1
|
Kim C, Oh KK, Jothi R, Park DS. An innovative approach to decoding genetic variability in Pseudomonas aeruginosa via amino acid repeats and gene structure profiles. Sci Rep 2024; 14:22610. [PMID: 39349595 PMCID: PMC11443150 DOI: 10.1038/s41598-024-73031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Pseudomonas aeruginosa, a common pathogen in nosocomial infections, presents significant global health challenges due to its high prevalence and mortality rates. However, the origins and distribution of this bacterium remain unclear, partly due to the lack of effective gene typing methods. This situation necessitates the establishment of trustworthy and high-resolution protocol for differentiating closely related P. aeruginosa strains. In this context, the present study attempted to undertake a comparative genomic analysis of multiple P. aeruginosa strains available in the public database NCBI, with the goal of identifying potential genetic markers for measuring the genetic diversity. The preliminary comparative analysis of 816 P. aeruginosa strains revealed notable variations in two genes-specifically, the CDF family iron/cobalt efflux transporter AitP and the protease modulator HflC-across 44 strains. These variations were associated with single amino acid repeats (SHRs) that responsible for encoding histidine residue. Additionally, comparative gene map analysis revealed differential clustering patterns in the Rsx and TAXI genes among 16 strains. Interestingly, the gene structure pattern observed in TAXI groups displayed a strong correlation with the SHRs pattern in the CDF and HflC groups. In addition, the SHRs pattern of CDF and HflC were strongly correlated with MLST sequence type number. Overall, the study present a novel genetic markers based on SHRs and gene cluster patterns, offering a reliable method for genotyping of P. aeruginosa.
Collapse
Affiliation(s)
- Chaerin Kim
- Microbial Safety Division, Rural Development Administration, National Institute of Agricultural Sciences, Wanju, 55365, Republic of Korea
| | - Kwang-Kyo Oh
- Microbial Safety Division, Rural Development Administration, National Institute of Agricultural Sciences, Wanju, 55365, Republic of Korea
| | - Ravi Jothi
- Microbial Safety Division, Rural Development Administration, National Institute of Agricultural Sciences, Wanju, 55365, Republic of Korea
| | - Dong Suk Park
- Microbial Safety Division, Rural Development Administration, National Institute of Agricultural Sciences, Wanju, 55365, Republic of Korea.
| |
Collapse
|
2
|
Rodríguez-Pastor R, Knossow N, Shahar N, Hasik AZ, Deatherage DE, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. Pathogen contingency loci and the evolution of host specificity: Simple sequence repeats mediate Bartonella adaptation to a wild rodent host. PLoS Pathog 2024; 20:e1012591. [PMID: 39348417 PMCID: PMC11466379 DOI: 10.1371/journal.ppat.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Parasites, including pathogens, can adapt to better exploit their hosts on many scales, ranging from within an infection of a single individual to series of infections spanning multiple host species. However, little is known about how the genomes of parasites in natural communities evolve when they face diverse hosts. We investigated how Bartonella bacteria that circulate in rodent communities in the dunes of the Negev Desert in Israel adapt to different species of rodent hosts. We propagated 15 Bartonella populations through infections of either a single host species (Gerbillus andersoni or Gerbillus pyramidum) or alternating between the two. After 20 rodent passages, strains with de novo mutations replaced the ancestor in most populations. Mutations in two mononucleotide simple sequence repeats (SSRs) that caused frameshifts in the same adhesin gene dominated the evolutionary dynamics. They appeared exclusively in populations that encountered G. andersoni and altered the dynamics of infections of this host. Similar SSRs in other genes are conserved and exhibit ON/OFF variation in Bartonella isolates from the Negev Desert dunes. Our results suggest that SSR-based contingency loci could be important not only for rapidly and reversibly generating antigenic variation to escape immune responses but that they may also mediate the evolution of host specificity.
