1
|
Nakamura K, Kohrogi R, Shimamoto S, Katafuchi A, Nakashima K, Tomonaga S, Ohtsuka A, Ijiri D. Phenotypic characteristics of adipocyte-like cells generated from C2C12 myoblasts cultured with chicken serum. Biochem Biophys Res Commun 2024; 736:150843. [PMID: 39447277 DOI: 10.1016/j.bbrc.2024.150843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to clarify the transcriptional and metabolic characteristics of C2C12 myoblasts cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 20 % chicken serum (CHS) (C2C12-CHS cells) compared with C2C12 myoblasts cultured in DMEM containing 20 % fetal bovine serum (FBS) (C2C12-FBS cells). After 3 days of culture, C2C12-CHS cells showed a marked accumulation of lipid droplets, accompanied by increased expression levels of brown adipocyte-related genes (i.e., Bmp7, Prdm16, Ucp1, Cidea, Pgc1α, Cox7a1, Cox8, and β3-adorenoceptor). Furthermore, stimulation of β3-adorenoceptor by its selective agonist, mirabegron, increased the mRNA expression of Ucp1 and Pgc1α in C2C12-CHS cells. Wide-targeted metabolomic analysis performed by gas chromatography-tandem mass spectrometry revealed that the metabolic profile of C2C12-CHS cells was obviously different to that of C2C12-FBS cells. Additionally, the metabolomic analysis indicated that β3-adrenoceptor stimulation by mirabegron upregulated energy metabolism in C2C12-CHS cells as seen in brown adipocytes. These results suggest that C2C12-CHS cells may differentiate into brown adipocyte-like cells, accompanied by increased functional β3-adrenoceptor.
Collapse
Affiliation(s)
- Kiriko Nakamura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Rukana Kohrogi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Saki Shimamoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Ayumi Katafuchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kazuki Nakashima
- Department of Life and Environmental Science, Kagoshima Prefectural College, 1-52-1 Shimoishiki, Kagoshima, 890-0005, Japan
| | - Shozo Tomonaga
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akira Ohtsuka
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daichi Ijiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
2
|
Annibalini G, Di Patria L, Valli G, Bocconcelli M, Saltarelli R, Ferri L, Barberi L, Fanelli F, Morrone A, Barone R, Guerrini R, Musarò A, Stocchi V, Barbieri E. Impaired myoblast differentiation and muscle IGF-1 receptor signaling pathway activation after N-glycosylation inhibition. FASEB J 2024; 38:e23797. [PMID: 38963344 DOI: 10.1096/fj.202400213rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.
Collapse
Affiliation(s)
- Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lorenzo Ferri
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Amelia Morrone
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Zizioli D, Codenotti S, Benaglia G, Manzoni M, Massardi E, Fanzani A, Borsani G, Monti E. Downregulation of Zebrafish Cytosolic Sialidase Neu3.2 Affects Skeletal Muscle Development. Int J Mol Sci 2023; 24:13578. [PMID: 37686385 PMCID: PMC10487903 DOI: 10.3390/ijms241713578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sialidases remove terminal sialic acids residues from the non-reducing ends of glycoconjugates. They have been recognized as catabolic enzymes that work within different subcellular compartments and can ensure the proper turn-over of glycoconjugates. Four mammalian sialidases (NEU1-4) exist, with different subcellular localization, pH optimum and substrate specificity. In zebrafish, seven different sialidases, with high homology to mammalian counterparts, have been identified. Zebrafish Neu3.2 is similar to the human cytosolic sialidase NEU2, which is involved in skeletal muscle differentiation and exhibits a broad substrate specificity toward gangliosides and glycoproteins. In zebrafish neu3.2, mRNA is expressed during somite development, and its enzymatic activity has been detected in the skeletal muscle and heart of adult animals. In this paper, 1-4-cell-stage embryos injected with neu3.2 splice-blocking morpholino showed severe embryonic defects, mainly in somites, heart and anterior-posterior axis formation. Myog and myod1 expressions were altered in morphants, and impaired musculature formation was associated with a defective locomotor behavior. Finally, the co-injection of Neu2 mouse mRNA in morphants rescued the phenotype. These data are consistent with the involvement of cytosolic sialidase in pathologies related to muscle formation and support the validity of the model to investigate the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Daniela Zizioli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Silvia Codenotti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Giuliana Benaglia
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Marta Manzoni
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Elena Massardi
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (E.M.); (G.B.)
| | - Alessandro Fanzani
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Giuseppe Borsani
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (E.M.); (G.B.)
| | - Eugenio Monti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| |
Collapse
|
4
|
McMillin SL, Evans PL, Taylor WM, Weyrauch LA, Sermersheim TJ, Welc SS, Heitmeier MR, Hresko RC, Hruz PW, Koumanov F, Holman GD, Abel ED, Witczak CA. Muscle-Specific Ablation of Glucose Transporter 1 (GLUT1) Does Not Impair Basal or Overload-Stimulated Skeletal Muscle Glucose Uptake. Biomolecules 2022; 12:1734. [PMID: 36551162 PMCID: PMC9776291 DOI: 10.3390/biom12121734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.
