1
|
Liu J, Zhu J, Hao H, Bi J, Hou H, Zhang G. Transcriptomic and Molecular Docking Analysis Reveal Virulence Gene Regulation-Mediated Antibacterial Effects of Benzyl Isothiocyanate Against Staphylococcus aureus. Appl Biochem Biotechnol 2024; 196:8239-8253. [PMID: 38709426 DOI: 10.1007/s12010-024-04938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Junya Zhu
- Jinkui Food Science and Technology (Dalian) Co., Ltd, Dalian, 116000, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
4
|
Bigelow RA, Richeson JT, McClurg M, Valeris-Chacin R, Morley PS, Funk JL, Scott MA. Characterizing the influence of various antimicrobials used for metaphylaxis against bovine respiratory disease on host transcriptome responses. Front Vet Sci 2023; 10:1272940. [PMID: 37869487 PMCID: PMC10585045 DOI: 10.3389/fvets.2023.1272940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Currently, control against bovine respiratory disease (BRD) primarily consists of mass administration of an antimicrobial upon arrival to facility, termed "metaphylaxis." The objective of this study was to determine the influence of six different antimicrobials used as metaphylaxis on the whole blood host transcriptome in healthy steers upon and following arrival to the feedlot. One hundred and five steers were stratified by arrival body weight (BW = 247 ± 28 kg) and randomly and equally allocated to one of seven treatments: negative control (NC), ceftiofur (CEFT), enrofloxacin (ENRO), florfenicol (FLOR), oxytetracycline (OXYT), tildipirosin (TILD), or tulathromycin (TULA). On day 0, whole blood samples and BW were collected prior to a one-time administration of the assigned antimicrobial. Blood samples were collected again on days 3, 7, 14, 21, and 56. A subset of cattle (n = 6) per treatment group were selected randomly for RNA sequencing across all time points. Isolated RNA was sequenced (NovaSeq 6,000; ~35 M paired-end reads/sample), where sequenced reads were processed with ARS-UCD1.3 reference-guided assembly (HISAT2/StringTie2). Differential expression analysis comparing treatment groups to NC was performed with glmmSeq (FDR ≤ 0.05) and edgeR (FDR ≤ 0.1). Functional enrichment was performed with KOBAS-i (FDR ≤ 0.05). When compared only to NC, unique differentially expressed genes (DEGs) found within both edgeR and glmmSeq were identified for CEFT (n = 526), ENRO (n = 340), FLOR (n = 56), OXYT (n = 111), TILD (n = 3,001), and TULA (n = 87). At day 3, CEFT, TILD, and OXYT shared multiple functional enrichment pathways related to T-cell receptor signaling and FcεRI-mediated NF-kappa beta (kB) activation. On day 7, Class I major histocompatibility complex (MHC)-mediated antigen presentation pathways were enriched in ENRO and CEFT groups, and CEFT and FLOR had DEGs that affected IL-17 signaling pathways. There were no shared pathways or Gene Ontology (GO) terms among treatments at day 14, but TULA had 19 pathways and eight GO terms enriched related to NF- κβ activation, and interleukin/interferon signaling. Pathways related to cytokine signaling were enriched by TILD on day 21. Our research demonstrates immunomodulation and potential secondary therapeutic mechanisms induced by antimicrobials commonly used for metaphylaxis, providing insight into the beneficial anti-inflammatory properties antimicrobials possess.
Collapse
Affiliation(s)
- Rebecca A. Bigelow
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - John T. Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - Molly McClurg
- Veterinary, Education, Research, and Outreach Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary, Education, Research, and Outreach Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Paul S. Morley
- Veterinary, Education, Research, and Outreach Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Jenna L. Funk
- Veterinary, Education, Research, and Outreach Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Matthew A. Scott
- Veterinary, Education, Research, and Outreach Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| |
Collapse
|
5
|
Ying JP, Wu G, Zhang YM, Zhang QL. Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Sci 2023; 204:109258. [PMID: 37379704 DOI: 10.1016/j.meatsci.2023.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Antibacterial mechanism of bacteriocins against foodborne S. aureus is still to be explored, particularly in proteomics, and a deep and comprehensive study on application of bacteriocins for preservation of raw pork is required. Here, proteomic mechanism of Lactobacillus salivarius bacteriocin XJS01 against foodborne S. aureus 2612:1606BL1486 (S. aureus_26) and its preservation effect on raw pork loins stored at 4 °C for 12 days was investigated. The results showed that 301 differentially abundant proteins (DAPs) were identified between XJS01-treated and -free groups (control group) using Tandem mass tag (TMT) quantitative proteomics technology, which were primarily involved in amino acids and carbohydrate metabolism, cytolysis, defense response, cell apoptosis, cell killing, adhesion, and oxygen utilization of S. aureus_26. Bacterial secretion system (SRP) and cationic antimicrobial peptide resistance may be key pathways to maintain protein secretion and counteract the deleterious effects on S. aureus_26 caused by XJS01. In addition, XJS01 could significantly improve the preservation of raw pork loins by the evaluation results of sensory and antibacterial activity on the meat surface. Overall, this study showed that XJS01 induced a complex organism response in S. aureus, and it could be potential pork preservative.
Collapse
Affiliation(s)
- Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China.