Collapse
Affiliation(s)
- Ruth Rodríguez-Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adam Z. Hasik
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Daniel E. Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ricardo Gutiérrez
- National Reference Center for Bacteriology, Costa Rican Institute for Research and Teaching in Nutrition and Health (Inciensa), Cartago, Costa Rica
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis, West Indies
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard E. Lenski
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
3
|
Garcia EM, Klimowicz AK, Edupuganti L, Topf MA, Bhide SR, Slusser DJ, Leib SM, Coddington CL, Matveyev A, Buck GA, Jefferson KK, Pepperell CS, Dillard JP. Phase variable colony variants are conserved across Gardnerella spp. and exhibit different virulence-associated phenotypes. mSphere 2024; 9:e0045024. [PMID: 38926904 PMCID: PMC11287997 DOI: 10.1128/msphere.00450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The Gardnerella genus, comprising at least 13 species, is associated with the polymicrobial disorder bacterial vaginosis (BV). However, the details of BV pathogenesis are poorly defined, and the contributions made by individual species, including Gardnerella spp., are largely unknown. We report here that colony phenotypes characterized by size (large and small) and opacity (opaque and translucent) are phase variable and are conserved among all tested Gardnerella strains, representing at least 10 different species. With the hypothesis that these different variants could be an important missing piece to the enigma of how BV develops in vivo, we characterized their phenotypic, proteomic, and genomic differences. Beyond increased colony size, large colony variants showed reduced vaginolysin secretion and faster growth rate relative to small colony variants. The ability to inhibit the growth of Neisseria gonorrhoeae and commensal Lactobacillus species varied by strain and, in some instances, differed between variants. Proteomics analyses indicated that 127-173 proteins were differentially expressed between variants. Proteins with increased expression in large variants of both strains were associated with amino acid and protein synthesis and protein folding, whereas those increased in small variants were related to nucleotide synthesis, phosphate transport, ABC transport, and glycogen breakdown. Furthermore, whole genome sequencing analyses revealed an abundance of genes associated with variable homopolymer tracts, implicating slipped strand mispairing in Gardnerella phase variation and illuminating the potential for previously unrecognized heterogeneity within clonal populations. Collectively, these results suggest that phase variants may be primed to serve different roles in BV pathogenesis.IMPORTANCEBacterial vaginosis is the most common gynecological disorder in women of childbearing age. Gardnerella species are crucial to the development of this dysbiosis, but the mechanisms involved in the infection are not understood. We discovered that Gardnerella species vary between two different forms, reflected in bacterial colony size. A slow-growing form makes large amounts of the toxin vaginolysin and is better able to survive in human cervix tissue. A fast-growing form is likely the one that proliferates to high numbers just prior to symptom onset and forms the biofilm that serves as a scaffold for multiple BV-associated anaerobic bacteria. Identification of the proteins that vary between different forms of the bacteria as well as those that vary randomly provides insight into the factors important for Gardnerella infection and immune avoidance.
Collapse
Affiliation(s)
- Erin M. Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laahirie Edupuganti
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Madeline A. Topf
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shraddha R. Bhide
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dawson J. Slusser
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samantha M. Leib
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cayden L. Coddington
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrey Matveyev
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kimberly K. Jefferson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Mulholland CV, Wiggins TJ, Cui J, Vilchèze C, Rajagopalan S, Shultis MW, Reyes-Fernández EZ, Jacobs WR, Berney M. Propionate prevents loss of the PDIM virulence lipid in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:1607-1618. [PMID: 38740932 PMCID: PMC11253637 DOI: 10.1038/s41564-024-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous PDIM-negative mutants that have attenuated virulence and increased cell wall permeability, thus impacting the relevance of experimental findings. PDIM loss can also reduce the efficacy of the BCG Pasteur vaccine. Here we show that vancomycin susceptibility can rapidly screen for M. tuberculosis PDIM production. We find that metabolic deficiency of methylmalonyl-CoA impedes the growth of PDIM-producing bacilli, selecting for PDIM-negative variants. Supplementation with odd-chain fatty acids, cholesterol or vitamin B12 restores PDIM-positive bacterial growth. Specifically, we show that propionate supplementation enhances PDIM-producing bacterial growth and selects against PDIM-negative mutants, analogous to in vivo conditions. Our study provides a simple approach to screen for and maintain PDIM production, and reveals how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.