Collapse
Affiliation(s)
- Shawna L. McMillin
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Parker L. Evans
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - William M. Taylor
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Luke A. Weyrauch
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Tyler J. Sermersheim
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven S. Welc
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Monique R. Heitmeier
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Richard C. Hresko
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Paul W. Hruz
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | | - Geoffrey D. Holman
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology & Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Carol A. Witczak
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Vilen Z, Joeh E, Critcher M, Parker CG, Huang ML. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. ACS Chem Biol 2021; 16:1994-2003. [PMID: 34181849 DOI: 10.1021/acschembio.1c00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myogenic differentiation, the irreversible developmental process where precursor myoblast muscle stem cells become contractile myotubes, is heavily regulated by glycosylation and glycan-protein interactions at the cell surface and the extracellular matrix. The glycan-binding protein galectin-1 has been found to be a potent activator of myogenic differentiation. While it is being explored as a potential therapeutic for muscle repair, a precise understanding of its glycoprotein interactors is lacking. These gaps are due in part to the difficulties of capturing glycan-protein interactions in live cells. Here, we demonstrate the use of a proximity tagging strategy coupled with quantitative mass-spectrometry-based proteomics to capture, enrich, and identify the glycan-mediated glycoprotein interactors of galectin-1 in cultured live mouse myoblasts. Our interactome dataset can serve as a resource to aid the determination of mechanisms through which galectin-1 promotes myogenic differentiation. Moreover, it can also facilitate the determination of the physiological glycoprotein counter-receptors of galectin-1. Indeed, we identify several known and novel glycan-mediated ligands of galectin-1 as well as validate that galectin-1 binds the native CD44 glycoprotein in a glycan-mediated manner.
Collapse
Affiliation(s)
- Zak Vilen
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Eugene Joeh
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Christopher G. Parker
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Mia L. Huang
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| |
Collapse
|
6
|
Goswami MV, Tawalbeh SM, Canessa EH, Hathout Y. Temporal Proteomic Profiling During Differentiation of Normal and Dystrophin-Deficient Human Muscle Cells. J Neuromuscul Dis 2021; 8:S205-S222. [PMID: 34602497 DOI: 10.3233/jnd-210713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis. OBJECTIVE To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes. METHOD A super SILAC spike-in strategy in combination and LC-MS/MS was used for temporal proteome profiling of normal and dystrophin deficient myoblasts during differentiation. The acquired data was analyzed using Proteome Discoverer 2.2. and data clustering using R to define significant temporal changes in protein expression. RESULTS sFour major temporal protein clusters that showed sequential dynamic expression profiles during myogenesis of normal myoblasts were identified. Clusters 1 and 2, consisting mainly of proteins involved mRNA splicing and processing expression, were elevated at days 0 and 0.5 of differentiation then gradually decreased by day 7 of differentiation, then remained lower thereafter. Cluster 3 consisted of proteins involved contractile muscle and actomyosin organization. They increased in their expression reaching maximum at day 7 of differentiation then stabilized thereafter. Cluster 4 consisting of proteins involved in skeletal muscle development glucogenesis and extracellular remodeling had a lower expression during myoblast stage then gradually increased in their expression to reach a maximum at days 11-15 of differentiation. Lack of dystrophin expression in DMD muscle myoblast caused major alteration in temporal expression of proteins involved in cell adhesion, cytoskeleton, and organelle organization as well as the ubiquitination machinery. CONCLUSION Time series proteome profiling using super SILAC strategy is a powerful method to assess temporal changes in protein expression during myogenesis and to define the downstream consequences of lack of dystrophin on these temporal protein expressions. Key alterations were identified in dystrophin deficient myoblast differentiation compared to normal myoblasts. These alterations could be an attractive therapeutic target.
