice in Manchu during the Qing Dynasty in China might have contributed to the strong artificial domestication and selection of Hebao pigs.
Collapse
|
11
|
Liu Z, Wang T, Shi X, Wang X, Ren W, Huang B, Wang C. Identification of LTBP2 gene polymorphisms and their association with thoracolumbar vertebrae number, body size, and carcass traits in Dezhou donkeys. Front Genet 2022; 13:969959. [PMID: 36482906 PMCID: PMC9723334 DOI: 10.3389/fgene.2022.969959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023] Open
Abstract
The number of thoracolumbar vertebrae in Dezhou donkeys varies from 22 to 24 and is associated with body size and carcass traits. In mammals, the latent transforming growth factor beta binding protein 2 (LTBP2) has been found to have some functions in the development of thoracolumbar vertebrae. The relationship between LTBP2 and TLN (the number of thoracolumbar vertebrae) of Dezhou donkeys is yet to be reported. The purposes of this study are as follows: 1) to quantify the effect of thoracolumbar vertebrae number variation of Dezhou donkeys on body size and carcass trait; 2) to study the distribution of single nucleotide variants (SNVs) in the LTBP2 gene of Dezhou donkeys; and 3) to explore whether these SNVs can be used as candidate sites to study the mechanism of Dezhou donkey muti-thoracolumbar vertebrae development. The TLN, body size, and carcass traits of 392 individuals from a Dezhou donkey breed were recorded. All animals were sequenced for LTBP2 using GBTS liquid chip and 16 SNVs were used for further analysis. We then analyzed the relationship between these SNVs with TLN, body size, and carcass traits. The results showed that: 1) c.5547 + 860 C > T, c.5251 + 281 A > C, c.3769 + 40 C > T, and c.2782 + 3975 A > G were complete genetic linkages and significantly associated with thoracic vertebrae number (TN) (p < 0.05) (wild-type homozygotes had more TN than heterozygotes); 2) c.1381 + 768 T > G and c.1381 + 763 G > T were significantly associated with lumber vertebrae number (LN) (p < 0.05); 3) c.1003 + 704 C > T, c.1003 + 651 C > T, c.1003 + 626 A > G, and c.812 + 22526 T > G were significantly associated with chest circumference (CHC), front carcass weight (CWF), after carcass weight (CWA), and carcass weight (CW) (p < 0.05) (wild-type homozygotes were larger than other genotypes in CHC, CWF, CWA, and CW); and 4) the effect of variation is not consistent in c.565 + 11921 A > G, c.565 + 6840 A > G, c.565 + 3453 C > T, and c.494 + 5808 C > T. These results provide useful information that the polymorphism of LTBP2 is significantly associated with TLN, body size, and carcass traits in Dezhou donkeys, which can serve as a molecule marker to improve donkey production performance.
Collapse
|
12
|
Xu Y, Hu J, Fan W, Liu H, Zhang Y, Guo Z, Huang W, Liu X, Hou S. Genome-wide association analysis reveals 6 copy number variations associated with the number of cervical vertebrae in Pekin ducks. Front Cell Dev Biol 2022; 10:1041088. [PMID: 36438573 PMCID: PMC9685309 DOI: 10.3389/fcell.2022.1041088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 02/02/2024] Open
Abstract
As a critical developmental stage in vertebrates, the vertebral column formation process is under strict control; however, we observed variations in the number of cervical vertebrae in duck populations in our previous study. Here, we further explored the variations in the number of vertebrae in two duck populations: 421 Pekin duck × mallard F2 ducks and 850 Pekin ducks. Using resequencing data of 125 Pekin ducks with different numbers of cervical vertebrae and 352 Pekin duck × mallard F2 ducks with different numbers of thoracic vertebrae, we detected whole-genome copy number variations (CNVs) and implemented a genome-wide association study (GWAS) to identify the genetic variants related to the traits. The findings verified the existence of variations in the number of cervical vertebrae in duck populations. The number of cervical vertebrae in most ducks was 15, while that in a small number of the ducks was 14 or 16. The number of cervical vertebrae had a positive influence on the neck production, and one cervical vertebra addition could increase 11 g or 2 cm of duck neck. Genome-wide CNV association analysis identified six CNVs associated with the number of cervical vertebrae, and the associated CNV regions covered 15 genes which included WNT10A and WNT6. These findings improve our understanding of the variations in the number of vertebrae in ducks and lay a foundation for future duck breeding.
Collapse
Affiliation(s)
- Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Jian Hu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Knol EF, van der Spek D, Zak LJ. Genetic aspects of piglet survival and related traits: a review. J Anim Sci 2022; 100:6609156. [PMID: 35708592 PMCID: PMC9202567 DOI: 10.1093/jas/skac190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
In livestock, mortality in general, and mortality of the young, is societal worries and is economically relevant for farm efficiency. Genetic change is cumulative; if it exists for survival of the young and genetic merit can be estimated with sufficient accuracy, it can help alleviate the pressure of mortality. Lack of survival is a moving target; livestock production is in continuous change and labor shortage is a given. There is now ample evidence of clear genetic variance and of models able to provide genomic predictions with enough accuracy for selection response. Underlying traits such as birth weight, uniformity in birth weight, gestation length, number of teats, and farrowing duration all show genetic variation and support selection for survival or, alternatively, be selected for on their own merit.
Collapse
Affiliation(s)
- Egbert F Knol
- Topigs Norsvin Research Center, Beuningen, GE, 6641 SZ, The Netherlands
| | | | - Louisa J Zak
- Topigs Norsvin Research Center, Beuningen, GE, 6641 SZ, The Netherlands
| |
Collapse
|
14
|
Liu Z, Gao Q, Wang T, Chai W, Zhan Y, Akhtar F, Zhang Z, Li Y, Shi X, Wang C. Multi-Thoracolumbar Variations and NR6A1 Gene Polymorphisms Potentially Associated with Body Size and Carcass Traits of Dezhou Donkey. Animals (Basel) 2022; 12:ani12111349. [PMID: 35681814 PMCID: PMC9179361 DOI: 10.3390/ani12111349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
The number of thoracolumbar vertebrae is a quantitative trait positively correlated with the economic traits of livestock. More thoracolumbar vertebrae individuals could genetically be used to improve the livestock population, as more thoracolumbar vertebrae means a longer carcass, which could bring more meat production. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate gene for effecting the number of vertebrae in livestock. The purposes of this study are as follows: (a) Analyzing the effect of TLN variation on body size and carcass traits of Dezhou donkey; (b) Studying the distribution of seven single nucleotide variants (SNVs) in NR6A1 gene of Dezhou donkey; (c) Exploring the relationship between latent SNVs and TLN, the body size and carcass traits. We examined the thoracic and lumbar vertebrae number and seven SNVs in NR6A1 gene of 455 Dezhou donkeys, and analyzed the relationships between them. Five types of thoracolumbar combinations (T17L5 (individual with 17 thoracic and five lumbar vertebrae) 2.4%, T18L5 75.8%, T19L5 1.1%, T17L6 11.9%, and T18L6 8.8%) of Dezhou donkeys were detected in this study. For one thoracolumbar vertebra added, the body length of Dezhou donkey increases by 3 cm and the carcass weight increases by 6 kg. Seven SNVs (g.18093100G > T, g.18094587G > T, g.18106043G > T, g.18108764G > T, g.18110615T > G, g.18112000C > T and g.18114954T > G) of the NR6A1 gene were found to have a significant association with the TLN, body size and carcass traits of Dezhou donkey (p < 0.05), respectively. For instance, g.18114954C > T is significantly associated with lumber vertebrae number, the total number of thoracolumbar, and carcass weight, and individuals with TT genotype had significantly larger value than CC genotype (p < 0.05). Using these 7SNVs, 16 different haplotypes were estimated. Compared to Hap3Hap3, individuals homozygous for Hap2Hap2 showed significantly longer length in one thoracic spine (STL), the total thoracic vertebrae and one thoracolumbar spine. Our study will not only extend the understanding of genetic variation in the NR6A1 gene of Dezhou donkey, but also provide useful information for marker assisted selection in donkey breeding program.