| |
Collapse
|
6
|
Wang J, Sheng Z, Liu Y, Chen X, Wang S, Yang H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front Pharmacol 2023; 14:1178177. [PMID: 37654613 PMCID: PMC10466393 DOI: 10.3389/fphar.2023.1178177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is a zoonotic opportunistic pathogen that represents a significant threat to public health. Previous studies have shown that tannic acid (TA) has an inhibitory effect on a variety of bacteria. In this study, the proteome and transcriptome of S. aureus were analyzed to comprehensively assess changes in genes and proteins induced by TA. Initial observations of morphological changes revealed that TA damaged the integrity of the cell membrane. Next, proteomic and genetic analyses showed that exposure to TA altered the expression levels of 651 differentially expressed proteins (DEPs, 283 upregulated and 368 downregulated) and 503 differentially expressed genes (DEGs, 191 upregulated and 312 downregulated). Analysis of the identified DEPs and DEGs suggested that TA damages the integrity of the cell envelope by decreasing the expression and protein abundance of enzymes involved in the synthesis of peptidoglycans, teichoic acids and fatty acids, such as murB, murQ, murG, fmhX and tagA. After treatment with TA, the assembly of ribosomes in S. aureus was severely impaired by significant reductions in available ribosome components, and thus protein synthesis was hindered. The levels of genes and proteins associated with amino acids and purine synthesis were remarkably decreased, which further reduced bacterial viability. In addition, ABC transporters, which are involved in amino acid and ion transport, were also badly affected. Our results reveal the molecular mechanisms underlying the effects of TA on S. aureus and provide a theoretical basis for the application of TA as an antibacterial chemotherapeutic agent.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Zhicun Sheng
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Yunying Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
- Zhongchong Sino Biotech Taizhou Co., Ltd., Taizhou, Jiangsu Province, China
| | - Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Shuaibing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Haifeng Yang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| |
Collapse
|
7
|
Zhang D, Qiang R, Zhou Z, Pan Y, Yu S, Yuan W, Cheng J, Wang J, Zhao D, Zhu J, Yang Z. Biocontrol and Action Mechanism of Bacillus subtilis Lipopeptides' Fengycins Against Alternaria solani in Potato as Assessed by a Transcriptome Analysis. Front Microbiol 2022; 13:861113. [PMID: 35633712 PMCID: PMC9130778 DOI: 10.3389/fmicb.2022.861113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alternaria solani is an airborne fungus and the primary causal agent of potato early blight worldwide. No available fungicides that are both effective and environmentally friendly are usable to control this fungus. Therefore, biological control is a potential approach for its suppression. In this study, Bacillus subtilis strain ZD01's fermentation broth strongly reduced A. solani pathogenicity under greenhouse conditions. The effects of strain ZD01's secondary metabolites on A. solani were investigated. The exposure of A. solani hyphae to the supernatant resulted in swelling and swollen sacs, and the ZD01 supernatant reduced A. solani conidial germination significantly. Matrix-assisted laser desorption/ionization time of flight mass spectrometry and pure product tests revealed that fengycins were the main antifungal lipopeptide substances. To elucidate the molecular mechanism of the fengycins' biological control, RNA sequencing analyses were performed. A transcriptome analysis revealed that 304 and 522 genes in A. solani were differentially expressed after 2-h and 6-h fengycin treatments, respectively. These genes were respectively mapped to 53 and 57 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, the most enriched KEGG pathway analysis indicated that the inhibitory mechanisms of fengycins against A. solani regulated the expression of genes related to cell wall, cell membrane, transport, energy process, protein synthesis and genetic information. In particular, cell wall and cell membrane metabolism were the main processes affected by fengycin stress. Scanning and transmission electron microscope results revealed hyphal enlargement and a wide range of abnormalities in A. solani cells after exposure to fengycins. Furthermore, fengycins induced chitin synthesis in treated cells, and also caused the capture of cellular fluorescent green labeling and the release of adenosine triphosphate (ATP) from outer membranes of A. solani cells, which may enhance the fengycins ability to alter cell membrane permeability. Thus, this study increases the transcriptome data resources available and supplies a molecular framework for B. subtilis ZD01 inhibition of A. solani HWC-168 through various mechanisms, especially damaging A. solani cell walls and membranes. The transcriptomic insights may lead to an effective control strategy for potato early blight.
Collapse
Affiliation(s)
- Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ran Qiang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhijun Zhou
- Practice and Training Center, Hebei Agricultural University, Baoding, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuiqing Yu
- Hebei Pingquan Edible Fungi Industry Technology Research Institute, Chengde, China
| | - Wei Yuan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jianing Cheng
- Agricultural Business Training and Entrepreneurship Center, Hebei Agricultural University, Baoding, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Fellner M. Newly discovered Staphylococcus aureus serine hydrolase probe and drug targets. ADMET AND DMPK 2022; 10:107-114. [PMID: 35350120 PMCID: PMC8957240 DOI: 10.5599/admet.1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for new diagnosis and treatment options for the bacterial pathogen Staphylococcus aureus. This review will summarize data on ten recently discovered biofilm-associated serine hydrolases called fluorophosphonate-binding hydrolases (FphA-J). Based on the summarized findings, many of these proteins represent intriguing new targets for probe and drug development.
Collapse
Affiliation(s)
- Matthias Fellner
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. ; Tel.: +64 34797897
| |
Collapse
|
9
|
Meredith EM, Berti AD. Commentary: Synergy Between Beta-Lactams and Lipo-, Glyco-, and Lipoglycopeptides is Independent of the Seesaw Effect in Methicillin-Resistant Staphylococcus aureus. Front Mol Biosci 2021; 8:774021. [PMID: 34692775 PMCID: PMC8529051 DOI: 10.3389/fmolb.2021.774021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emily M Meredith
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Andrew D Berti
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States.,Department of Biochemistry, Microbiology and Immunology, College of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Chen L, Wang Z, Xu T, Ge H, Zhou F, Zhu X, Li X, Qu D, Zheng C, Wu Y, Zhao K. The Role of graRS in Regulating Virulence and Antimicrobial Resistance in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:727104. [PMID: 34484169 PMCID: PMC8415711 DOI: 10.3389/fmicb.2021.727104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of both community- and hospital-associated infections. The antibiotic resistance and virulence characteristics of MRSA are largely regulated by two-component signal transduction systems (TCS) including the graRS TCS. To make a relatively comprehensive insight into graRS TCS in MRSA, the bioinformatics analysis of dataset GSE26016 (a S. aureus HG001 WT strain vs. the ΔgraRS mutant) from Gene Expression Omnibus (GEO) database was performed, and a total of 563 differentially expressed genes (DEGs) were identified. GO analysis revealed that the DEGs were mainly enriched in the “de novo” IMP biosynthetic process, lysine biosynthetic process via diaminopimelate, and pathogenesis; and they were mainly enriched in purine metabolism, lysine biosynthesis, and monobactam biosynthesis in KEGG analysis. WGCNA suggested that the turquoise module was related to the blue module, and the genes in these two modules were associated with S. aureus virulence and infection. To investigate the role of graRS in bacterial virulence, a graRS knockout mutant (ΔgraRS) was constructed using MRSA USA500 2,395 strain as a parent strain. Compared to the wild-type strain, the USA500ΔgraRS showed reduced staphyloxanthin production, retarded coagulation, weaker hemolysis on blood agar plates, and a decreased biofilm formation. These altered phenotypes were restored by the complementation of a plasmid-expressed graRS. Meanwhile, an expression of the virulence-associated genes (coa, hla, hlb, agrA, and mgrA) was downregulated in the ΔgraRS mutant. Consistently, the A549 epithelial cells invasion of the ΔgraRS mutant was 4-fold lower than that of the USA500 wild-type strain. Moreover, on the Galleria mellonella infection model, the survival rate at day 5 post infection in the USA500ΔgraRS group (55%) was obviously higher than that in the USA500 group (20%), indicating graRS knockout leads to a decreased virulence in vivo. In addition, the deletion of the graRS in the MRSA USA500 strain resulted in its increased susceptibilities to ampicillin, oxacillin, vancomycin, and gentamicin. Our work suggests that the graRS TCS plays an important role in regulating S. aureus virulence in vitro and in vivo and modulate bacterial resistance to various antibiotics.