Collapse
Affiliation(s)
- Mansi V Goswami
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| | - Shefa M Tawalbeh
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineerig Technology, Yarmouk University, Irbid, Jordan
| | - Emily H Canessa
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA.,Department of Biomedical Engineering, Binghamton University, SUNY. Binghamton, NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| |
Collapse
|
7
|
Cerri DG, Rodrigues LC, Alves VM, Machado J, Bastos VAF, Carmo Kettelhut I, Alberici LC, Costa MCR, Stowell SR, Cummings RD, Dias-Baruffi M. Endogenous Galectin-3 is required for skeletal muscle repair. Glycobiology 2021; 31:1295-1307. [PMID: 34224566 DOI: 10.1093/glycob/cwab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 11/14/2022] Open
Abstract
Skeletal muscle has the intrinsic ability to self-repair through a multifactorial process, but many aspects of its cellular and molecular mechanisms are not fully understood. There is increasing evidence that some members of the mammalian β-galactoside-binding protein family (galectins) are involved in the muscular repair process (MRP), including galectin-3 (Gal-3). However, there are many questions about the role of this protein on muscle self-repair. Here, we demonstrate that endogenous Gal-3 is required for: i) muscle repair in vivo using a chloride-barium myolesion mouse model, and ii) mouse primary myoblasts myogenic programming. Injured muscle from Gal-3 knockout mice (GAL3KO) showed persistent inflammation associated with compromised muscle repair and the formation of fibrotic tissue on the lesion site. In GAL3KO mice, osteopontin expression remained high even after 7 and 14 days of the myolesion, while MyoD and myogenin had decreased their expression. In GAL3KO mouse primary myoblast cell culture, Pax7 detection seems to sustain even when cells are stimulated to differentiation and MyoD expression is drastically reduced. The detection and temporal expression levels of these transcriptional factors appear to be altered in Gal-3-deficient myoblast. Gal-3 expression in WT states, both in vivo and in vitro, in sarcoplasm/cytoplasm and myonuclei; as differentiation proceeds, Gal-3 expression is drastically reduced, and its location is confined to the sarcolemma/plasma cell membrane. We also observed a change in the temporal-spatial profile of Gal-3 expression and muscle transcription factors levels during the myolesion. Overall, these results demonstrate that endogenous Gal-3 is required for the skeletal muscle repair process.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Cataldi Rodrigues
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vani Maria Alves
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Víctor Alexandre Félix Bastos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis Carmo Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Sean R Stowell
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Blazev R, Ashwood C, Abrahams JL, Chung LH, Francis D, Yang P, Watt KI, Qian H, Quaife-Ryan GA, Hudson JE, Gregorevic P, Thaysen-Andersen M, Parker BL. Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Mol Cell Proteomics 2020; 20:100030. [PMID: 33583770 PMCID: PMC8724610 DOI: 10.1074/mcp.ra120.002166] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Ashwood
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia; CardiOmics Program, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jodie L Abrahams
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Long H Chung
- School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Deanne Francis
- School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Kevin I Watt
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; Department of Diabetes, Monash University, Melbourne, Victoria, Australia
| | - Hongwei Qian
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory A Quaife-Ryan
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James E Hudson
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia; Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Chen X, Sun Y, Zhang T, Roepstorff P, Yang F. Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells. J Proteome Res 2020; 20:222-235. [PMID: 33216553 DOI: 10.1021/acs.jproteome.0c00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The C2C12 myoblast is a model that has been used extensively to study the process of skeletal muscle differentiation. Proteomics has advanced our understanding of skeletal muscle biology and also the differentiation process of skeletal muscle cells. However, there is still no comprehensive analysis of C2C12 myoblast proteomes, which is important for the understanding of key drivers for the differentiation of skeletal muscle cells. Here, we conducted multidimensional proteome profiling to get a comprehensive analysis of proteomes and PTMomes of C2C12 myoblasts with a TiSH strategy. A total of 8313 protein groups were identified, including 7827 protein groups from nonmodified peptides, 3803 phosphoproteins, and 977 formerly sialylated N-linked glycoproteins. Integrated analysis of proteomic and PTMomic data showed that almost all of the kinases and transcription factors in the muscle cell differentiation pathway were phosphorylated. Further analysis indicated that sialylation might play a role in the differentiation of C2C12 myoblasts. Further functional analysis demonstrated that C2C12 myoblasts showed a decreased level of sialylation during skeletal muscle cell differentiation. Inhibition of sialylation with the sialyltransferase inhibitor 3Fax-Neu5Ac resulted in the lower expression of MHC and suppression of myoblast fusion. In all, these results indicate that sialylation has an effect on the differentiation of skeletal muscle cells.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
10
|
Shahin-Shamsabadi A, Selvaganapathy PR. π-SACS: pH Induced Self-Assembled Cell Sheets Without the Need for Modified Surfaces. ACS Biomater Sci Eng 2020; 6:5346-5356. [PMID: 33455283 DOI: 10.1021/acsbiomaterials.0c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to form tissue-like constructs that have high cell density with proper cell-cell and cell-ECM interactions is critical for many applications including tissue models for drug discovery and tissue regeneration. Newly emerging bioprinting methods sometimes lack the high cellular density needed to provide biophysical cues to orchestrate cellular behavior to recreate tissue architecture and function. Alternate methods using self-assembly can be used to create tissue-like constructs with high cellular density and well-defined microstructure in the form of spheroids, organoids, or cell sheets. Cell sheets have a particularly interesting architecture in the context of tissue regeneration and repair as they can be applied as patches to integrate with surrounding tissues. Until now, the preparation of these sheets has involved culturing on specialized substrates that can be triggered by temperature or phase change (hydrophobic to hydrophilic) to release cells growing on them and form sheets. Here a new technique is proposed that allows delamination of cells and secreted ECM and rapid self-assembly into a cell sheet using a simple pH trigger and without the need to use responsive surfaces or applying external stimuli such as electrical and magnetic fields, only with routine tissue culture plates. This technique can be used with cells that are capable of syncytialization and fusion such as skeletal muscle cells and placenta cells. Using C2C12 myoblast cells we show that the pH trigger induces a rapid delamination of the cells as a continuous layer that self-assembles into a thick dense sheet. The delamination process has little effect on cell viability and maturation and preserves the ECM components that allow sheets to adhere to each other within a short incubation time enabling formation of thicker constructs when multiple sheets are stacked (double- and quadruple-layer constructs are formed here). These thick grafts can be used for regeneration purposes or as in vitro models.