Collapse
Affiliation(s)
- Ziwen Liu
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Qican Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China;
| | - Tianqi Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Wenqiong Chai
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yandong Zhan
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Faheem Akhtar
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Zhenwei Zhang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yuhua Li
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Xiaoyuan Shi
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Changfa Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
- Correspondence:
| |
Collapse
|
15
|
Exploiting single-marker and haplotype-based genome-wide association studies to identify QTL for the number of teats in Italian Duroc pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zhang H, Zhuang Z, Yang M, Ding R, Quan J, Zhou S, Gu T, Xu Z, Zheng E, Cai G, Yang J, Wu Z. Genome-Wide Detection of Genetic Loci and Candidate Genes for Body Conformation Traits in Duroc × Landrace × Yorkshire Crossbred Pigs. Front Genet 2021; 12:664343. [PMID: 34707635 PMCID: PMC8542986 DOI: 10.3389/fgene.2021.664343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
The Duroc × (Landrace × Yorkshire) hybrid pigs (DLY) are the most popular commercial pigs, providing consumers with the largest source of pork. In order to gain more insights into the genetic architecture of economically important traits in pigs, we performed a genome-wide association study (GWAS) using the GeneSeek Porcine 50 K SNP Chip to map the genetic markers and genes associated with body conformation traits (BCT) in 311 DLY pigs. The quantitative traits analyzed included body weight (BW), carcass length (CL), body length (BL), body height (BH), and body mass index (BMI). BMI was defined as BMICL, BMIBL, and BMIBH, respectively, based on CL, BL, and BH phenotypic data. We identified 82 SNPs for the seven traits by GEMMA-based and FarmCPU-based GWASs. Both methods detected two quantitative trait loci (QTL) on SSC8 and SSC17 for body conformation traits. Several candidate genes (such as TNFAIP3, KDM4C, HSPG2, BMP2, PLCB4, and GRM5) were found to be associated with body weight and body conformation traits in pigs. Notably, the BMP2 gene had pleiotropic effects on CL, BL, BH, BMICL, and BMIBL and is proposed as a strong candidate gene for body size due to its involvement in growth and bone development. Furthermore, gene set enrichment analysis indicated that most of the pathway terms are associated with regulation of cell growth, negative regulation of cell population proliferation, and chondrocyte differentiation. We anticipate that these results further advance our understanding of the genetic architecture of body conformation traits in the popular commercial DLY pigs and provide new insights into the genetic architecture of BMI in pigs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangdong, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| |
Collapse
|
17
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
18
|
Zhang Y, Li M, Liu J, Peng Y, Zuo B, Xu Z. Effects of KPNA7 gene polymorphisms on reproductive traits in France Large White pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1965609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yunxia Zhang
- College of life Science and Agronomy, Zhoukou Normal University, Zhoukou, People’s Republic of China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mingyang Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jun Liu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Department of Basic Veterinary, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Li LY, Xiao SJ, Tu JM, Zhang ZK, Zheng H, Huang LB, Huang ZY, Yan M, Liu XD, Guo YM. A further survey of the quantitative trait loci affecting swine body size and carcass traits in five related pig populations. Anim Genet 2021; 52:621-632. [PMID: 34182604 DOI: 10.1111/age.13112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Breeding for good meat quality performance while maintaining large body size and desirable carcass traits has been the major challenge for modern swine selective breeding. To address this goal, in the present work we studied five related populations produced by two commercial breeds (Berkshire and Duroc) and two Chinese breeds (Licha black pig and Lulai black pig). A single-trait GWAS performed on 20 body size and carcass traits using a self-developed China Chip-1 porcine SNP50K BeadChip identified 11 genome-wide significant QTL on nine chromosomes and 22 suggestive QTL on 15 chromosomes. For the 11 genome-wide significant QTL, eight were detected in at least two populations, and the rest were population-specific and only mapped in Shanxia black pig. Most of the genome-wide significant QTL were pleiotropic; for example, the QTL around 75.65 Mb on SSC4 was associated with four traits at genome-wide significance level. After screening the genes within 50 kb of the top SNP for each genome-wide significant QTL, NR6A1 and VRTN were chosen as candidate genes for vertebrae number; PLAG1 and BMP2 were identified as candidate genes for body size; and MC4R was the strong candidate gene for body weight. The four genes have been reported as candidates for thoracic vertebrae number, lumbar vertebrae number, carcass length and body weight respectively in previous studies. The effects of VRTN on thoracic vertebrae number, carcass length and body length have been verified in Shanxia black pig. Therefore, the VRTN genotype could be used in gene-assisted selection, and this could accelerate genetic improvement of body size and carcass traits in Shanxia black pig.
Collapse
Affiliation(s)
- L-Y Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - S-J Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - J-M Tu
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-K Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - H Zheng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - L-B Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-Y Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - M Yan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - X-D Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Y-M Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
20
|
SINE Insertion in the Intron of Pig GHR May Decrease Its Expression by Acting as a Repressor. Animals (Basel) 2021; 11:ani11071871. [PMID: 34201672 PMCID: PMC8300111 DOI: 10.3390/ani11071871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary GH/IGF axis genes play a central role in the regulation of skeletal accretion during development and growth, and thus represent candidate genes for growth traits. Retrotransposon insertion polymorphisms are major contributors to structural variations. They tend to generate large effect mutations resulting in variations in target gene activity and phenotype due to the fact that they carry functional elements, such as enhancers, insulators, or promoters. In the present study, RIPs in four GH/IGF axis genes (GH, GHR, IGF1, and IGF1R) were investigated by comparative genomics and PCR. Four RIPs in the GHR gene and one RIP in the IGF1 gene were identified. Further analysis revealed that one RIP in the first intron of GHR might play a role in the regulation of GHR expression by acting as a repressor. These findings contribute to the understanding of the role of RIPs in the genetic variation of GH/IGF axis genes and phenotypic variation in pigs. Abstract The genetic diversity of the GH/IGF axis genes and their association with the variation of gene expression and phenotypic traits, principally represented by SNPs, have been extensively reported. Nevertheless, the impact of retrotransposon insertion polymorphisms (RIPs) on the GH/IGF axis gene activity has not been reported. In the present study, bioinformatic prediction and PCR verification were performed to screen RIPs in four GH/IGF axis genes (GH, GHR, IGF1 and IGF1R). In total, five RIPs, including one SINE RIP in intron 3 of IGF1, one L1 RIP in intron 7 of GHR, and three SINE RIPs in intron 1, intron 5 and intron 9 of GHR, were confirmed by PCR, displaying polymorphisms in diverse breeds. Dual luciferase reporter assay revealed that the SINE insertion in intron 1 of GHR significantly repressed the GHR promoter activity in PK15, Hela, C2C12 and 3T3-L1 cells. Furthermore, qPCR results confirmed that this SINE insertion was associated with a decreased expression of GHR in the leg muscle and longissimus dorsi, indicating that it may act as a repressor involved in the regulation of GHR expression. In summary, our data revealed that RIPs contribute to the genetic variation of GH/IGF axis genes, whereby one SINE RIP in the intron 1 of GHR may decrease the expression of GHR by acting as a repressor.
Collapse
|
21
|
Bovo S, Ballan M, Schiavo G, Ribani A, Tinarelli S, Utzeri VJ, Dall'Olio S, Gallo M, Fontanesi L. Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds. Anim Genet 2021; 52:440-450. [PMID: 34096632 PMCID: PMC8362157 DOI: 10.1111/age.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
The number of teats is a reproductive‐related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single‐marker and haplotypes‐based genome‐wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype‐based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single‐marker and haplotype‐based genome‐wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.