Collapse
Affiliation(s)
- Claire V Mulholland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jinhua Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael W Shultis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Liang J, Faucher SP. Interactions between chaperone and energy storage networks during the evolution of Legionella pneumophila under heat shock. PeerJ 2024; 12:e17197. [PMID: 38708341 PMCID: PMC11067923 DOI: 10.7717/peerj.17197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sebastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
6
|
Lin LC, Kao CY, Chang SC, Hidrosollo JH, Lu JJ. Molecular characterization of lugdunin inactivation mechanisms and their association with Staphylococcus lugdunensis genetic types. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:278-287. [PMID: 38296696 DOI: 10.1016/j.jmii.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND AND PURPOSE Our previous studies showed that lugdunin activities are associated with Staphylococcus lugdunensis genotypes, and most isolates do not exhibit lugdunin activity. As a continuation of our previous analysis, we focused on the reasons for defects in lugdunin production in S. lugdunensis clinical isolates. METHODS A comparative analysis of 36 S. lugdunensis whole genome sequencing data revealed three major mutation types, unknown deletion mechanism that caused most of lug operon genes lost, mobile genetic element (MGE) insertion, and nonsense mutations, which potentially damaged lugdunin production. A total of 152 S. lugdunensis clinical isolates belonging to lugdunin nonproducers were further examined for the above three mutation types. PCR products were sequenced to examine these variations. RESULTS Forty-six of the 152 isolates were CRISPR-Cas IIC isolates, including 26 ST27, 14 ST4, and 6 ST29 isolates; further investigation confirmed that all of their lug operons had lost almost all lug operon genes except lugM. An IS256 insertion in lugA was identified in 16 isolates, and most isolates (15 over 16) belonged to ST3. In addition, three nonsense mutations caused by single nucleotide substitutions (an adenine deletion in lugB at the 361th and 1219th nucleotides and an adenine deletion in lugC at the 1612nd nucleotide) that were frequently observed among 36 S. lugdunensis whole genome sequencing data were further observed in our clinical isolates. These three nonsense mutations were frequently found in most of CRISPR-Cas IIIA strains, especially in ST6 isolates. CONCLUSION Our findings suggest that the mechanisms affecting lugdunin production are associated with S. lugdunensis molecular types.
Collapse
Affiliation(s)
- Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Cheng Chang
- Department of Medical Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; University of San Agustin, College of Pharmacy and Medical Technology, Iloilo City, Philippines
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Yella VR, Vanaja A. Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie 2023; 214:101-111. [PMID: 37311475 DOI: 10.1016/j.biochi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The promoter regions of gene regulation are under evolutionary constraints and earlier studies uncovered that they are characterized by enrichment of functional non-B DNA structural signatures like curved DNA, cruciform DNA, G-quadruplex, triple-helical DNA, slipped DNA structures, and Z-DNA. However, these studies are restricted to a few model organisms, single non-B DNA motif types, or whole genomic sequences, and their comparative accumulation in promoter regions of different domains of life has not been reported comprehensively. In this study, for the first time, we investigated the preponderance of non-B DNA-prone motifs in promoter regions in 1180 genomes belonging to 28 taxonomic groups using the non-B DNA Motif Search Tool (nBMST). The trends suggest that they are predominant in promoters compared to the upstream and downstream regions of all three domains of life and variably linked to taxonomic groups. Cruciform DNA motif is the most abundant form of non-B DNA, spanning from archaea to lower eukaryotes. Curved DNA motifs are prominent in host-associated bacteria, and suppressed in mammals. Triplex-DNA and slipped DNA structure repeats are discretely dispersed in all lineages. G-quadruplex motifs are significantly enriched in mammals. We also observed that the unique enrichment of non-B DNA in promoters is strongly linked to genome GC, size, evolutionary time divergence, and ecological adaptations. Overall, our work systematically reports the unique non-B DNA structural landscape of cellular organisms from the perspective of the cis-regulatory code of genomes.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India.