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Ontario L8S4K1, Canada.,Department of Mechanical Engineering, McMaster University, Ontario L8S4L7, Canada
| |
Collapse
|
11
|
Shahin-Shamsabadi A, Selvaganapathy PR. A 3D Self-Assembled In Vitro Model to Simulate Direct and Indirect Interactions between Adipocytes and Skeletal Muscle Cells. ACTA ACUST UNITED AC 2020; 4:e2000034. [PMID: 32390329 DOI: 10.1002/adbi.202000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of the development and progression of diabetes and obesity involve complex interactions between adipocytes and skeletal muscle cells. Although 2D in-vitro models are the gold standard for the mechanistic study of such behaviors, they do not recreate the complexity and dynamics of the interactions between the cell types involved. Alternatively, animal models are used but are expensive, difficult to visualize or analyze, are not completely representative of human physiology or genetic background, and have associated ethical considerations. 3D co-culture systems can be complementary to these approaches. Here, using a newly developed 3D biofabrication method, adipocytes and myoblasts are positioned precisely either in direct physical contact or in close proximity such that the paracrine effects could be systematically studied. Suitable protocols for growth and differentiation of both cells in the co-culture system is also developed. Cells show more restrained lipid and protein production in 3D systems compared to 2D ones and adipocytes show more lipolysis in indirect contact with myoblasts as response to drug treatment. These findings emphasize importance of physical contact between cells that have been overlooked in co-culture systems using transwell inserts and can be used in studies for the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Alireza Shahin-Shamsabadi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.,Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
12
|
Vergé C, Bouchatal A, Chirat F, Guérardel Y, Maftah A, Petit JM. Involvement of ST6Gal I-mediated α2,6 sialylation in myoblast proliferation and differentiation. FEBS Open Bio 2019; 10:56-69. [PMID: 31622539 PMCID: PMC6943236 DOI: 10.1002/2211-5463.12745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Myogenesis is a physiological process which involves the proliferation of myoblasts and their differentiation into multinucleated myotubes, which constitute the future muscle fibers. Commitment of myoblasts to differentiation is regulated by the balance between the myogenic factors Pax7 and MyoD. The formation of myotubes requires the presence of glycans, especially N‐glycans, on the cell surface. We examined here the involvement of α2,6 sialylation during murine myoblastic C2C12 cell differentiation by generating a st6gal1‐knockdown C2C12 cell line; these cells exhibit reduced proliferative potential and precocious differentiation due to the low expression of Pax7. The earlier fusion of st6gal1‐knockdown cells leads to a high fusion index and a drop in reserve cells (Pax7+/MyoD−). In st6gal1‐knockdown cells, the Notch pathway is inactivated; consequently, Pax7 expression is virtually abolished, leading to impairment of the proliferation rate. All these results indicate that the decrease in α2,6 sialylation of N‐glycans favors the differentiation of most cells and provokes a significant loss of reserve cells.
Collapse
Affiliation(s)
- Caroline Vergé
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, University of Limoges, France
| | - Amel Bouchatal
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, University of Limoges, France
| | - Frédéric Chirat
- UGSF, UMR 8576, CNRS, University of Lille, Villeneuve d'Ascq, France
| | - Yann Guérardel
- UGSF, UMR 8576, CNRS, University of Lille, Villeneuve d'Ascq, France
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, University of Limoges, France
| | - Jean-Michel Petit
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, University of Limoges, France
| |
Collapse
|
13
|
6-Bromoindirubin-3'-oxime intercepts GSK3 signaling to promote and enhance skeletal muscle differentiation affecting miR-206 expression in mice. Sci Rep 2019; 9:18091. [PMID: 31792344 PMCID: PMC6889408 DOI: 10.1038/s41598-019-54574-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Dystrophies are characterized by progressive skeletal muscle degeneration and weakness as consequence of their molecular abnormalities. Thus, new drugs for restoring skeletal muscle deterioration are critically needed. To identify new and alternative compounds with a functional role in skeletal muscle myogenesis, we screened a library of pharmacologically active compounds and selected the small molecule 6-bromoindirubin-3′-oxime (BIO) as an inhibitor of myoblast proliferation. Using C2C12 cells, we examined BIO’s effect during myoblast proliferation and differentiation showing that BIO treatment promotes transition from cell proliferation to myogenic differentiation through the arrest of cell cycle. Here, we show that BIO is able to promote myogenic differentiation in damaged myotubes in-vitro by enriching the population of newly formed skeletal muscle myotubes. Moreover, in-vivo experiments in CTX-damaged TA muscle confirmed the pro-differentiation capability of BIO as shown by the increasing of the percentage of myofibers with centralized nuclei as well as by the increasing of myofibers number. Additionally, we have identified a strong correlation of miR-206 with BIO treatment both in-vitro and in-vivo: the enhanced expression of miR-206 was observed in-vitro in BIO-treated proliferating myoblasts, miR-206 restored expression was observed in a forced miR-206 silencing conditions antagomiR-mediated upon BIO treatment, and in-vivo in CTX-injured muscles miR-206 enhanced expression was observed upon BIO treatment. Taken together, our results highlight the capacity of BIO to act as a positive modulator of skeletal muscle differentiation in-vitro and in-vivo opening up a new perspective for novel therapeutic targets to correct skeletal muscle defects.