Collapse
Affiliation(s)
- Le Chen
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Zihui Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH/CAMS) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongfei Ge
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fangyue Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyi Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xianhui Li
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunquan Zheng
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Keqing Zhao
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
12
|
Jiang C, Li Z, Shi Y, Guo D, Pang B, Chen X, Shao D, Liu Y, Shi J. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. Int J Food Microbiol 2020; 330:108783. [PMID: 32659523 DOI: 10.1016/j.ijfoodmicro.2020.108783] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
The contamination of Aspergillus carbonarius causes decreases and great decay of agricultural products, and threatens the human and animal health by producing mycotoxins, especially ochratoxin A. Bacillus subtilis has been proved to efficiently inhibit the growth of A. carbonarius. Revealing the major active compound and the mechanisms for the antifungal of B. subtilis are essential to enhance its antifungal activity and control the quality of antifungal products made of it. In this study, we determined that iturin A is the major compound that inhibits Aspergillus carbonarius, a widespread fungal pathogen of grape and other fruits. Iturin A significantly inhibited growth and ochratoxin A production of A. carbonarius with minimal inhibitory concentrations (MICs) of 10 μg/mL and 0.312 μg/mL, respectively. Morphological observations revealed that iturin A caused swelling of the fungal cells and thinning of the cell wall and membrane at 1/2 MIC, whereas it inhibited fungal spore germination and caused mitochondrial swelling at higher concentrations. A differential transcriptomic analysis indicated that the mechanisms used by iturin A to inhibit A. carbonarius were to downregulate the expression of genes related to cell membrane, transport, osmotic pressure, oxidation-reduction processes, and energy metabolism. Among the down-regulated genes, those related to the transport capacity were most significantly influenced, including the increase of energy-related transport pathways and decrease of other pathways. Notably, the genes related to taurine and hypotaurine metabolism were also decreased, indicating iturin A potentially cause the occurrence of osmotic imbalance in A. carbonarius, which may be the intrinsic cause for the swelling of fungal cells and mitochondria. Overall, iturin A produced by B. subtilis played important roles to inhibit A. carbonarius via changing the fungal cell structure and causing perturbations to energy, transport and osmotic pressure metabolisms in fungi. The results indicated a new direction for researches on the mechanisms for lipopeptides and provided useful information to develop more efficient antifungal agents, which are important to agriculture and biomedicine.
Collapse
Affiliation(s)
- Chunmei Jiang
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Zhenzhu Li
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Yihong Shi
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Dan Guo
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Bin Pang
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing, Zhejiang Province 314006, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, 23 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Junling Shi
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
13
|
Li B, Yang N, Shan Y, Wang X, Hao Y, Mao R, Teng D, Fan H, Wang J. Therapeutic potential of a designed CSαβ peptide ID13 in Staphylococcus aureus-induced endometritis of mice. Appl Microbiol Biotechnol 2020; 104:6693-6705. [PMID: 32506158 PMCID: PMC7275135 DOI: 10.1007/s00253-020-10685-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is a common pathogen that can cause clinical and subclinical endometritis in humans and animals. In this study, a designed CSαβ peptide ID13 from DLP4 exhibited high stable antibacterial activity in simulated gastric fluid (90.79%), serum (99.54%), and different pH buffers (> 99%) against S. aureus CVCC 546 and lower cytotoxicity (89.62% viability) than its parent peptide DLP4 (74.14% viability) toward mouse endometrial epithelial cells (MEECs). ID13 caused a depolarization of bacterial membrane and downregulation of the expression of genes involved in membrane potential maintenance and biofilm formation. The in vitro efficacy analysis of ID13 showed a synergistic effect with vancomycin, ampicillin, rifampin, and ciprofloxacin; intracellular antimicrobial activity against S. aureus CVCC 546 in MEECs; and the ability to inhibit lipoteichoic acid-induced pro-inflammatory cytokines from RAW 264.7. In the S. aureus-induced endometritis of mice, similar to vancomycin, ID13 remarkably alleviated pathological conditions, inhibited the production of cytokines (TNF-α, IL-1ß, IL-6, and IL-10), and suppressed the TLR2-NF-κB signal pathway. Collectively, these results suggest that ID13 could be a potential candidate peptide for therapeutic application in S. aureus-induced endometritis. Key Points •Higher antibacterial activity and lower hemolysis of ID13 than DLP4. •ID13 could downregulate the genes of bacterial survival and infection. •ID13 could alleviate the S. aureus-induced endometritis of mice. •ID13 could regulate the cytokines and suppress the TLR2-NF-κB signal pathway.
Collapse
Affiliation(s)
- Bing Li
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Yuxue Shan
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.,Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, People's Republic of China
| | - Xiumin Wang
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Da Teng
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, People's Republic of China
| | - Jianhua Wang
- Team of Alternatives to Antibiotics, Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
14
|
Ahmad A, Majaz S, Nouroz F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology (Reading) 2020; 166:4-20. [DOI: 10.1099/mic.0.000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria offer resistance to a broad range of antibiotics by activating their export channels of ATP-binding cassette transporters. These transporters perform a central role in vital processes of self-immunity, antibiotic transport and resistance. The majority of ATP-binding cassette transporters are capable of detecting the presence of antibiotics in an external vicinity and are tightly regulated by two-component systems. The presence of an extracellular loop and an adjacent location of both the transporter and two-component system offers serious assistance to induce a quick and specific response against antibiotics. Both systems have demonstrated their ability of sensing such agents, however, the exact mechanism is not yet fully established. This review highlighted the three key functions of antibiotic resistance, transport and self-immunity of ATP-binding cassette transporters and an adjacent two-component regulatory system.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
15
|
Loss G, Simões PM, Valour F, Cortês MF, Gonzaga L, Bergot M, Trouillet-Assant S, Josse J, Diot A, Ricci E, Vasconcelos AT, Laurent F. Staphylococcus aureus Small Colony Variants (SCVs): News From a Chronic Prosthetic Joint Infection. Front Cell Infect Microbiol 2019; 9:363. [PMID: 31696062 PMCID: PMC6817495 DOI: 10.3389/fcimb.2019.00363] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Small colony variants (SCV) of Staphylococcus aureus have been reported as implicated in chronic infections. Here, we investigated the genomic and transcriptomic changes involved in the evolution from a wild-type to a SCV from in a patient with prosthetic joint infection relapse. The SCV presented a stable phenotype with no classical auxotrophy and the emergence of rifampicin resistance. Whole Genome Sequencing (WGS) analysis showed only the loss of a 42.5 kb phage and 3 deletions, among which one targeting the rpoB gene, known to be the target of rifampicin and to be associated to SCV formation in the context of a constitutively active stringent response. Transcriptomic analysis highlighted a specific signature in the SCV strain including a complex, multi-level strategy of survival and adaptation to chronicity within the host including a protection from the inflammatory response, an evasion of the immune response, a constitutively activated stringent response and a scavenging of iron sources.