Collapse
Affiliation(s)
- S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Ballan
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy.,Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
22
|
Zhong YJ, Yang Y, Wang XY, Di R, Chu MX, Liu QY. Expression analysis and single-nucleotide polymorphisms of SYNDIG1L and UNC13C genes associated with thoracic vertebral numbers in sheep ( Ovis aries). Arch Anim Breed 2021; 64:131-138. [PMID: 34084911 PMCID: PMC8131962 DOI: 10.5194/aab-64-131-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The objective of the current study was to analyze expression levels of synapse differentiation inducing 1-like
(SYNDIG1L) and unc-13 homolog C (UNC13C) genes in different tissues, while single-nucleotide polymorphisms
(SNPs) of two genes were associated with multiple thoracic vertebrae traits
in both Small-tailed Han sheep (STH) and Sunite sheep (SNT). The expression
levels of SYNDIG1L and UNC13C were analyzed in the brain, cerebellum, heart, liver, spleen,
lung, kidney, adrenal gland, uterine horn, longissimus muscle, and abdominal
adipose tissues of two sheep breeds with different thoracic vertebral
number (TVN) sheep (T13 groups and T14 groups) by real-time quantitative
polymerase chain reaction (RT-qPCR). Meanwhile, the polymorphisms of UNC13C gene g.52919279C>T
and SYNDIG1L gene g.82573325C>A in T14 and T13 were
genotyped by the Sequenom MassARRAY® SNP assay, and
association analysis was performed with the TVN. The results demonstrated
that UNC13C gene was extensively expressed in 11 tissues. The expression of
UNC13C gene in longissimus muscle of T14 groups of STH was significantly higher
than that of T13 groups (P<0.05). SYNDIG1L gene was overexpressed in brain
and cerebellum tissues, and the expression level of UNC13C gene in the brain and
cerebellum of T13 groups in SNT was significantly higher than that of T14
groups (P<0.01). Association analysis showed that SNPs found in the
UNC13C gene had no significant effects on TVN for both two genes. The polymorphism
of SYNDIG1L g.82573325C>A was significantly correlated with the TVN in
both STH (P<0.05) and SNT (P<0.01). Taken together, the
SYNDIG1L gene was related to thoracic vertebral development, and this variation may
be potentially used as a molecular marker to select the multiple thoracic
vertebrae in sheep.
Collapse
Affiliation(s)
- Ying-Jie Zhong
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yang Yang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiang-Yu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qiu-Yue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
23
|
Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies. Animals (Basel) 2021; 11:ani11030806. [PMID: 33805666 PMCID: PMC7998181 DOI: 10.3390/ani11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Number of teats is very important for lactating sows. We conducted genome-wide association studies (GWAS) and estimated the genetic parameters for traits related to teat number. Results showed that there were nine and 22 SNPs exceeding genome-wide significance and suggestive significance levels, respectively. Eighteen genes annotated near them were concentrated on chromosomes 7 and 10. Among them, three new candidate genes were located on the genomic regions around the significant SNPs. Our findings provide new insight into investigating the complex genetic mechanism of traits related to teat number in pigs. Abstract The number of teats is related to the nursing ability of sows. In the present study, we conducted genome-wide association studies (GWAS) for traits related to teat number in Duroc pig population. Two mixed models, one for counted and another for binary phenotypic traits, were employed to analyze seven traits: the right (RTN), left (LTN), and total (TTN) teat numbers; maximum teat number on a side (MAX); left minus right side teat number (LR); the absolute value of LR (ALR); and the presence of symmetry between left and right teat numbers (SLR). We identified 11, 1, 4, 13, and 9 significant SNPs associated with traits RTN, LTN, MAX, TTN, and SLR, respectively. One significant SNP (MARC0038565) was found to be simultaneous associated with RTN, LTN, MAX and TTN. Two annotated genes (VRTN and SYNDIG1L) were located in genomic region around this SNP. Three significant SNPs were shown to be associated with TTN, RTN and MAX traits. Seven significant SNPs were simultaneously detected in two traits of TTN and RTN. Other two SNPs were only identified in TTN. These 13 SNPs were clustered in the genomic region between 96.10—98.09 Mb on chromosome 7. Moreover, nine significant SNPs were shown to be significantly associated with SLR. In total, four and 22 SNPs surpassed genome-wide significance and suggestive significance levels, respectively. Among candidate genes annotated, eight genes have documented association with the teat number relevant traits. Out of them, DPF3 genes on Sus scrofa chromosome (SSC) 7 and the NRP1 gene on SSC 10 were new candidate genes identified in this study. Our findings demonstrate the genetic mechanism of teat number relevant traits and provide a reference to further improve reproductive performances in practical pig breeding programs.
Collapse
|
24
|
Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, Bozzi R, Čandek-Potokar M, Charneca R, Fernandez AI, Gallo M, García F, Karolyi D, Kušec G, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim Genet 2021; 52:155-170. [PMID: 33544919 DOI: 10.1111/age.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
ROHs are long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROHs and their length are indicators of the level and origin of inbreeding. Frequent common ROHs within the same population define ROH islands and indicate hotspots of selection. In this work, we investigated ROHs in a total of 1131 pigs from 20 European local pig breeds and in three cosmopolitan breeds, genotyped with the GGP Porcine HD Genomic Profiler. plink software was used to identify ROHs. Size classes and genomic inbreeding parameters were evaluated. ROH islands were defined by evaluating different thresholds of homozygous SNP frequency. A functional overview of breed-specific ROH islands was obtained via over-representation analyses of GO biological processes. Mora Romagnola and Turopolje breeds had the largest proportions of genome covered with ROH (~1003 and ~955 Mb respectively), whereas Nero Siciliano and Sarda breeds had the lowest proportions (~207 and 247 Mb respectively). The highest proportion of long ROH (>16 Mb) was in Apulo-Calabrese, Mora Romagnola and Casertana. The largest number of ROH islands was identified in the Italian Landrace (n = 32), Cinta Senese (n = 26) and Lithuanian White Old Type (n = 22) breeds. Several ROH islands were in regions encompassing genes known to affect morphological traits. Comparative ROH structure analysis among breeds indicated the similar genetic structure of local breeds across Europe. This study contributed to understanding of the genetic history of the investigated pig breeds and provided information to manage these pig genetic resources.
Collapse
Affiliation(s)
- G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araújo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Division, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - M Čandek-Potokar
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Rome, 00198, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - G Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M-J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, Université de Toulouse, INRA, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Usai
- Agris Sardegna, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
25
|
Bovo S, Schiavo G, Utzeri VJ, Ribani A, Schiavitto M, Buttazzoni L, Negrini R, Fontanesi L. A genome-wide association study for the number of teats in European rabbits (Oryctolagus cuniculus) identifies several candidate genes affecting this trait. Anim Genet 2021; 52:237-243. [PMID: 33428230 DOI: 10.1111/age.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/01/2022]
Abstract
In the European rabbit (Oryctolagus cuniculus), a polytocous livestock species, the number of teats indirectly impacts the doe reproduction efficiency and, in turn, the sustainable production of rabbit meat. In this study, we carried out a genome-wide association study (GWAS) for the total number of teats in 247 Italian White does included in the Italian White rabbit breed selection program, by applying a selective genotyping approach. Does had either 8 (n = 121) or 10 teats (n = 126). All rabbits were genotyped with the Affymetrix Axiom OrcunSNP Array. Genomic data from the two extreme groups of rabbits were also analysed with the single-marker fixation index statistic and combined with the GWAS results. The GWAS identified 50 significant SNPs and the fixation index analysis identified a total of 20 SNPs that trespassed the 99.98th percentile threshold, 19 of which confirmed the GWAS results. The most significant SNP (P = 4.31 × 10-11 ) was located on OCU1, close to the NUDT2 gene, a breast carcinoma cells proliferation promoter. Another significant SNP identified as candidate gene NR6A1, which is well known to play an important role in affecting the correlated number of vertebrae in pigs. Other significant markers were close to candidate genes involved in determining body length in mice. Markers associated with increased number of teats could be included in selection programmes to speed up the improvement for this trait in rabbit lines that need to increase maternal performances.