| | - Akkinepally Vanaja
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
8
|
Bogut A, Koper P, Marczak M, Całka P. The first genomic characterization of a stable, hemin-dependent small colony variant strain of Staphylococcus epidermidis isolated from a prosthetic-joint infection. Front Microbiol 2023; 14:1289844. [PMID: 37928677 PMCID: PMC10620731 DOI: 10.3389/fmicb.2023.1289844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Phenotype switching from a wild type (WT) to a slow-growing subpopulation, referred to as small colony variants (SCVs), supports an infectious lifestyle of Staphylococcus epidermidis, the leading cause of medical device-related infections. Specific mechanisms underlying formation of SCVs and involved in the shaping of their pathogenic potential are of particular interest for stable strains as they have been only rarely cultured from clinical specimens. As the SCV phenotype stability implies the existence of genetic changes, the whole genome sequence of a stable, hemin-dependent S. epidermidis SCV strain (named 49SCV) involved in a late prosthetic joint infection was analyzed. The strain was isolated in a monoculture without a corresponding WT clone, therefore, its genome was compared against five reference S. epidermidis strains (ATCC12228, ATCC14990, NBRC113846, O47, and RP62A), both at the level of the genome structure and coding sequences. According to the Multilocus Sequence Typing analysis, the 49SCV strain represented the sequence type 2 (ST2) regarded as the most prominent infection-causing lineage with a worldwide dissemination. Genomic features unique to 49SCV included the absence of the Staphylococcal Cassette Chromosome (SCC), ~12 kb deletion with the loss of genes involved in the arginine deiminase pathway, and frameshift-generating mutations within the poly(A) and poly(T) homopolymeric tracts. Indels were identified in loci associated with adherence, metabolism, stress response, virulence, and cell wall synthesis. Of note, deletion in the poly(A) of the hemA gene has been considered a possible trigger factor for the phenotype transition and hemin auxotrophy in the strain. To our knowledge, the study represents the first genomic characterization of a clinical, stable and hemin-dependent S. epidermidis SCV strain. We propose that previously unreported indels in the homopolymeric tracts can constitute a background of the SCV phenotype due to a resulting truncation of the corresponding proteins and their possible biological dysfunction. Streamline of genetic content evidenced by the loss of the SCC and a large genomic deletion can represent a possible strategy associated both with the SCV phenotype and its adaptation to chronicity.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Mulholland CV, Wiggins TJ, Cui J, Vilchèze C, Rajagopalan S, Shultis MW, Reyes-Fernández EZ, Jacobs WR, Berney M. The PDIM paradox of Mycobacterium tuberculosis: new solutions to a persistent problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562559. [PMID: 37905120 PMCID: PMC10614861 DOI: 10.1101/2023.10.16.562559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous mutations that cause PDIM loss leading to virulence attenuation and increased cell wall permeability. We discovered that PDIM loss is due to a metabolic deficiency of methylmalonyl-CoA that impedes the growth of PDIM-producing bacilli. This can be remedied by supplementation with odd-chain fatty acids, cholesterol, or vitamin B12. We developed a much-needed facile and scalable routine assay for PDIM production and show that propionate supplementation enhances the growth of PDIM-producing bacilli and selects against PDIM-negative mutants, analogous to in vivo conditions. Our results solve a major issue in tuberculosis research and exemplify how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.
Collapse
Affiliation(s)
- Claire V. Mulholland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | | | | | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Michael W. Shultis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | | | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| |
Collapse
|
10
|
Santos A, Pinto M, Carneiro S, Silva S, Rodrigues I, Munhá J, Gomes JP, Macedo R. Microevolution of a Mycobacteroides abscessus subsp. bolletii strain in a clinical persistent infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105437. [PMID: 37100339 DOI: 10.1016/j.meegid.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Mycobacteroides abscessus complex (MAB), a fast-growing nontuberculous mycobacterium, is emerging as a significant infectious disease threat, due to both intrinsic and acquired resistance mechanisms to antibiotics and disinfectants and the need for extensive and multidrug regimens for treatment. Despite the prolonged regimens, outcomes are poor and persistence cases have been reported. Here, we describe clinical, microbiologic and genomic features of a M. abscessus subsp. bolletii (M. bolletii) strain consecutively isolated from a patient within an eight-year infection period. From April 2014 to September 2021, the National Reference Laboratory for Mycobacteria received eight strains isolated from a male patient. Species identification, molecular resistance profile and phenotypic drug susceptibility were determined. Five of these isolates were recovered for further in-depth genomic analysis. Genomic analysis confirmed the multidrug resistant pattern of the strain and also other genetic changes associated with adaptation to environment and defence mechanisms. We highlight the identification of new mutations in locus MAB_1881c and in locus MAB_4099c (mps1 gene), already described as associated with macrolides resistance and morphotype switching, respectively. Additionally, we also observed the emergence and fixation of a mutation in locus MAB_0364c that appeared at a frequency of 36% for the 2014 isolate, 57% for the 2015 isolate and 100% for the 2017 and 2021 isolates, clearly illustrating a fixation process underlying a microevolution of the MAB strain within the patient. Altogether these results suggest that the observed genetic alterations are a reflection of the bacterial population's continuous adaptation and survival to the host environment during infection, contributing to persistence and treatment failure.