Collapse
Affiliation(s)
- Guilherme Loss
- Laboratório Nacional de Computação Científica, Rio de Janeiro, Brazil
| | - Patricia Martins Simões
- National Reference Center for Staphylococci - Hospices Civils de Lyon, IAI-Department of Clinical Microbiology, Northern Hospital Group, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Florent Valour
- Centre International de Recherche en Infectiologie (CIRI), Lyon, France.,Hospices Civils de Lyon, Infectious Diseases Department, Northern Hospital Group, Lyon, France
| | - Marina Farrel Cortês
- Institute of Microbiology Professor Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Científica, Rio de Janeiro, Brazil
| | - Marine Bergot
- Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Joint Research Unit HCL-BioMerieux, Centre Hospitalier Lyon Sud, Pierre-Benite, France
| | - Jêrome Josse
- Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Emiliano Ricci
- Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | | | - Frédéric Laurent
- National Reference Center for Staphylococci - Hospices Civils de Lyon, IAI-Department of Clinical Microbiology, Northern Hospital Group, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| |
Collapse
|
16
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
17
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2018; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Lentz CS, Sheldon JR, Crawford LA, Cooper R, Garland M, Amieva MR, Weerapana E, Skaar EP, Bogyo M. Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol 2018; 14:609-617. [PMID: 29769740 PMCID: PMC6202179 DOI: 10.1038/s41589-018-0060-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.
Collapse
Affiliation(s)
- Christian S Lentz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica R Sheldon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Rachel Cooper
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Young BC, Wu CH, Gordon NC, Cole K, Price JR, Liu E, Sheppard AE, Perera S, Charlesworth J, Golubchik T, Iqbal Z, Bowden R, Massey RC, Paul J, Crook DW, Peto TE, Walker AS, Llewelyn MJ, Wyllie DH, Wilson DJ. Severe infections emerge from commensal bacteria by adaptive evolution. eLife 2017; 6. [PMID: 29256859 PMCID: PMC5736351 DOI: 10.7554/elife.30637] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/02/2017] [Indexed: 12/23/2022] Open
Abstract
Bacteria responsible for the greatest global mortality colonize the human microbiota far more frequently than they cause severe infections. Whether mutation and selection among commensal bacteria are associated with infection is unknown. We investigated de novo mutation in 1163 Staphylococcus aureus genomes from 105 infected patients with nose colonization. We report that 72% of infections emerged from the nose, with infecting and nose-colonizing bacteria showing parallel adaptive differences. We found 2.8-to-3.6-fold adaptive enrichments of protein-altering variants in genes responding to rsp, which regulates surface antigens and toxin production; agr, which regulates quorum-sensing, toxin production and abscess formation; and host-derived antimicrobial peptides. Adaptive mutations in pathogenesis-associated genes were 3.1-fold enriched in infecting but not nose-colonizing bacteria. None of these signatures were observed in healthy carriers nor at the species-level, suggesting infection-associated, short-term, within-host selection pressures. Our results show that signatures of spontaneous adaptive evolution are specifically associated with infection, raising new possibilities for diagnosis and treatment.
Collapse
Affiliation(s)
- Bernadette C Young
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - N Claire Gordon
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Kevin Cole
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom
| | - James R Price
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Elian Liu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anna E Sheppard
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Sanuki Perera
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jane Charlesworth
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Tanya Golubchik
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John Paul
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Timothy E Peto
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Martin J Llewelyn
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - David H Wyllie
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Centre for Molecular and Cellular Physiology, Jenner Institute, Oxford, United Kingdom
| | - Daniel J Wilson
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,Institute for Emerging Infections, Oxford Martin School, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Hashizume H, Takahashi Y, Masuda T, Ohba SI, Ohishi T, Kawada M, Igarashi M. In vivo efficacy of β-lactam/tripropeptin C in a mouse septicemia model and the mechanism of reverse β-lactam resistance in methicillin-resistant Staphylococcus aureus mediated by tripropeptin C. J Antibiot (Tokyo) 2017; 71:ja201788. [PMID: 28743973 DOI: 10.1038/ja.2017.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022]
Abstract
Natural lipopeptide antibiotic tripropeptin C (TPPC) revitalizes and synergistically potentiates the activities of the class of β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) but not against methicillin-sensitive S. aureus in vitro; however, the mode of action remains unclear. In the course of the study to reveal its mode of action, we found that TPPC inhibited the β-lactamase production induced by cefotiam. This prompted us to focus on the β-lactam-inducible β-lactam-resistant genes blaZ (β-lactamase) and mecA (foreign penicillin-binding protein), as they are mutually regulated by the blaZ/I/R1 and mecA/I/R1 systems. Quantitative reverse-transcription polymerase chain reaction analysis revealed that TPPC reversed β-lactam resistance by reducing the expression of the genes blaZ and mecA, when treated alone or in combination with β-lactam antibiotics. In a mouse/MRSA septicemia model, subcutaneous injection of a combination of TPPC and ceftizoxime demonstrated synergistic therapeutic efficacy compared with each drug alone. These observations strongly suggested that reverse β-lactam resistance by TPPC may be a potentially effective new therapeutic strategy to overcome refractory MRSA infections.The Journal of Antibiotics advance online publication, 26 July 2017; doi:10.1038/ja.2017.88.
Collapse
Affiliation(s)
- Hideki Hashizume
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Yoshiaki Takahashi
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Tohru Masuda
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Japan
| | - Shun-Ichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Japan
| | | | - Manabu Kawada
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Japan
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
21
|
Raulinaitis V, Tossavainen H, Aitio O, Juuti JT, Hiramatsu K, Kontinen V, Permi P. Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep 2017; 7:6020. [PMID: 28729697 PMCID: PMC5519744 DOI: 10.1038/s41598-017-06135-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
We introduce LytU, a short member of the lysostaphin family of zinc-dependent pentaglycine endopeptidases. It is a potential antimicrobial agent for S. aureus infections and its gene transcription is highly upregulated upon antibiotic treatments along with other genes involved in cell wall synthesis. We found this enzyme to be responsible for the opening of the cell wall peptidoglycan layer during cell divisions in S. aureus. LytU is anchored in the plasma membrane with the active part residing in the periplasmic space. It has a unique Ile/Lys insertion at position 151 that resides in the catalytic site-neighbouring loop and is vital for the enzymatic activity but not affecting the overall structure common to the lysostaphin family. Purified LytU lyses S. aureus cells and cleaves pentaglycine, a reaction conveniently monitored by NMR spectroscopy. Substituting the cofactor zinc ion with a copper or cobalt ion remarkably increases the rate of pentaglycine cleavage. NMR and isothermal titration calorimetry further reveal that, uniquely for its family, LytU is able to bind a second zinc ion which is coordinated by catalytic histidines and is therefore inhibitory. The pH-dependence and high affinity of binding carry further physiological implications.