Collapse
|
14
|
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019; 11:nu11102432. [PMID: 31614762 PMCID: PMC6835691 DOI: 10.3390/nu11102432] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
Collapse
|
15
|
Hirata Y, Toyono T, Kokabu S, Obikane Y, Kataoka S, Nakatomi M, Masaki C, Hosokawa R, Seta Y. Krüppel-like factor 5 (Klf5) regulates expression of mouse T1R1 amino acid receptor gene (Tas1r1) in C2C12 myoblast cells. Biomed Res 2019; 40:67-78. [PMID: 30982802 DOI: 10.2220/biomedres.40.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
T1R1 and T1R3 are receptors expressed in taste buds that detect L-amino acids. These receptors are also expressed throughout diverse organ systems, such as the digestive system and muscle tissue, and are thought to function as amino acid sensors. The mechanism of transcriptional regulation of the mouse T1R1 gene (Tas1r1) has not been determined; therefore, in this study, we examined the function of Tas1r1 promoter in the mouse myoblast cell line, C2C12. Luciferase reporter assays showed that a 148-bp region upstream of the ATG start codon of Tas1r1 had a promoter activity. The GT box in the Tas1r1 promoter was conserved in the dog, human, mouse, and pig. Site-directed mutagenesis of this GT box significantly reduced the promoter activation. The GT box in promoters is a recurring motif for Sp/KLF family members. RNAi-mediated depletion of Sp4 and Klf5 decreased Tas1r1 expression, while overexpression of Klf5, but not Sp4, significantly increased Tas1r1 expression. The ENCODE data of chromatin immunoprecipitation and sequencing (ChIP-seq) showed that Klf5 bound to the GT box during the myogenic differentiation. Furthermore, the Klf5 knockout cell lines led to a considerable decrease in the levels of Tas1r1 expression. Collectively, these results showed that Klf5 binds to the GT box in the Tas1r1 promoter and regulates Tas1r1 expression in C2C12 cells.
Collapse
Affiliation(s)
- Yuki Hirata
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University
| | - Yui Obikane
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Shinji Kataoka
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Yuji Seta
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| |
Collapse
|
16
|
Honardoost M, Keramati F, Arefian E, Mohammadi Yeganeh S, Soleimani M. Network of three specific microRNAs influence type 2 diabetes through inducing insulin resistance in muscle cell lines. J Cell Biochem 2019; 120:1532-1538. [PMID: 30368872 DOI: 10.1002/jcb.27381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Insulin resistance has been implicated as one of the best predictors for type 2 diabetes. Growing evidence propose the involvement of microRNAs (miRNAs) as short regulatory molecules in modulating and inducing resistance. In this regard, we have investigated the role of three selected miRNAs in insulin resistance development (miR-135, miR-202, and miR-214), via assessing glucose uptake levels in C2C12 and L6 muscle cell lines. Interestingly, miRNA-transfected cells demonstrated a significantly different glucose uptake compared to the positive control cells. In addition, we evaluated the expression levels of three putative miRNA target genes (Rho-associated coiled-coil containing protein kinase 1, serine/threonine kinase 2, and vesicle-associated membrane protein 2) in transfected cells, recruiting luciferase assay. Our results indicated the targeting and downregulation of Rho-associated coiled-coil containing protein kinase 1 and serine/threonine kinase 2 genes in all miR-transfected cell lines ( P ≤ 0.05), but not for vesicle-associated membrane protein 2. MiRNA upregulation led to the poor stimulation of glucose uptake through insulin and developed insulin-resistant phenotype in both muscle cell lines. Our study showed the role of three miRNAs in the induction of insulin resistance in cell lines and making them prone to type 2 diabetes development.