Collapse
Affiliation(s)
- Andrea Santos
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Sofia Carneiro
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal; Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sónia Silva
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Irene Rodrigues
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - João Munhá
- Pulmonology Unit of Portimão Hospital, Algarve University Hospital Centre, Algarve, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal.
| |
Collapse
|
11
|
Hefetz I, Israeli O, Bilinsky G, Plaschkes I, Hazkani-Covo E, Hayouka Z, Lampert A, Helman Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023; 26:106043. [PMID: 36824284 PMCID: PMC9941203 DOI: 10.1016/j.isci.2023.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of Paenibacillus glucanolyticus generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as "seeds" for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of P. glucanolyticus colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional Paenibacillus species, suggesting that this phenomenon could be wide-spread and ecologically important.
Collapse
Affiliation(s)
- Idan Hefetz
- Department of Biotechnology, Institute for Biological Research, Ness-Ziona, Israel,Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Zvi Hayouka
- Department of Biochemistry, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adam Lampert
- Institute of Environmental Sciences (IES), Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| | - Yael Helman
- Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| |
Collapse
|
12
|
Subtyping Evaluation of Salmonella Enteritidis Using Single Nucleotide Polymorphism and Core Genome Multilocus Sequence Typing with Nanopore Reads. Appl Environ Microbiol 2022; 88:e0078522. [PMID: 35867567 PMCID: PMC9361833 DOI: 10.1128/aem.00785-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Whole-genome sequencing (WGS) for public health surveillance and epidemiological investigation of foodborne pathogens predominantly relies on sequencing platforms that generate short reads. Continuous improvement of long-read nanopore sequencing, such as Oxford nanopore technologies (ONT), presents a potential for leveraging multiple advantages of the technology in public health and food industry settings, including rapid turnaround and onsite applicability in addition to superior read length. Using an established cohort of Salmonella Enteritidis isolates for subtyping evaluation, we assessed the technical readiness of nanopore long read sequencing for single nucleotide polymorphism (SNP) analysis and core-genome multilocus sequence typing (cgMLST) of a major foodborne pathogen. By multiplexing three isolates per flow cell, we generated sufficient sequencing depths in <7 h of sequencing for robust subtyping. SNP calls by ONT and Illumina reads were highly concordant despite homopolymer errors in ONT reads (R9.4.1 chemistry). In silico correction of such errors allowed accurate allelic calling for cgMLST and allelic difference measurements to facilitate heuristic detection of outbreak isolates. IMPORTANCE Evaluation, standardization, and implementation of the ONT approach to WGS-based, strain-level subtyping is challenging, in part due to its relatively high base-calling error rates and frequent iterations of sequencing chemistry and bioinformatic analytics. Our study established a baseline for the continuously evolving nanopore technology as a viable solution to high-quality subtyping of Salmonella, delivering comparable subtyping performance when used standalone or together with short-read platforms. This study paves the way for evaluating and optimizing the logistics of implementing the ONT approach for foodborne pathogen surveillance in specific settings.