Collapse
Affiliation(s)
- Vytas Raulinaitis
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Olli Aitio
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Jarmo T Juuti
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Keiichi Hiramatsu
- Research Centre for Infection Control Science, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Vesa Kontinen
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland.,Research Centre for Infection Control Science, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland. .,Department of Biological and Environmental Science, and Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland.
| |
Collapse
|
22
|
Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. mSphere 2017; 2:mSphere00082-17. [PMID: 28656172 PMCID: PMC5480029 DOI: 10.1128/msphere.00082-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species. Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
Collapse
|
23
|
Raulinaitis V, Tossavainen H, Aitio O, Seppala R, Permi P. 1H, 13C and 15N resonance assignments of the new lysostaphin family endopeptidase catalytic domain from Staphylococcus aureus. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:69-73. [PMID: 27943001 DOI: 10.1007/s12104-016-9722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Lysostaphin family endopeptidases, produced by Staphylococcus genus, are zinc-dependent enzymes that cleave pentaglycine bridges of cell wall peptidoglycan. They act as autolysins to maintain cell wall metabolism or as toxins and weapons against competing strains. Consequently, these enzymes are compelling targets for new drugs as well as are potential antimicrobial agents themselves against Staphylococcus pathogens, which depend on cell wall to retain their immunity against antibiotics. The rapid spread of methicillin and vancomycin-resistant Staphylococcus aureus strains draws demand for new therapeutic approaches. S. aureus gene sa0205 was found to be implicated in resistance to vancomycin and synthesis of the bacteria cell wall. The gene encodes for a catalytic domain of a lysostaphin-type endopeptidase. We aim to obtain the structure of the Sa0205 catalytic domain, the first solution structure of the catalytic domain of the lysostaphin family enzymes. In addition, we are to investigate the apparent binding of the second zinc ion, which has not been previously reported for the enzyme group. Herein, we present the backbone and side chain resonance assignments of Sa0205 endopeptidase catalytic domain in its one and two zinc-bound forms.
Collapse
Affiliation(s)
- Vytas Raulinaitis
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Olli Aitio
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Glykos Finland Ltd., Viikinkaari 6, 00790, Helsinki, Finland
| | - Raili Seppala
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland.
- Departments of Biological and Environmental Science and Chemistry, Nanoscience Center, University of Jyvaskyla, 40014, Jyvaskyla, Finland.
| |
Collapse
|
24
|
Malin J, Shetty AC, Daugherty SC, de Leeuw EP. Effect of a small molecule Lipid II binder on bacterial cell wall stress. Infect Drug Resist 2017; 10:69-73. [PMID: 28280373 PMCID: PMC5338996 DOI: 10.2147/idr.s126254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have recently identified small molecule compounds that act as binders of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprised a hydrophilic head group that includes a peptidoglycan subunit composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) coupled to a short pentapeptide moiety. This headgroup is coupled to a long bactoprenol chain via a pyrophosphate group. Here, we report on the cell wall activity relationship of dimethyl-3-methyl(phenyl)amino-ethenylcyclohexylidene-propenyl-3-ethyl-1,3-benzothiazolium iodide (compound 5107930) obtained by functional and genetic analyses. Our results indicate that compounds bind to Lipid II and cause specific upregulation of the vancomycin-resistance associated gene vraX. vraX is implicated in the cell wall stress stimulon that confers glycopeptide resistance. Our small molecule Lipid II inhibitor retained activity against strains of Staphylococcus aureus mutated in genes encoding the cell wall stress stimulon. This suggests the feasibility of developing this new scaffold as a therapeutic agent in view of increasing glycopeptide resistance.
Collapse
Affiliation(s)
- Jakob Malin
- Institute of Human Virology; Department of Biochemistry and Molecular Biology
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Erik Ph de Leeuw
- Institute of Human Virology; Department of Biochemistry and Molecular Biology
| |
Collapse
|
25
|
Moran JC, Alorabi JA, Horsburgh MJ. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid. Front Microbiol 2017; 8:33. [PMID: 28179897 PMCID: PMC5263133 DOI: 10.3389/fmicb.2017.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal colonization of human skin is ubiquitous, with particular species more frequent at different body sites. Whereas Staphylococcus epidermidis can be isolated from the skin of every individual tested, Staphylococcus aureus is isolated from <5% of healthy individuals. The factors that drive staphylococcal speciation and niche selection on skin are incompletely defined. Here we show that S. aureus is inhibited to a greater extent than S. epidermidis by the sebaceous lipid sapienic acid, supporting a role for this skin antimicrobial in selection of skin staphylococci. We used RNA-Seq and comparative transcriptomics to identify the sapienic acid survival responses of S. aureus and S. epidermidis. Consistent with the membrane depolarization mode of action of sapienic acid, both species shared a common transcriptional response to counteract disruption of metabolism and transport. The species differed in their regulation of SaeRS and VraRS regulons. While S. aureus upregulated urease operon transcription, S. epidermidis upregulated arginine deiminase, the oxygen-responsive NreABC nitrogen regulation system and the nitrate and nitrite reduction pathways. The role of S. aureus ACME and chromosomal arginine deiminase pathways in sapienic acid resistance was determined through mutational studies. We speculate that ammonia production could contribute to sapienic acid resistance in staphylococci.
Collapse
Affiliation(s)
- Josephine C Moran
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Jamal A Alorabi
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Malcolm J Horsburgh
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool Liverpool, UK
| |
Collapse
|
26
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
27
|
Chaves-Moreno D, Wos-Oxley ML, Jáuregui R, Medina E, Oxley AP, Pieper DH. Exploring the transcriptome of Staphylococcus aureus in its natural niche. Sci Rep 2016; 6:33174. [PMID: 27641137 PMCID: PMC5027550 DOI: 10.1038/srep33174] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Eva Medina
- Infection and Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrew Pa Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| |
Collapse
|
28
|
Transcriptomic Analysis of the Activity of a Novel Polymyxin against Staphylococcus aureus. mSphere 2016; 1:mSphere00119-16. [PMID: 27471750 PMCID: PMC4963539 DOI: 10.1128/msphere.00119-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
S. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog. Polymyxin B and colistin are exclusively active against Gram-negative pathogens and have been used in the clinic as a last-line therapy. In this study, we investigated the antimicrobial activity of a novel polymyxin, FADDI-019, against Staphylococcus aureus. MIC and time-kill assays were employed to measure the activity of FADDI-019 against S. aureus ATCC 700699. Cell morphology was examined with scanning electron microscopy (SEM), and cell membrane polarity was measured using flow cytometry. Transcriptome changes caused by FADDI-019 treatment were investigated using transcriptome sequencing (RNA-Seq). Pathway analysis was conducted to examine the mechanism of the antibacterial activity of FADDI-019 and to rationally design a synergistic combination. Polymyxin B and colistin were not active against S. aureus strains with MICs of >128 mg/liter; however, FADDI-019 had a MIC of 16 mg/liter. Time-kill assays revealed that no S. aureus regrowth was observed after 24 h at 2× to 4× MIC of FADDI-019. Scanning electron microscopy (SEM) and flow cytometry results indicated that FADDI-019 treatment had no effect on cell morphology but caused membrane depolarization. The vancomycin resistance genes vraRS, as well as the VraRS regulon, were activated by FADDI-019. Virulence determinants controlled by SaeRS and the expression of enterotoxin genes yent2, sei, sem, and seo were significantly downregulated by FADDI-019. Pathway analysis of transcriptomic data was predictive of a synergistic combination comprising FADDI-019 and sulfamethoxazole. Our study is the first to examine the mechanism of the killing of a novel polymyxin against S. aureus. We also show the potential of transcriptomic and pathway analysis as tools to design synergistic antibiotic combinations. IMPORTANCES. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog.