Collapse
Affiliation(s)
- Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Keramati
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Samira Mohammadi Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Agerholm M, Dall M, Jensen BAH, Prats C, Madsen S, Basse AL, Graae AS, Risis S, Goldenbaum J, Quistorff B, Larsen S, Vienberg SG, Treebak JT. Perturbations of NAD + salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E377-E395. [PMID: 29208611 DOI: 10.1152/ajpendo.00213.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT in maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express Cre recombinase in tibialis anterior muscle of floxed Nampt mice. In sh Nampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55%, and 2-deoxyglucose uptake increased by 25% in sh Nampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in sh Nampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh Nampt KD cells, respectively. Expression of Cre recombinase in muscle of floxed Nampt mice reduced NAMPT and NAD+ levels by 38% and 43%, respectively. Glucose uptake increased by 40%, and mitochondrial complex IV respiration was compromised by 20%. Hypoxia-inducible factor (HIF)-1α-regulated genes and histone H3 lysine 9 (H3K9) acetylation, a known sirtuin 6 (SIRT6) target, were increased in shNampt KD cells. Thus, we propose that the shift toward glycolytic metabolism observed, at least in part, is mediated by the SIRT6/HIF1α axis. Our findings suggest that NAMPT plays a key role for maintaining NAD+ levels in skeletal muscle and that NAMPT deficiency compromises oxidative phosphorylation capacity and alters energy homeostasis in this tissue.
Collapse
Affiliation(s)
- Marianne Agerholm
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Morten Dall
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Søren Madsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Astrid L Basse
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Anne-Sofie Graae
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Steve Risis
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Julie Goldenbaum
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Bjørn Quistorff
- Section for Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, and Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Sara G Vienberg
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
18
|
McMillin SL, Schmidt DL, Kahn BB, Witczak CA. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle. Diabetes 2017; 66:1491-1500. [PMID: 28279980 PMCID: PMC5440020 DOI: 10.2337/db16-1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022]
Abstract
GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake.
Collapse
Affiliation(s)
- Shawna L McMillin
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Denise L Schmidt
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carol A Witczak
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|
19
|
Auh QSC, Park KR, Lee MO, Hwang MJ, Kang SK, Hong JP, Yun HM, Kim EC. N-methyl-D-aspartate (NMDA) impairs myogenesis in C2C12 cells. Muscle Nerve 2016; 56:510-518. [PMID: 27977864 DOI: 10.1002/mus.25511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION N-methyl-d-aspartate (NMDA) is expressed in sensory neurons and plays important roles in peripheral pain mechanisms. The aim of this study was to examine the effects and molecular mechanisms of NMDA on C2C12 myoblast proliferation and differentiation. METHODS Cytotoxicity and differentiation were examined by the MTT assay, reverse transcription-polymerase chain reaction, and immunofluorescence. RESULTS NMDA had no cytotoxicity (10-500 μM) and inhibited myoblastic differentiation of C2C12 cells, as assessed by F-actin immunofluorescence and levels of mRNAs encoding myogenic markers such as myogenin and myosin heavy-chain 2. It inhibited phosphorylation of mammalian target of rapamycin (mTOR) by inactivating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. It induced reactive oxygen species production. Furthermore, NMDA-suppressed expression of F-actin was reversed by adding the antioxidant N-acetylcysteine. CONCLUSIONS Collectively, these results indicate that NMDA impairs myogenesis or myogenic differentiation in C2C12 cells through the mTOR/MAPK signaling pathways and may lead to skeletal muscle degeneration. Muscle Nerve 56: 510-518, 2017.
Collapse
Affiliation(s)
- Q-SChick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myeong-Ok Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Mi-Jin Hwang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung-Pyo Hong
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
20
|
Grassot V, Bouchatal A, Da Silva A, Chantepie S, Papy-Garcia D, Maftah A, Gallet PF, Petit JM. Heparan sulfates and the decrease of N-glycans promote early adipogenic differentiation rather than myogenesis of murine myogenic progenitor cells. Differentiation 2016; 93:15-26. [PMID: 27689814 DOI: 10.1016/j.diff.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 12/25/2022]
Abstract
In vitro, extracted muscle satellite cells, called myogenic progenitor cells, can differentiate either in myotubes or preadipocytes, depending on environmental factors and the medium. Transcriptomic analyses on glycosylation genes during satellite cells differentiation into myotubes showed that 31 genes present a significant variation of expression at the early stages of murine myogenic progenitor cells (MPC) differentiation. In the present study, we analyzed the expression of 383 glycosylation related genes during murine MPC differentiation into preadipocytes and compared the data to those previously obtained during their differentiation into myotubes. Fifty-six glycosylation related genes are specifically modified in their expression during early adipogenesis. The variations correspond mainly to: a decrease of N-glycans, and of alpha (2,3) and (2,6) linked sialic acids, and to a high level of heparan sulfates. A high amount of TGF-β1 in extracellular media during early adipogenesis was also observed. It seems that the increases of heparan sulfates and TGF-β1 favor pre-adipogenic differentition of MPC and possibly prevent their myogenic differentiation.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| | - Amel Bouchatal
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| | - Anne Da Silva
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| | - Sandrine Chantepie
- CNRS, EAC 7149, F-94000 Créteil, France; Université Paris Est Créteil, Laboratoire Croissance, Régénération, Réparation et Régénération Tissulaires, CRRET, F-94000 Créteil, France.