Collapse
Affiliation(s)
- S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Contrada Giancola snc, Volturara Appula, Foggia, 71030, Italy
| | - L Buttazzoni
- Research Centre for Animal Production and Aquaculture, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Via Salaria 31, Monterotondo, Rome, 00015, Italy
| | - R Negrini
- Associazione Italiana Allevatori, Via G. Tomassetti 9, Rome, 00161, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
26
|
Ijiri M, Lai YC, Kawaguchi H, Fujimoto Y, Miura N, Matsuo T, Tanimoto A. NR6A1 Allelic Frequencies as an Index for both Miniaturizing and Increasing Pig Body Size. In Vivo 2021; 35:163-167. [PMID: 33402462 PMCID: PMC7880744 DOI: 10.21873/invivo.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The number of vertebrae in swine varies from 19 to 23 and is associated with body size. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate for affecting the number of vertebrae in swine. Wild boars, which uniformly have 19 vertebrae, have the wild type allele while multi-vertebrae European commercial pigs have the mutated allele. Our aim was to confirm the factor of the miniaturization. MATERIALS AND METHODS We examined vertebrae number and NR6A1 polymorphism in the Microminipig and three domestic breeds that vary in body size. RESULTS The Microminipig had 19 or less vertebrae and a wild type NR6A1 genotype. Three domestic breeds had more than 21 vertebrae while the largest vertebrae number was observed in multi-vertebrae-fixed Large White. Heterozygous genotypes were observed in the middle-sized indigenous pig while homozygous NR6A1 mutations were observed in European commercial breeds. CONCLUSION NR6A1 could be a useful index for both miniaturizing and increasing pig body size.
Collapse
Affiliation(s)
- Moe Ijiri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yu-Chang Lai
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan;
| | - Yoshikazu Fujimoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Naoki Miura
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Tomohide Matsuo
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
27
|
Genome-Wide Association Analysis Identified BMPR1A as a Novel Candidate Gene Affecting the Number of Thoracic Vertebrae in a Large White × Minzhu Intercross Pig Population. Animals (Basel) 2020; 10:ani10112186. [PMID: 33266466 PMCID: PMC7700692 DOI: 10.3390/ani10112186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Simple Summary The number of thoracic vertebrae (NTV) and number of vertebrae (NV) varies among pig breeds with a high correlation of about 0.8. It is important to discover variants associated with the NTV by considering the effect of the NV in pig. The results suggest that regulation variants on SSC7 might play crucial roles in the NTV and the FOS on SSC7 should be further studied as a critical candidate gene. In addition, BMPR1A was identified as a novel candidate gene affecting the NTV in pigs. Abstract The number of vertebrae (NV), especially the number of thoracic vertebrae (NTV), varies among pig breeds. The NTV is controlled by vertebral segmentation and the number of somites during embryonic development. Although there is a high correlation between the NTV and NV, studies on a fixed NV have mainly considered the absolute numbers of thoracic vertebrae instead of vertebral segmentation. Therefore, this study aimed to discover variants associated with the NTV by considering the effect of the NV in pigs. The NTV and NV of 542 F2 individuals from a Large White × Minzhu pig crossbreed were recorded. All animals were genotyped for VRTN g.19034 A > C, LTBP2 c.4481A > C, and 37 missense or splice variants previously reported in a 951-kb interval on SSC7 and 147 single nucleotide polymorphisms (SNPs) on SSC14. To identify NTV-associated SNPs, we firstly performed a genome-wide association study (GWAS) using the Q + K (population structure + kinship matrix) model in TASSEL. With the NV as a covariate, the obtained data were used to identify the SNPs with the most significant genome-wide association with the NTV by performing a GWAS on a PorcineSNP60K Genotyping BeadChip. Finally, a conditional GWAS was performed by fixing this SNP. The GWAS showed that 31 SNPs on SSC7 have significant genome-wide associations with the NTV. No missense or splice variants were found to be associated with the NTV significantly. A linkage disequilibrium analysis suggested the existence of quantitative trait loci (QTL) in a 479-Kb region on SSC7, which contained a critical candidate gene FOS for the NTV in pigs. Subsequently, a conditional GWAS was performed by fixing M1GA0010658, the most significant of these SNPs. Two SNPs in BMPR1A were found to have significant genome-wide associations and a significant dominant effect. The leading SNP, S14_87859370, accounted for 3.86% of the phenotypic variance. Our study uncovered that regulation variants in FOS on SSC7 and in BMPR1A on SSC14 might play important roles in controlling the NTV, and thus these genetic factors may be harnessed for increasing the NTV in pigs.
Collapse
|
28
|
Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, Wang X, Quan J, Zheng E, Cai G, Huang W, Yang J, Wu Z. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics 2020; 21:344. [PMID: 32380955 PMCID: PMC7204245 DOI: 10.1186/s12864-020-6742-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND More teats are necessary for sows to nurse larger litters to provide immunity and nutrient for piglets prior to weaning. Previous studies have reported the strong effect of an insertion mutation in the Vertebrae Development Associated (VRTN) gene on Sus scrofa chromosome 7 (SSC7) that increased the number of thoracic vertebrae and teat number in pigs. We used genome-wide association studies (GWAS) to map genetic markers and genes associated with teat number in two Duroc pig populations with different genetic backgrounds. A single marker method and several multi-locus methods were utilized. A meta-analysis that combined the effects and P-values of 34,681 single nucleotide polymorphisms (SNPs) that were common in the results of single marker GWAS of American and Canadian Duroc pigs was conducted. We also performed association tests between the VRTN insertion and teat number in the same populations. RESULTS A total of 97 SNPs were found to be associated with teat number. Among these, six, eight and seven SNPs were consistently detected with two, three and four multi-locus methods, respectively. Seven SNPs were concordantly identified between single marker and multi-locus methods. Moreover, 26 SNPs were newly found by multi-locus methods to be associated with teat number. Notably, we detected one consistent quantitative trait locus (QTL) on SSC7 for teat number using single-locus and meta-analysis of GWAS and the top SNP (rs692640845) explained 8.68% phenotypic variance of teat number in the Canadian Duroc pigs. The associations between the VRTN insertion and teat number in two Duroc pig populations were substantially weaker. Further analysis revealed that the effect of VRTN on teat number may be mediated by its LD with the true causal mutation. CONCLUSIONS Our study suggested that VRTN insertion may not be a strong or the only candidate causal mutation for the QTL on SSC7 for teat number in the analyzed Duroc pig populations. The combination of single-locus and multi-locus GWAS detected additional SNPs that were absent using only one model. The identified SNPs will be useful for the genetic improvement of teat number in pigs by assigning higher weights to associated SNPs in genomic selection.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Wen Huang
- Department of animal science, Michigan State University, East Lansing, MI, USA
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
29
|
Moscatelli G, Dall'Olio S, Bovo S, Schiavo G, Kazemi H, Ribani A, Zambonelli P, Tinarelli S, Gallo M, Bertolini F, Fontanesi L. Genome-wide association studies for the number of teats and teat asymmetry patterns in Large White pigs. Anim Genet 2020; 51:595-600. [PMID: 32363597 DOI: 10.1111/age.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
The number of teats is a morphological trait that influences the mothering ability of the sows and thus their reproduction performances. In this study, we carried out GWASs for the total number of teats and other 12 related parameters in 821 Italian Large White heavy pigs. All pigs were genotyped with the Illumina PorcineSNP60 BeadChip array. For four investigated parameters (total number of teats, the number of teats of the left line, the number of teats of the right line and the maximum number of teats comparing the two sides), significant markers were identified on SSC7, in the region of the vertnin (VRTN) gene. Significant markers for the numbers of posterior teats and the absolute difference between anterior and posterior teat numbers were consistently identified on SSC6. The most significant SNP for these parameters was an intron variant in the TOX high mobility group box family member 3 (TOX3) gene. For the other four parameters (absolute difference between the two sides; anterior teats; the ratio between the posterior and the anterior number of teats; and the absence or the presence of extra teats) only suggestively significant markers were identified on several other chromosomes. This study further supported the role of the VRTN gene region in affecting the recorded variability of the number of teats in the Italian Large White pig population and identified a genomic region potentially affecting the biological mechanisms controlling the developmental programme of morphological features in pigs.