Collapse
|
29
|
Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol 2016; 4:55. [PMID: 27376064 PMCID: PMC4894902 DOI: 10.3389/fcell.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction.
Collapse
Affiliation(s)
- Rafi Rashid
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
30
|
Silva JP, Appelberg R, Gama FM. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv 2016; 34:924-940. [PMID: 27235189 DOI: 10.1016/j.biotechadv.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed.
Collapse
Affiliation(s)
- João P Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Rui Appelberg
- Department of Immunophysiology, University of Porto, 4050-313 Porto, Portugal
| | - Francisco Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
31
|
VraH Is the Third Component of the Staphylococcus aureus VraDEH System Involved in Gallidermin and Daptomycin Resistance and Pathogenicity. Antimicrob Agents Chemother 2016; 60:2391-401. [PMID: 26856834 DOI: 10.1128/aac.02865-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 12/21/2022] Open
Abstract
In bacteria, extracellular signals are transduced into the cell predominantly by two-component systems (TCSs) comprising a regulatory unit triggered by a specific signal. Some of the TCSs control executing units such as ABC transporters involved in antibiotic resistance. For instance, inStaphylococcus aureus, activation of BraSR leads to the upregulation ofvraDEexpression that encodes an ABC transporter playing a role in bacitracin and nisin resistance. In this study, we show that the small staphylococcal transmembrane protein VraH forms, together with VraDE, a three-component system. Although the expression ofvraHin the absence ofvraDEwas sufficient to mediate low-level resistance, only this VraDEH entity conferred high-level resistance against daptomycin and gallidermin. In most staphylococcal genomes,vraHis located immediately downstream ofvraDE, forming an operon, whereas in some species it is localized differently. In an invertebrate infection model, VraDEH significantly enhancedS. aureuspathogenicity. In analogy to the TCS connectors, VraH can be regarded as an ABC connector that modulates the activity of ABC transporters involved in antibiotic resistance.
Collapse
|
32
|
Dastgheyb SS, Otto M. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol 2015; 10:1981-95. [PMID: 26584249 DOI: 10.2217/fmb.15.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Host niches can differ strongly regarding, for example, oxygen tension, pH or nutrient availability. Staphylococcus aureus and other staphylococci are common colonizers of human epithelia as well as important human pathogens. The phenotypes that they show in different host environments, and the corresponding bacterial transcriptomes and proteomes, are currently under intense investigation. In this review, we examine the available literature describing staphylococcal phenotypes, such as expression of virulence factors, gross morphologic characteristics and growth patterns, in various physiological environments. Going forward, these studies will help researchers and clinicians to form an enhanced and more detailed picture of the interactions existing between the host and staphylococci as some of its most frequent colonizers and invaders.
Collapse
Affiliation(s)
- Sana S Dastgheyb
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol 2015; 6:828. [PMID: 26322035 PMCID: PMC4531251 DOI: 10.3389/fmicb.2015.00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
34
|
Abstract
UNLABELLED Sensing of and responding to environmental changes are of vital importance for microbial cells. Consequently, bacteria have evolved a plethora of signaling systems that usually sense biochemical cues either via direct ligand binding, thereby acting as "concentration sensors," or by responding to downstream effects on bacterial physiology, such as structural damage to the cell. Here, we describe a novel, alternative signaling mechanism that effectively implements a "flux sensor" to regulate antibiotic resistance. It relies on a sensory complex consisting of a histidine kinase and an ABC transporter, in which the transporter fulfills the dual role of both the sensor of the antibiotic and the mediator of resistance against it. Combining systems biological modeling with in vivo experimentation, we show that these systems in fact respond to changes in activity of individual resistance transporters rather than to changes in the antibiotic concentration. Our model shows that the cell thereby adjusts the rate of de novo transporter synthesis to precisely the level needed for protection. Such a flux-sensing mechanism may serve as a cost-efficient produce-to-demand strategy, controlling a widely conserved class of antibiotic resistance systems. IMPORTANCE Bacteria have to be able to accurately perceive their environment to allow adaptation to changing conditions. This is usually accomplished by sensing the concentrations of beneficial or harmful substances or by measuring the effect of the prevailing conditions on the cell. Here we show the existence of a new way of sensing the environment, where the bacteria monitor the activity of an antibiotic resistance transporter. Such a "flux-sensing" mechanism allows the cell to detect its current capacity to deal with the antibiotic challenge and thus precisely respond to the need for more transporters. We propose that this is a cost-efficient way of regulating antibiotic resistance on demand.
Collapse
|
35
|
Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3089-100. [PMID: 26051126 DOI: 10.1016/j.bbamem.2015.05.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022]
Abstract
Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Reut Nuri
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Shprung
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Basu A, Mishra B, Leong SSJ. Global transcriptome analysis reveals distinct bacterial response towards soluble and surface-immobilized antimicrobial peptide (Lasioglossin-III). RSC Adv 2015. [DOI: 10.1039/c5ra14862f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial response towards soluble and immobilized AMP molecules revealed through global transcriptome analysis.