| | - Dulce Papy-Garcia
- CNRS, EAC 7149, F-94000 Créteil, France; Université Paris Est Créteil, Laboratoire Croissance, Régénération, Réparation et Régénération Tissulaires, CRRET, F-94000 Créteil, France.
| | - Abderrahman Maftah
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| | - Paul-François Gallet
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| | - Jean-Michel Petit
- INRA, UMR 1061, F-87060 Limoges, France; Université de Limoges, Faculté des Sciences et Techniques, Unité de Génétique Moléculaire Animale, UGMA, F-87060 Limoges, France.
| |
Collapse
|
21
|
Bledzka K, Bialkowska K, Sossey-Alaoui K, Vaynberg J, Pluskota E, Qin J, Plow EF. Kindlin-2 directly binds actin and regulates integrin outside-in signaling. J Cell Biol 2016; 213:97-108. [PMID: 27044892 PMCID: PMC4828686 DOI: 10.1083/jcb.201501006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Bledzka et al. show that kindlin-2 binds actin via its F0 domain, and mutation of this site diminishes cell spreading, revealing a new mechanism by which kindlin-2 regulates cellular responses. Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Katarzyna Bialkowska
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Julia Vaynberg
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
22
|
Shiozaki K, Harasaki Y, Fukuda M, Yoshinaga A, Ryuzono S, Chigwechokha PK, Komatsu M, Miyagi T. Positive regulation of myoblast differentiation by medaka Neu3b sialidase through gangliosides desialylation. Biochimie 2016; 123:65-72. [DOI: 10.1016/j.biochi.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
|
23
|
Firoz A, Malik A, Singh SK, Jha V, Ali A. Identification of hub glycogenes and their nsSNP analysis from mouse RNA-Seq data. Gene 2015; 574:235-46. [PMID: 26260015 DOI: 10.1016/j.gene.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022]
Abstract
Glycogenes regulate a large number of biological processes such as cancer and development. In this work, we created an interaction network of 923 glycogenes to detect potential hubs from different mouse tissues using RNA-Seq data. DAVID functional cluster analysis revealed enrichment of immune response, glycoprotein and cholesterol metabolic processes. We also explored nsSNPs that may modify the expression and function of identified hubs using computational methods. We observe that the number of nsSNPs predicted by any two methods to affect protein function is 4, 7 and 2 for FLT1, NID2 and TNFRSF1B. Residues in the native and mutant proteins were analyzed for solvent accessibility and secondary structure change. Analysis of hubs can help in determining their degree of conservation and understanding their functions in biological processes. The nsSNPs proposed in this work may be further targeted through experimental methods for understanding structural and functional relationships of hub mutants.
Collapse
Affiliation(s)
- Ahmad Firoz
- School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India; Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Adeel Malik
- Perdana University Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, 43400 Serdang, Selangor, Malaysia.
| | - Sanjay Kumar Singh
- Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Vivekanand Jha
- Biomedical Informatics Center of ICMR, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India; Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India
| |
Collapse
|
24
|
Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells. PLoS One 2015. [PMID: 26200109 PMCID: PMC4511796 DOI: 10.1371/journal.pone.0133597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells) via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4). Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs). Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs) have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs) using GeneMANIA, cadherin-associated protein (CTNNA2) was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities) were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM) genes (type I collagen α1 and type I collagen α2) along with myostatin (MSTN), was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new mechanism by which MYOG interacts with CTNNA2 in order to promote myoblast differentiation.
Collapse
|
25
|
Park G, Yoon BS, Kim YS, Choi SC, Moon JH, Kwon S, Hwang J, Yun W, Kim JH, Park CY, Lim DS, Kim YI, Oh CH, You S. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 2015; 54:201-12. [PMID: 25907053 DOI: 10.1016/j.biomaterials.2015.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022]
Abstract
The possibility of controlling cell fates by overexpressing specific transcription factors has led to numerous studies in stem cell research. Small molecules can be used, instead of transcription factors, to induce the de-differentiation of somatic cells or to induce pluripotent cells (iPSCs). Here we reported that combinations of small molecules could convert mouse fibroblasts into cardiomyocyte-like cell without requiring transcription factor expression. Treatment with specific combinations of small molecules that are enhancer for iPSC induction converted mouse fibroblasts into spontaneously contracting, cardiac troponin T-positive, cardiomyocyte-like cells. We specifically identified five small molecules that can induce mouse fibroblasts to form these cardiomyocyte-like cells. These cells are similar to primary cardiomyocytes in terms of marker gene expression, epigenetic status of cardiac-specific genes, and subcellular structure. Our findings indicate that lineage conversion can be induced not only by transcription factors, but also by small molecules.