Collapse
Affiliation(s)
- G Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - S Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - H Kazemi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - P Zambonelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - S Tinarelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.,Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198, Roma, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198, Roma, Italy
| | - F Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
30
|
Wang W, Chen C, Wang X, Zhang L, Shen D, Wang S, Gao B, Mao J, Song C. Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals (Basel) 2020; 10:ani10030484. [PMID: 32183166 PMCID: PMC7142862 DOI: 10.3390/ani10030484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary An increase in the number of ribs (RIB) could improve carcass length (CL) and body size. Cannon bone circumference (CBC) is a pivotal body size trait, and a large CBC could enhance the capacity to bear excessive body weight, vigorous exercise, and resistance to injuries. Several researchers showed that the vertnin (VRTN) gene g.20311_20312ins291 (NC_010449.5 7: g.20311_20312ins291) is an important variant that is related to RIB and CL of Western pigs. However, it is unknown whether this variant could affect the CBC of pigs. Our study showed that this variant was significantly associated with RIB, carcass diagonal length (CDL), and CBC in Suhuai pigs; therefore, it could be used as a potential molecular marker for improving RIB, CDL, and CBC in this breed. Abstract The vertnin (VRTN) gene g.20311_20312ins291 was reported as an important variant related to the number of ribs (RIB), and the ins/ins genotype was advantageous for improving RIB of Western pigs. The purpose of this study was to determine whether the VRTN gene g.20311_20312ins291 influences RIB, carcass traits, and body size traits, including cannon bone circumference (CBC) in Chinese Suhuai pigs. We found that the VRTN gene g.20311_20312ins291 was polymorphic in Suhuai fattening pigs and gilts. The polymorphism of g.20311_20312ins291 was significantly associated with RIB and CDL in Suhuai fattening pigs (p < 0.01), whereas this variant had no influence on carcass weight (CWT). There was a tendency of association between this variant and carcass straight length (CSL) in Suhuai fattening pigs (p = 0.06). The polymorphism of g.20311_20312ins291 was also significantly associated with CBC in Suhuai gilts (p = 0.04). Furthermore, CBC was positively genetically correlated with body length (0.22, p < 0.01) and body weight (0.15, p < 0.01). Our results indicated that the VRTN gene g.20311_20312ins291 could be used as a potential marker for improving RIB, CDL, and CBC in Suhuai pigs.
Collapse
|
32
|
Wang Y, Cai H, Luo X, Ai Y, Jiang M, Wen Y. Insight into unique somitogenesis of yak (Bos grunniens) with one additional thoracic vertebra. BMC Genomics 2020; 21:201. [PMID: 32131721 PMCID: PMC7057515 DOI: 10.1186/s12864-020-6598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 01/23/2023] Open
Abstract
Background The yak is a species of livestock which is crucial for local communities of the Qinghai-Tibet Plateau and adjacent regions and naturally owns one more thoracic vertebra than cattle. Recently, a sub-population of yak termed as the Jinchuan yak has been identified with over half its members own a thoracolumbar vertebral formula of T15L5 instead of the natural T14L5 arrangement. The novel T15L5 positioning is a preferred genetic trait leading to enhanced meat and milk production. Selective breeding of this trait would have great agricultural value and exploration of the molecular mechanisms underlying this trait would both accelerate this process and provide us insight into the development and regulation of somitogenesis. Results Here we investigated the genetic background of the Jinchuan yak through resequencing fifteen individuals, comprising five T15L5 individuals and ten T14L5 individuals with an average sequencing depth of > 10X, whose thoracolumbar vertebral formulae were confirmed by anatomical observation. Principal component analysis, linkage disequilibrium analysis, phylogenetic analysis, and selective sweep analysis were carried out to explore Jinchuan yak’s genetic background. Three hundred and thirty candidate markers were identified as associated with the additional thoracic vertebrae and target sequencing was used to validate seven carefully selected markers in an additional 51 Jinchuan yaks. The accuracies of predicting 15 thoracic vertebrae and 20 thoracolumbar vertebrae with these 7 markers were 100.00 and 33.33% despite they both could only represent 20% of all possible genetic diversity. Two genes, PPP2R2B and TBLR1, were found to harbour the most candidate markers associated with the trait and likely contribute to the unique somitic number and identity according to their reported roles in the mechanism of somitogenesis. Conclusions Our findings provide a clear depiction of the Jinchuan yak’s genetic background and a solid foundation for marker-assistant selection. Further exploitation of this unique population and trait could be promoted with the aid of our genomic resource.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Yi Ai
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, 610041, China
| | - Mingfeng Jiang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Yongli Wen
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, 610041, China.
| |
Collapse
|
33
|
Li C, Li M, Li X, Ni W, Xu Y, Yao R, Wei B, Zhang M, Li H, Zhao Y, Liu L, Ullah Y, Jiang Y, Hu S. Whole-Genome Resequencing Reveals Loci Associated With Thoracic Vertebrae Number in Sheep. Front Genet 2019; 10:674. [PMID: 31379930 PMCID: PMC6657399 DOI: 10.3389/fgene.2019.00674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
The number of vertebrae, especially thoracic vertebrae, is an important economic trait that may influence carcass length and meat production in animals. However, the genetic basis of vertebrae number in sheep is still poorly understood. To detect the candidate genes, 400 increased number of thoracic vertebrae (T14L6) and 200 normal (T13L6) Kazakh sheep were collected. We generated and sequenced 60 pools of genomic DNA (each pool prepared by mixing genomic DNA from 10 sheep with the same thoracic traits), with an average depth of coverage of 25.65×. We identified a total of 42,075,402 SNPs and 11 putatively selected genomic regions, including the VRTN gene and the HoxA gene family that regulate vertebral development. The most prominent areas of selective elimination were located in a region of chromosome 7, including VRTN, which regulates spinal development and morphology. Further investigation indicated that the expression level of the VRTN gene during fetal development was significantly higher in sheep with more thoracic vertebrae than in those with a normal number of thoracic vertebrae. A genome-wide comparison between sheep with increased and normal numbers of thoracic vertebrae showed that the VRTN gene is the major selection locus for the number of thoracic vertebrae in sheep and has the potential to be utilized in sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ming Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Bin Wei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yue Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yaseen Ullah
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
34
|
Lee J, Lee S, Park JE, Moon SH, Choi SW, Go GW, Lim D, Kim JM. Genome-wide association study and genomic predictions for exterior traits in Yorkshire pigs1. J Anim Sci 2019; 97:2793-2802. [PMID: 31087081 PMCID: PMC6606491 DOI: 10.1093/jas/skz158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/10/2019] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to identify informative genomic regions that affect the exterior traits of purebred Korean Yorkshire pigs and to investigate and compare the accuracy of genomic prediction for response variables. Phenotypic data on body height (BH), body length (BL), and total teat number (TTN) from 2,432 Yorkshire pigs were used to obtain breeding values including as response variable the estimated breeding value (EBV) and 2 types of deregressed EBVs-one including the parent average (DEBVincPA) and the other excluding it (DEBVexcPA). A final genotype panel comprising 46,199 SNP markers was retained for analysis after quality control for common SNPs. The BayesB and BayesC methods-with various π and weighted response variables (EBV, DEBVincPA, or DEBVexcPA)-were used to estimate SNP effects, through the genome-wide association study. The significance of genomic windows (1 Mb) was obtained at 1.0% additive genetic variance and was subsequently used to identify informative genomic regions. Furthermore, SNPs with a high model frequency (≥0.90) were considered informative. The accuracy of genomic prediction was estimated using a 5-fold cross-validation with the K-means clustering method. Genomic accuracy was measured as the genomic correlation between the molecular breeding value and the individual weighted response variables (EBV, DEBVincPA, or DEBVexcPA). The number of identified informative windows (1 Mb) for BH, BL, and TTN was 4, 3, and 4, respectively. The number of significant SNPs for BH, BL, and TTN was 6, 4, and 5, respectively. Diversity π did not influence the accuracy of genomic prediction. The BayesB method showed slightly higher genomic accuracy for exterior traits than BayesC method in this study. In addition, the genomic accuracy using DEBVincPA as response variable was higher than that using other response variables. Therefore, the genomic accuracy using BayesB (π = 0.90) with DEBVinPA as a response variable was the most effective in this study. The genomic accuracy values for BH, BL, and TTN were calculated to be 0.52, 0.60, and 0.51, respectively.