Collapse
Affiliation(s)
- Anindya Basu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Biswajit Mishra
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Susanna Su Jan Leong
- Singapore Institute of Technology
- Singapore 138683
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- National University of Singapore
| |
Collapse
|
37
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
38
|
Hanses F, Roux C, Dunman PM, Salzberger B, Lee JC. Staphylococcus aureus gene expression in a rat model of infective endocarditis. Genome Med 2014; 6:93. [PMID: 25392717 PMCID: PMC4228149 DOI: 10.1186/s13073-014-0093-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Diabetes mellitus is a frequent underlying comorbidity in patients with Staphylococcus aureus endocarditis, and it represents a risk factor for complications and a negative outcome. The pathogenesis of staphylococcal endocardial infections in diabetic hosts has been poorly characterized, and little is known about S. aureus gene expression in endocardial vegetations. Methods We utilized a rat model of experimental S. aureus endocarditis to compare the pathogenesis of staphylococcal infection in diabetic and nondiabetic hosts and to study the global S. aureus transcriptome in endocardial vegetations in vivo. Results Diabetic rats had higher levels of bacteremia and larger endocardial vegetations than nondiabetic control animals. Microarray analyses revealed that 61 S. aureus genes were upregulated in diabetic rats, and the majority of these bacterial genes were involved in amino acid and carbohydrate metabolism. When bacterial gene expression in vivo (diabetic or nondiabetic endocardial vegetations) was compared to in vitro growth conditions, higher in vivo expression of genes encoding toxins and proteases was observed. Additionally, genes involved in the production of adhesins, capsular polysaccharide, and siderophores, as well as in amino acid and carbohydrate transport and metabolism, were upregulated in endocardial vegetations. To test the contribution of selected upregulated genes to the pathogenesis of staphylococcal endocarditis, isogenic deletion mutants were utilized. A mutant defective in production of the siderophore staphyloferrin B was attenuated in the endocarditis model, whereas the virulence of a surface adhesin (ΔsdrCDE) mutant was similar to that of the parental S. aureus strain. Conclusions Our results emphasize the relevance of diabetes mellitus as a risk factor for infectious endocarditis and provide a basis for understanding gene expression during staphylococcal infections in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0093-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frank Hanses
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA ; Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93049 Germany
| | - Christelle Roux
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642 USA
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642 USA
| | - Bernd Salzberger
- Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93049 Germany
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
39
|
Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics (Basel) 2014; 3:461-92. [PMID: 25419466 PMCID: PMC4239024 DOI: 10.3390/antibiotics3040461] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Kathryn L Nawrocki
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Emily K Crispell
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| |
Collapse
|
40
|
Sapp AM, Mogen AB, Almand EA, Rivera FE, Shaw LN, Richardson AR, Rice KC. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PLoS One 2014; 9:e108868. [PMID: 25275514 PMCID: PMC4183505 DOI: 10.1371/journal.pone.0108868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential relationship between these two enzymes remains to be elucidated.
Collapse
Affiliation(s)
- April M. Sapp
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Austin B. Mogen
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Erin A. Almand
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Frances E. Rivera
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Anthony R. Richardson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Purrello S, Daum R, Edwards G, Lina G, Lindsay J, Peters G, Stefani S. Meticillin-resistant Staphylococcus aureus (MRSA) update: New insights into bacterial adaptation and therapeutic targets. J Glob Antimicrob Resist 2014; 2:61-69. [DOI: 10.1016/j.jgar.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/06/2014] [Indexed: 12/23/2022] Open
|
42
|
Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli. PLoS Pathog 2014; 10:e1004104. [PMID: 24789011 PMCID: PMC4006907 DOI: 10.1371/journal.ppat.1004104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/18/2014] [Indexed: 01/21/2023] Open
Abstract
Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies. Antimicrobial peptides (AMP) are small proteins with often potent antibacterial activity found in a variety of organisms, including humans. Understanding how these antibiotics operate is challenging and often controversial since many studies have necessarily focussed on identifying a single major cause of bacterial cell death while, increasingly, others have cautioned that AMPs are likely to have access to multiple bactericidal features. Systems biology is an emerging field that comprises a series of techniques capable of giving a global view of how bacteria respond to external stimuli. Here we have monitored changes in gene expression and metabolism in bacteria that have been challenged with sub-lethal concentrations of four different AMPs. By understanding how bacteria respond to a threat we can reveal how the bacteria perceive the AMP to be operating. Our approach provides a sophisticated bacterial perspective of the mode of action of each AMP and reveals that the bacteria have a vast array of weapons that can be marshalled to deal with distinct AMP threats. Indeed, around a third (or even more) of the bacterial machinery might be useful in dealing with antibiotic challenges, highlighting why antibiotic resistance is such a persistent problem.
Collapse
|
43
|
Cornish JP, Sanchez-Alberola N, O'Neill PK, O'Keefe R, Gheba J, Erill I. Characterization of the SOS meta-regulon in the human gut microbiome. ACTA ACUST UNITED AC 2014; 30:1193-7. [PMID: 24407225 PMCID: PMC3998124 DOI: 10.1093/bioinformatics/btt753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MOTIVATION Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. RESULTS We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.
Collapse
Affiliation(s)
- Joseph P Cornish
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
44
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
45
|
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4:353. [PMID: 24367355 PMCID: PMC3856679 DOI: 10.3389/fmicb.2013.00353] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Lorena da S Derengowski
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Cynthia M Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| |
Collapse
|
46
|
Schoenfelder SMK, Marincola G, Geiger T, Goerke C, Wolz C, Ziebuhr W. Methionine biosynthesis in Staphylococcus aureus is tightly controlled by a hierarchical network involving an initiator tRNA-specific T-box riboswitch. PLoS Pathog 2013; 9:e1003606. [PMID: 24068926 PMCID: PMC3771891 DOI: 10.1371/journal.ppat.1003606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/24/2013] [Indexed: 12/03/2022] Open
Abstract