Collapse
Affiliation(s)
- Gyuman Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byung Sun Yoon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon Sik Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jai-Hee Moon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Suhyun Kwon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jihye Hwang
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chil Hwan Oh
- Department of Dermatology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Masilamani TJ, Loiselle JJ, Sutherland LC. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol Biotechnol 2014; 56:329-39. [PMID: 24146429 DOI: 10.1007/s12033-013-9712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.
Collapse
Affiliation(s)
- Twinkle J Masilamani
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada,
| | | | | |
Collapse
|
27
|
Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway. Mol Cell Biol 2014; 35:391-405. [PMID: 25384974 DOI: 10.1128/mcb.00890-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.
Collapse
|
28
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
29
|
Comparative Analysis of Glycogene Expression in Different Mouse Tissues Using RNA-Seq Data. Int J Genomics 2014; 2014:837365. [PMID: 25121089 PMCID: PMC4121153 DOI: 10.1155/2014/837365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer, primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579, 501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups. DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579), IGF2 and NID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results suggest that the significance of immune system related processes in liver, glycosphingolipid metabolic processes in the development of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies are required to confirm the role of predicted hub genes as well as the significance of biological processes.
Collapse
|
30
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
The exostosin family: proteins with many functions. Matrix Biol 2013; 35:25-33. [PMID: 24128412 DOI: 10.1016/j.matbio.2013.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
Heparan sulfates are complex sulfated molecules found in abundance at cell surfaces and in the extracellular matrix. They bind to and influence the activity of a variety of molecules like growth factors, proteases and morphogens and are thus involved in various cell-cell and cell-matrix interactions. The mammalian EXT proteins have glycosyltransferase activities relevant for HS chain polymerization, however their exact role in this process is still confusing. In this review, we summarize current knowledge about the biochemical activities and some proposed functions of the members of the EXT protein family and their roles in human disease.
Collapse
|
32
|
Kaminski J, Lançon A, Aires V, Limagne E, Tili E, Michaille JJ, Latruffe N. Resveratrol initiates differentiation of mouse skeletal muscle-derived C2C12 myoblasts. Biochem Pharmacol 2012; 84:1251-9. [DOI: 10.1016/j.bcp.2012.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 12/11/2022]
|
33
|
He J, Liu Y, Zhu TS, Xie X, Costello MA, Talsma CE, Flack CG, Crowley JG, Dimeco F, Vescovi AL, Fan X, Lubman DM. Glycoproteomic analysis of glioblastoma stem cell differentiation. J Proteome Res 2010; 10:330-8. [PMID: 21110520 DOI: 10.1021/pr101158p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells are responsible for tumor formation through self-renewal and differentiation into multiple cell types and thus represent a new therapeutic target for tumors. Glycoproteins play a critical role in determining the fates of stem cells such as self-renewal, proliferation, and differentiation. Here we applied a multilectin affinity chromatography and quantitative glycoproteomics approach to analyze alterations of glycoproteins relevant to the differentiation of a glioblastoma-derived stem cell line HSR-GBM1. Three lectins including concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin (PNA) were used to capture glycoproteins, followed by LC-MS/MS analysis. A total of 73 and 79 high-confidence (FDR < 0.01) glycoproteins were identified from the undifferentiated and differentiated cells, respectively. Label-free quantitation resulted in the discovery of 18 differentially expressed glycoproteins, wherein 9 proteins are localized in the lysosome. All of these lysosomal glycoproteins were up-regulated after differentiation, where their principal function was hydrolysis of glycosyl residues. Protein-protein interaction and functional analyses revealed the active involvement of lysosomes during the process of glioblastoma stem cell differentiation. This work provides glycoprotein markers to characterize differentiation status of glioblastoma stem cells that may be useful in stem-cell therapy of glioblastoma.
Collapse
Affiliation(s)
- Jintang He
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jiménez-Castells C, Defaus S, Andreu D, Gutiérrez-Gallego R. Recent progress in the field of neoglycoconjugate chemistry. Biomol Concepts 2010; 1:85-96. [DOI: 10.1515/bmc.2010.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractGlycosylation is probably the most complex secondary gene event that affects the vast majority of proteins in nature resulting in the occurrence of a heterogeneous mixture of glycoforms for a single protein. Many functions are exerted by single monosaccharides, well-defined oligosaccharides, or larger glycans present in these glycoproteins. To unravel these functions it is of the utmost importance to prepare well-defined single glycans conjugated to the underlying aglycon. In this review, the most recent developments are described to address the preparation of carbohydrate-amino acid (glyco-conjugates). Naturally occurring N- and O-linked glycosylation are described and the preparation of non-natural sugar-amino acid linkages are also included.
Collapse
Affiliation(s)
- Carmen Jiménez-Castells
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sira Defaus
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|