Collapse
Affiliation(s)
- Jungjae Lee
- Jung P&C Institute, Inc., 1504 U-TOWER, Yongin-si, Gyeonggi-do, Republic of Korea
| | - SeokHyun Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Sung-Ho Moon
- National Agricultural Cooperative Federation Agribusiness Group, 92, Daeseong-ro, Daema-myeon, Yeonggwang-gun, Jeollanam-do, Republic of Korea
| | - Sung-Woon Choi
- National Agricultural Cooperative Federation Agribusiness Group, 92, Daeseong-ro, Daema-myeon, Yeonggwang-gun, Jeollanam-do, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
35
|
van Son M, Lopes MS, Martell HJ, Derks MFL, Gangsei LE, Kongsro J, Wass MN, Grindflek EH, Harlizius B. A QTL for Number of Teats Shows Breed Specific Effects on Number of Vertebrae in Pigs: Bridging the Gap Between Molecular and Quantitative Genetics. Front Genet 2019; 10:272. [PMID: 30972109 PMCID: PMC6445065 DOI: 10.3389/fgene.2019.00272] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Modern breeding schemes for livestock species accumulate a large amount of genotype and phenotype data which can be used for genome-wide association studies (GWAS). Many chromosomal regions harboring effects on quantitative traits have been reported from these studies, but the underlying causative mutations remain mostly undetected. In this study, we combine large genotype and phenotype data available from a commercial pig breeding scheme for three different breeds (Duroc, Landrace, and Large White) to pinpoint functional variation for a region on porcine chromosome 7 affecting number of teats (NTE). Our results show that refining trait definition by counting number of vertebrae (NVE) and ribs (RIB) helps to reduce noise from other genetic variation and increases heritability from 0.28 up to 0.62 NVE and 0.78 RIB in Duroc. However, in Landrace, the effect of the same QTL on NTE mainly affects NVE and not RIB, which is reflected in reduced heritability for RIB (0.24) compared to NVE (0.59). Further, differences in allele frequencies and accuracy of rib counting influence genetic parameters. Correction for the top SNP does not detect any other QTL effect on NTE, NVE, or RIB in Landrace or Duroc. At the molecular level, haplotypes derived from 660K SNP data detects a core haplotype of seven SNPs in Duroc. Sequence analysis of 16 Duroc animals shows that two functional mutations of the Vertnin (VRTN) gene known to increase number of thoracic vertebrae (ribs) reside on this haplotype. In Landrace, the linkage disequilibrium (LD) extends over a region of more than 3 Mb also containing both VRTN mutations. Here, other modifying loci are expected to cause the breed-specific effect. Additional variants found on the wildtype haplotype surrounding the VRTN region in all sequenced Landrace animals point toward breed specific differences which are expected to be present also across the whole genome. This Landrace specific haplotype contains two missense mutations in the ABCD4 gene, one of which is expected to have a negative effect on the protein function. Together, the integration of largescale genotype, phenotype and sequence data shows exemplarily how population parameters are influenced by underlying variation at the molecular level.
Collapse
Affiliation(s)
| | - Marcos S Lopes
- Topigs Norsvin Research Center, Beuningen, Netherlands.,Topigs Norsvin, Curitiba, Brazil
| | - Henry J Martell
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martijn F L Derks
- Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lars Erik Gangsei
- Animalia AS, Oslo, Norway.,Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | |
Collapse
|
36
|
Valluzzi C, Rando A, Di Gregorio P. Genetic variability of Nero Lucano pig breed at IGF2, LEP, MC4R, PIK3C3, RYR1 and VRTN loci. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1649606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Carmelisa Valluzzi
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Potenza, Italy
| | - Andrea Rando
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Potenza, Italy
| | - Paola Di Gregorio
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Potenza, Italy
| |
Collapse
|
37
|
Mastrangelo S, Moioli B, Ahbara A, Latairish S, Portolano B, Pilla F, Ciani E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17753] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fat tail in sheep represents a valuable energy reserve for facing future climate changes. The identification of genes with a role in the fat-tail phenotype may contribute to understanding the physiology of fat deposition and the mechanisms of adaptation. Genotypic data obtained with the OvineSNP50K array in 13 thin-tail sheep breeds from Italy were used to identify selection signatures of fat tail through pairwise thin- versus fat-tail sheep breed comparisons, with the following fat-tail breeds of the Mediterranean area: two unique Italian fat-tail breeds (Barbaresca and Laticauda), a Barbary sheep breed from Libya, Ossimi breed from Egypt, Cyprus Fat-Tail and Chios from the Greek islands Cyprus and Chios, respectively. Fst and χ2 values obtained for >40000 polymorphic markers allowed confirmation of 12 fat-tail associations that were previously reported in Chinese and Iranian breeds. Two of these signals – on OAR 7 and OAR 13 – are in the proximity of two genes – VRTN and BMP2 – with a role in the variation of vertebral number and in fat-tail formation respectively. Two identified signals on OAR 6 and OAR 15 encompass two genes, PDGFRA and PDGFD, involved in the differentiation of preadipocytes. Further signals detected herein were reported in Chinese sheep as signatures of adaptation to desert areas. For several of the detected associations, the known role in either fat deposition or adaptation, thus contributing to revealing the molecular basis underlying mechanisms of energy storage and climate adaptation.
Collapse
|
38
|
Joint linkage and linkage disequilibrium mapping reveals association of BRMS1L with total teat number in a large intercross between Landrace and Korean native pigs. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Genome-wide association studies and meta-analysis uncovers new candidate genes for growth and carcass traits in pigs. PLoS One 2018; 13:e0205576. [PMID: 30308042 PMCID: PMC6181390 DOI: 10.1371/journal.pone.0205576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have been widely used in the genetic dissection of complex traits. As more genomic data is being generated within different commercial or resource pig populations, the challenge which arises is how to collectively investigate the data with the purpose to increase sample size and implicitly the statistical power. This study performs an individual population GWAS, a joint population GWAS and a meta-analysis in three pig F2 populations. D1 is derived from European type breeds (Piétrain, Large White and Landrace), D2 is obtained from an Asian breed (Meishan) and Piétrain, and D3 stems from a European Wild Boar and Piétrain, which is the common founder breed. The traits investigated are average daily gain, backfat thickness, meat to fat ratio and carcass length. The joint and the meta-analysis did not identify additional genomic clusters besides the ones discovered via the individual population GWAS. However, the benefit was an increased mapping resolution which pinpointed to narrower clusters harboring causative variants. The joint analysis identified a higher number of clusters as compared to the meta-analysis; nevertheless, the significance levels and the number of significant variants in the meta-analysis were generally higher. Both types of analysis had similar outputs suggesting that the two strategies can complement each other and that the meta-analysis approach can be a valuable tool whenever access to raw datasets is limited. Overall, a total of 20 genomic clusters that predominantly overlapped at various extents, were identified on chromosomes 2, 7 and 17, many confirming previously identified quantitative trait loci. Several new candidate genes are being proposed and, among them, a strong candidate gene to be taken into account for subsequent analysis is BMP2 (bone morphogenetic protein 2).