In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionine biosynthesis, the S. aureus metICFE-mdh mRNA is preceded by a 5′-untranslated met leader RNA harboring a T-box riboswitch. Interestingly, this T-box riboswitch is revealed to specifically interact with uncharged initiator formylmethionyl-tRNA (tRNAifMet) while binding of elongator tRNAMet proved to be weak, suggesting a putative additional function of the system in translation initiation control. met leader RNA/metICFE-mdh operon expression is under the control of the repressor CodY which binds upstream of the met leader RNA promoter. As part of the metabolic emergency circuit of the stringent response, methionine depletion activates RelA-dependent (p)ppGpp alarmone synthesis, releasing CodY from its binding site and thereby activating the met leader promoter. Our data further suggest that subsequent steps in metICFE-mdh transcription are tightly controlled by the 5′ met leader-associated T-box riboswitch which mediates premature transcription termination when methionine is present. If methionine supply is limited, and hence tRNAifMet becomes uncharged, full-length met leader/metICFE-mdh mRNA is transcribed which is rapidly degraded by nucleases involving RNase J2. Together, the data demonstrate that staphylococci have evolved special mechanisms to prevent the accumulation of excess methionine. We hypothesize that this strict control might reflect the limited metabolic capacities of staphylococci to reuse methionine as, other than Bacillus, staphylococci lack both the methionine salvage and polyamine synthesis pathways. Thus, methionine metabolism might represent a metabolic Achilles' heel making the pathway an interesting target for future anti-staphylococcal drug development. Prokaryote metabolism is key for our understanding of bacterial virulence and pathogenesis and it is also an area with huge opportunity to identify novel targets for antibiotic drugs. Here, we have addressed the so far poorly characterized regulation of methionine biosynthesis in S. aureus. We demonstrate that methionine biosynthesis control in staphylococci significantly differs from that predicted for other Bacillales. Notably, involvement of a T-box instead of an S-box riboswitch separates staphylococci from other bacteria in the order. We provide, for the first time, direct experimental proof for an interaction of a methionyl-tRNA-specific T-box with its cognate tRNA, and the identification of initiator tRNAifMet as the specific binding partner is an unexpected finding whose exact function in Staphylococcus metabolism remains to be established. The data further suggest that in staphylococci a range of regulatory elements are integrated to form a hierarchical network that elegantly limits costly (excess) methionine biosynthesis and, at the same time, reliably ensures production of the amino acid in a highly selective manner. Our findings open a perspective to exploit methionine biosynthesis and especially its T-box-mediated control as putative target(s) for the development of future anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- Sonja M. K. Schoenfelder
- Universität Würzburg, Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- Queen's University Belfast, Centre for Infection and Immunity, Belfast, United Kingdom
| | - Gabriella Marincola
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Tobias Geiger
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Christiane Goerke
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Christiane Wolz
- Universität Tübingen, Interfakultäres Institut für Mikrobiologie & Infektionsmedizin, Tübingen, Germany
| | - Wilma Ziebuhr
- Universität Würzburg, Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Kaneti G, Sarig H, Marjieh I, Fadia Z, Mor A. Simultaneous breakdown of multiple antibiotic resistance mechanisms in
S. aureus. FASEB J 2013; 27:4834-43. [DOI: 10.1096/fj.13-237610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hadar Sarig
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Ibrahim Marjieh
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Zaknoon Fadia
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Amram Mor
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
48
|
Dangel A, Ackermann N, Abdel-Hadi O, Maier R, Önder K, Francois P, Müller CW, Pané-Farré J, Engelmann S, Schrenzel J, Heesemann J, Lindermayr C. A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase. FASEB J 2013; 27:4476-88. [PMID: 23901070 DOI: 10.1096/fj.13-234575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides are a promising complement to common antibiotics, development of resistance to which is a growing problem. Here we present a de novo-designed peptide, SP1-1 (RKKRLKLLKRLL-NH2), with antimicrobial activity against multiresistant Staphylococcus aureus (minimal inhibitory concentration: 6.25 μM). Elucidation of the mode of action of this peptide revealed a strong interaction with RsbW kinase (Kd: 6.01±2.73 nM), a serine kinase negatively regulating the activity of the transcription factor σB (SigB). SP1-1 binding and functional modulation of RsbW were shown in vitro by a combination of biochemical, molecular, and biophysical methods, which were further genetically evidenced in vivo by analysis of S. aureus ΔsigB deletion mutants. Intracellular localization of the peptide was demonstrated using nanometer-scaled secondary ion mass spectrometry. Moreover, microarray analysis revealed that transcription of numerous genes, involved in cell wall and amino acid metabolism, transport mechanisms, virulence, and pigmentation, is affected. Interestingly, several WalR binding motif containing genes are induced by SP1-1. In sum, the designed peptide SP1-1 seems to have multiple modes of action, including inhibition of a kinase, and therefore might contribute to the development of new antibacterial compounds, giving bacterial kinase inhibition a closer inspection.
Collapse
Affiliation(s)
- Alexandra Dangel
- 1Helmholtz Zentrum Munich, Landstrasse, München-Neuherberg, D-85764 Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Effect of intracellular expression of antimicrobial peptide LL-37 on growth of escherichia coli strain TOP10 under aerobic and anaerobic conditions. Antimicrob Agents Chemother 2013; 57:4707-16. [PMID: 23856776 DOI: 10.1128/aac.00825-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cell morphology to a filamentous phenotype. Further examination of the E. coli cell division protein FtsZ revealed that LL-37 did not interact with FtsZ. Moreover, intracellular expression of LL-37 results in the enhanced production of reactive oxygen species (ROS), causing lethal membrane depolarization under aerobic conditions. Additionally, the membrane permeability was increased after intracellular expression of LL37 under both aerobic and anaerobic conditions. Transcriptomic analysis revealed that intracellular LL-37 mainly affected the expression of genes related to energy production and carbohydrate metabolism. More specifically, genes related to oxidative phosphorylation under both aerobic and anaerobic growth conditions were affected. Collectively, our current study demonstrates that intracellular expression of LL-37 in E. coli can inhibit growth under aerobic and anaerobic conditions. While we confirmed that the generation of ROS is a bactericidal mechanism for LL-37 under aerobic growth conditions, we also found that the intracellular accumulation of cationic LL-37 influences the redox and ion status of the cells under both growth conditions. These data suggest that there is a new AMP-mediated bacterial killing mechanism that targets energy metabolism.
Collapse
|
50
|
Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother 2013; 57:3864-74. [PMID: 23733475 DOI: 10.1128/aac.00263-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The critical role of noncoding small RNAs (sRNAs) in the bacterial response to changing conditions is increasingly recognized. However, a specific role for sRNAs during antibiotic exposure has not been investigated in Staphylococcus aureus. Here, we used Illumina RNA-Seq to examine the sRNA response of multiresistant sequence type 239 (ST239) S. aureus after exposure to four antibiotics (vancomycin, linezolid, ceftobiprole, and tigecycline) representing the major classes of antimicrobials used to treat methicillin-resistant S. aureus (MRSA) infections. We identified 409 potential sRNAs and then compared global sRNA and mRNA expression profiles at 2 and 6 h, without antibiotic exposure and after exposure to each antibiotic, for a vancomycin-susceptible strain (JKD6009) and a vancomycin-intermediate strain (JKD6008). Exploration of this data set by multivariate analysis using a novel implementation of nonnegative matrix factorization (NMF) revealed very different responses for mRNA and sRNA. Where mRNA responses clustered with strain or growth phase conditions, the sRNA responses were predominantly linked to antibiotic exposure, including sRNA responses that were specific for particular antibiotics. A remarkable feature of the antimicrobial response was the prominence of antisense sRNAs to genes encoding proteins involved in protein synthesis and ribosomal function. This study has defined a large sRNA repertoire in epidemic ST239 MRSA and shown for the first time that a subset of sRNAs are part of a coordinated transcriptional response to specific antimicrobial exposures in S. aureus. These data provide a framework for interrogating the role of staphylococcal sRNAs in antimicrobial resistance and exploring new avenues for sRNA-based antimicrobial therapies.
Collapse
|