Collapse
|
40
|
Li S, Luo R, Lai D, Ma M, Hao F, Qi X, Liu X, Liu D. Whole-genome resequencing of Ujumqin sheep to investigate the determinants of the multi-vertebral trait. Genome 2018; 61:653-661. [PMID: 30001497 DOI: 10.1139/gen-2017-0267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Ujumqin sheep is one of the most profitable breeds in China, with unique multi-vertebral characteristics. We performed high-throughput genome resequencing of five multi-vertebral and three non-multi-vertebral sheep in an Ujumqin population. We identified the genomic regions that correlated with the germplasm characteristics to establish the cause of the "multi-vertebral" phenotype in this breed. Sequencing generated a total of 314 952 000 000 bp of raw data. The alignment rate of all the samples was between 98.53% and 99.11%, and the mean depth of coverage relative to the reference genome was between 11.58× and 14.92×. After comparing the differences between the two groups, we identified 21 homozygous single nucleotide polymorphisms (SNPs) in the mutant exons of 14 genes. Nineteen loci of 10 genes contained nonsynonymous mutations, while two loci contained synonymous mutations. Resequencing revealed homozygous mutations comprised of 44 indels located within exons of 19 genes. These indels included 37 frameshift mutations, 6 non-frameshift mutations, and 1 stopgain single nucleotide variation (SNV). Finally, comparisons of genotypic variations revealed 17 genes with homozygous mutations in their coding regions, 5 of which have previously been associated with vertebral development and the remaining 12 genes were newly identified in this study.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Rongsong Luo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Defang Lai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Min Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Xuan Qi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Xu Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| |
Collapse
|
41
|
Wu WJ, Liu KQ, Li BJ, Dong C, Zhang ZK, Li PH, Huang RH, Wei W, Chen J, Liu HL. Identification of an (AC)n microsatellite in the Six1 gene promoter and its effect on production traits in Pietrain × Duroc × Landrace × Yorkshire pigs. J Anim Sci 2018; 96:17-26. [PMID: 29432614 DOI: 10.1093/jas/skx024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The Sine oculis homeobox 1 (Six1) gene is important for skeletal muscle growth and fiber specification; therefore, it is considered as a promising candidate gene that may influence porcine growth and meat quality traits. Nevertheless, the association of Six1 with these processes and the mechanisms regulating its expression remain unclear. The objectives of this study were to identify variant sites of Six1 in different pig breeds, conduct association analysis to evaluate the relationship between polymorphisms of these variants and porcine production traits in Pietrain × Duroc × Landrace × Yorkshire commercial pigs, and explore the potential regulatory mechanisms of Six1 affecting production traits. A total of 12 variants were identified, including 10 single- nucleotide variations (SNVs), 1 insertion- deletion (Indel), and 1 (AC)n microsatellite. Association analysis demonstrated that the SNV, g.1595A>G, was significantly associated with meat color (redness, a*); individuals with the G allele had greater a* values (P < 0.05). Moreover, our results demonstrated that the (AC)n polymorphism in the Six1 promoter was significantly associated with weaning weight (P < 0.05), carcass weight (P < 0.05), and thoracic and lumbar back fat (P < 0.01).In addition, we found that the (AC)n variant was closely related with Six1 expression levels and demonstrated this polymorphism on promoter activity by in vitro experiments. Overall, this study provides novel evidence for elucidating the effects of Six1 on porcine production traits as promising candidate and describes two variants with these traits, which are potential reference markers for pig molecular breeding. In addition, our data on the relationship between porcine Six1 expression and the polymorphic (AC)n microsatellite in its promoter may facilitate similar studies in other species.
Collapse
Affiliation(s)
- W J Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - K Q Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - B J Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - C Dong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Z K Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - P H Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - R H Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - W Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - H L Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Duan Y, Zhang H, Zhang Z, Gao J, Yang J, Wu Z, Fan Y, Xing Y, Li L, Xiao S, Hou Y, Ren J, Huang L. VRTN is Required for the Development of Thoracic Vertebrae in Mammals. Int J Biol Sci 2018; 14:667-681. [PMID: 29904281 PMCID: PMC6001657 DOI: 10.7150/ijbs.23815] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Vertnin (VRTN) variants are associated with thoracic vertebral number (TVN) in pigs. However, the biological function of VRTN remains poorly understood. Here we first conducted a range of experiments to demonstrate that VRTN is a responsible gene for TVN and two causative variants in the regulatory region of VRTN additively regulate TVN. Then, we show that VRTN is a novel DNA-binding transcription factor as it localizes exclusively in the nucleus, binds to DNA on a genome-wide scale and regulates the transcription of a set of genes that harbor VRTN binding motifs. Next, we illustrate that VRTN is essential for the development of thoracic vertebrae. Vrtn-null embryos display somitogenesis defect with the failure of axial rotation and fewer somites at the thoracic somite stage. Half of Vrtn heterozygous mice show abnormal spinal development with fewer thoracic vertebrae and ribs than their wild-type littermates. Lastly, we reveal that VRTN could modulate somite segmentation via the Notch signaling pathway. The findings advance our understanding of the mechanisms underlying the development of thoracic vertebrate in mammals, and VRTN causative variants provide a robust tool to improve pork production by selecting the alleles increasing the number of thoracic vertebrae and ribs.
Collapse
Affiliation(s)
- Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Gao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yin Fan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yong Hou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
43
|
Teat number parameters in Italian Large White pigs: Phenotypic analysis and association with vertnin (VRTN ) gene allele variants. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Wu Q, Yu H, Wei W, Cheng Y, Huang S, Shi H, Liu S, Xia J, Jia H, Hao L. Linkage disequilibrium and functional analysis of PRE1 insertion together with SNPs in the promoter region of IGFBP7 gene in different pig breeds. J Appl Genet 2018; 59:231-241. [PMID: 29574509 DOI: 10.1007/s13353-018-0430-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
Polymorphisms in regions upstream of transcription initiation site may modify the transcriptional activity of target genes by changing promoter activity. This study aims to determine whether or not polymorphisms at porcine IGFBP7 promoter region affect gene expression. In this study, eight SNPs and one PRE1 insertion in this region were first confirmed. The PRE1 insertion was widespread in 20 Chinese indigenous breeds, but was not observed in three commercial breeds. A perfect linkage disequilibrium, consisting of six of those SNPs and a PRE1, was observed with two haplotypes (h1 and h2) in five pig breeds. The h1 haplotype had an overwhelming superiority distribution in Large White, Landrace, and Bama mini-pig; in turn, the h2 only existed in the PRE1 presence breeds. As the haplotypes and PRE1 were located at gene promoter regions, we further investigated the transfection of plasmids with three different fragments of IGFBP-7 promoter region (H1, H2, RF). The CMV promoter of the pEGFP-N1 was substituted by these three different fragments, respectively. Different transcriptional and translational activities of EGFP in PK-15 cells were observed in these three recombinant plasmids by quantitative real-time PCR and flow cytometric analysis. The results indicated that H1 had the higher transcriptional and translational activities of EGFP as compared to the H2 (P < 0.05, P < 0.05). As compared to the RF group, EGFP mRNA expression level was significantly higher in H1 groups (P < 0.05). The IGFBP-7 promoter polymorphisms detected in this study may be important functional variants and potential genetic markers for pig population genetic study.
Collapse
Affiliation(s)
- Qingyan Wu
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hao Yu
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Wenzhen Wei
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shan Huang
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hongyu Shi
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.,Five-Star Animal Health Pharmaceutical Factory, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jichao Xia
- Melbourne School of Population and Global Health, The University of Melbourne, 207-221 Bouverie St, Carlton, VIC, 3053, Australia
| | - Hongyao Jia
- First hospital of Jilin University, No.71 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
45
|
Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds. PLoS One 2018; 13:e0194282. [PMID: 29558483 PMCID: PMC5860705 DOI: 10.1371/journal.pone.0194282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed.
Collapse
|
46
|
Park HB, Han SH, Lee JB, Cho IC. Rapid Communication: High-resolution quantitative trait loci analysis identifies LTBP2 encoding latent transforming growth factor beta binding protein 2 associated with thoracic vertebrae number in a large F2 intercross between Landrace and Korean native pigs. J Anim Sci 2018; 95:1957-1962. [PMID: 28727023 DOI: 10.2527/jas.2017.1390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Number of vertebrae is associated with body size and meat productivity in pigs. The aim of this study was to identify QTL and associated positional candidate genes affecting the number of thoracic vertebrae (THO). A genomewide association study was conducted in a large resource population derived from an F intercross between Landrace and Korean native pigs using the Porcine SNP 60K BeadChip and the genomewide complex trait analysis (GCTA) program based on a linear mixed-effects model. A total of 38,385 SNP markers from 1,105 F progeny were analyzed for the THO trait after filtering for quality control. A total of 90 genomewide significant SNP markers ( < 1.30 × 10) on SSC 7 covering a 20-Mb region were identified for THO in this study. Several previous studies also mapped QTL for vertebral numbers in this region. The strongest association signals were detected at ASGA0035500 (-value = 4.46 × 10; 103,574,383 bp) and DIAS0000795 (-value = 4.46 × 10; 103,594,753 bp). The QTL region on SSC 7 for THO encompasses and , which are previously described candidate genes for vertebral number variation. To refine the QTL region, a haplotype-based linkage and linkage disequilibrium (LALD) analysis using the DualPHASE program was applied because subsequent conditional association and haplotype block analyses could not resolve the region that contains the 2 loci. The LALD analysis refined the critical region to a 533.9-kb region including ; was located outside the critical region. The gene encoding latent transforming growth factor beta binding protein 2 is involved in bone metabolisms. Based on these data, we propose as a positional candidate gene for THO in pigs. After further functional studies and verification of the association in other independent populations, these results could be useful for optimizing breeding programs that improve THO and other economically important traits in pigs.
Collapse
|
47
|
Shao M, Wang M, Liu YY, Ge YW, Zhang YJ, Shi DL. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017; 144:3361-3374. [PMID: 28928283 DOI: 10.1242/dev.152553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023]
Abstract
The vegetal pole cytoplasm represents a crucial source of maternal dorsal determinants for patterning the dorsoventral axis of the early embryo. Removal of the vegetal yolk in the zebrafish fertilised egg before the completion of the first cleavage results in embryonic ventralisation, but removal of this part at the two-cell stage leads to embryonic dorsalisation. How this is achieved remains unknown. Here, we report a novel mode of maternal regulation of BMP signalling during dorsoventral patterning in zebrafish. We identify Vrtn as a novel vegetally localised maternal factor with dorsalising activity and rapid transport towards the animal pole region after fertilisation. Co-injection of vrtn mRNA with vegetal RNAs from different cleavage stages suggests the presence of putative vegetally localised Vrtn antagonists with slower animal pole transport. Thus, vegetal ablation at the two-cell stage could remove most of the Vrtn antagonists, and allows Vrtn to produce the dorsalising effect. Mechanistically, Vrtn binds a bmp2b regulatory sequence and acts as a repressor to inhibit its zygotic transcription. Analysis of maternal-zygotic vrtn mutants further shows that Vrtn is required to constrain excessive bmp2b expression in the margin. Our work unveils a novel maternal mechanism regulating zygotic BMP gradient in dorsoventral patterning.
Collapse
Affiliation(s)
- Ming Shao
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Min Wang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yuan-Yuan Liu
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yi-Wen Ge
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yan-Jun Zhang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - De-Li Shi
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China .,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| |
Collapse
|
48
|
Huang J, Zhang M, Ye R, Ma Y, Lei C. Effects of increased vertebral number on carcass weight in PIC pigs. Anim Sci J 2017; 88:2057-2062. [PMID: 28776879 DOI: 10.1111/asj.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
Variation of the vertebral number is associated with carcass traits in pigs. However, results from different populations do not match well with others, especially for carcass weight. Therefore, effects of increased vertebral number on carcass weight were investigated by analyzing the relationship between two loci multi-vertebra causal loci (NR6A1 g.748 C > T and VRTN g.20311_20312ins291) and carcass weight in PIC pigs. Results from the association study between vertebral number and carcass weight showed that increased thoracic number had negative effects on carcass weight, but the results were not statistically significant. Further, VRTN Ins/Ins genotype increased more than one thoracic than that of Wt/Wt genotype on average in this PIC population. Meanwhile, there was a significant negative effect of VRTN Ins on carcass weight (P < 0.05). Thus, our results suggested negative effect of increased thoracic number on carcass weight in PIC pigs.
Collapse
Affiliation(s)
- Jieping Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Mingming Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Runqing Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Zhang Z, Sun Y, Du W, He S, Liu M, Tian C. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1234-1238. [PMID: 28423880 PMCID: PMC5582278 DOI: 10.5713/ajas.16.0959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/20/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
Objective The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. Conclusion The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.
Collapse
Affiliation(s)
- Zhifeng Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Yawei Sun
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China
| | - Wei Du
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China
| | - Sangang He
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China
| | - Mingjun Liu
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| |
Collapse
|
50
|
Le TH, Christensen OF, Nielsen B, Sahana G. Genome-wide association study for conformation traits in three Danish pig breeds. Genet Sel Evol 2017; 49:12. [PMID: 28118822 PMCID: PMC5259967 DOI: 10.1186/s12711-017-0289-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Selection for sound conformation has been widely used as a primary approach to reduce lameness and leg weakness in pigs. Identification of genomic regions that affect conformation traits would help to improve selection accuracy for these lowly to moderately heritable traits. Our objective was to identify genetic factors that underlie leg and back conformation traits in three Danish pig breeds by performing a genome-wide association study followed by meta-analyses. Methods Data on four conformation traits (front leg, back, hind leg and overall conformation) for three Danish pig breeds (23,898 Landrace, 24,130 Yorkshire and 16,524 Duroc pigs) were used for association analyses. Estimated effects of single nucleotide polymorphisms (SNPs) from single-trait association analyses were combined in two meta-analyses: (1) a within-breed meta-analysis for multiple traits to examine if there are pleiotropic genetic variants within a breed; and (2) an across-breed meta-analysis for a single trait to examine if the same quantitative trait loci (QTL) segregate across breeds. SNP annotation was implemented through Sus scrofa Build 10.2 on Ensembl to search for candidate genes. Results Among the 14, 12 and 13 QTL that were detected in the single-trait association analyses for the three breeds, the most significant SNPs explained 2, 2.3 and 11.4% of genetic variance for back quality in Landrace, overall conformation in Yorkshire and back quality in Duroc, respectively. Several candidate genes for these QTL were also identified, i.e. LRPPRC, WRAP73, VRTN and PPARD likely control conformation traits through the regulation of bone and muscle development, and IGF2BP2, GH1, CCND2 and MSH2 can have an influence through growth-related processes. Meta-analyses not only confirmed many significant SNPs from single-trait analyses with higher significance levels, but also detected several additional associated SNPs and suggested QTL with possible pleiotropic effects. Conclusions Our results imply that conformation traits are complex and may be partly controlled by genes that are involved in bone and skeleton development, muscle and fat metabolism, and growth processes. A reliable list of QTL and candidate genes was provided that can be used in fine-mapping and marker assisted selection to improve conformation traits in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thu H Le
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark. .,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Ole F Christensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Bjarne Nielsen
- SEGES Pig Research Centre, Axeltorv, Copenhagen, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|