Collapse
|
13
|
de Oliveira Martins L, Bloomfield S, Stoakes E, Grant AJ, Page AJ, Mather AE. Tatajuba: exploring the distribution of homopolymer tracts. NAR Genom Bioinform 2022; 4:lqac003. [PMID: 35118377 PMCID: PMC8808543 DOI: 10.1093/nargab/lqac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 11/14/2022] Open
Abstract
Length variation of homopolymeric tracts, which induces phase variation, is known to regulate gene expression leading to phenotypic variation in a wide range of bacterial species. There is no specialized bioinformatics software which can, at scale, exhaustively explore and describe these features from sequencing data. Identifying these is non-trivial as sequencing and bioinformatics methods are prone to introducing artefacts when presented with homopolymeric tracts due to the decreased base diversity. We present tatajuba, which can automatically identify potential homopolymeric tracts and help predict their putative phenotypic impact, allowing for rapid investigation. We use it to detect all tracts in two separate datasets, one of Campylobacter jejuni and one of three Bordetella species, and to highlight those tracts that are polymorphic across samples. With this we confirm homopolymer tract variation with phenotypic impact found in previous studies and additionally find many more with potential variability. The software is written in C and is available under the open source licence GNU GPLv3.
Collapse
Affiliation(s)
| | - Samuel Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew J Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
14
|
Comparative Genome Analysis Reveals Accumulation of Single-Nucleotide Repeats in Pathogenic Escherichia Lineages. Curr Issues Mol Biol 2022; 44:498-504. [PMID: 35723320 PMCID: PMC8928963 DOI: 10.3390/cimb44020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Homopolymeric tracts (HPTs) can lead to phase variation and DNA replication slippage, driving adaptation to environmental changes and evolution of genes and genomes. However, there is limited information on HPTs in Escherichia; therefore, we conducted a comprehensive cross-strain search for HPTs in Escherichia genomes. We determined the HPT genomic distribution and identified a pattern of high-frequency HPT localization in pathogenic Escherichia lineages. Notably, HPTs localized near transcriptional regulatory genes. Additionally, excessive repeats accumulated in toxin-coding genes. Moreover, the genomic localization of some HPTs might be derived from exogenous DNA, such as that of bacteriophages. Altogether, our findings may prove useful for understanding the role of HPTs in Escherichia genomes.
Collapse
|
15
|
Mukherjee A, Dechow-Seligmann G, Gallie J. Evolutionary flexibility in routes to mat formation by Pseudomonas. Mol Microbiol 2021; 117:394-410. [PMID: 34856020 DOI: 10.1111/mmi.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Many bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharides, the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; stimuli or mutations that increase c-di-GMP production by diguanylate cyclases (WspR, AwsR, and MwsR) result in the secretion of cellulose and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and P. fluorescens A506. We find that PICF7-the strain more closely related to SBW25-can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate production of the exopolysaccharide Pel. We also provide evidence for at least two further-as yet uncharacterized-routes to mat formation by PICF7. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, preferentially forms mats by a semi-heritable mechanism that culminates in Psl and Pga over-production. Our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Gunda Dechow-Seligmann
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Heikema AP, Strepis N, Horst-Kreft D, Huynh S, Zomer A, Kelly DJ, Cooper KK, Parker CT. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb Genom 2021; 7. [PMID: 34723785 PMCID: PMC8743553 DOI: 10.1099/mgen.0.000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni strains that produce sialylated lipooligosaccharides (LOS) can cause the immune-mediated disease Guillain-Barré syndrome (GBS). The risk of GBS after infection with C. jejuni Penner serotype HS:19 is estimated to be at least six times higher than the average risk. Aside from LOS biosynthesis genes, genomic characteristics that promote an increased risk for GBS following C. jejuni HS:19 infection, remain uncharacterized. We hypothesized that strains with the HS:19 serotype have unique genomic features that explain the increased risk for GBS. We performed genome sequencing, alignments, single nucleotide polymorphisms' analysis and methylome characterization on a subset, and pan-genome analysis on a large number of genomes to compare HS:19 with non-HS:19 C. jejuni genome sequences. Comparison of 36 C. jejuni HS:19 with 874 C. jejuni non-HS:19 genome sequences led to the identification of three single genes and ten clusters containing contiguous genes that were significantly associated with C. jejuni HS:19. One gene cluster of seven genes, localized downstream of the capsular biosynthesis locus, was related to sulphation of biomolecules. This cluster also encoded the campylobacter sialyl transferase Cst-I. Interestingly, sulphated bacterial biomolecules such as polysaccharides can promote immune responses and, therefore, (in the presence of sialic acid) may play a role in the development of GBS. Additional gene clusters included those involved in persistence-mediated pathogenicity and gene clusters involved in restriction-modification systems. Furthermore, characterization of methylomes of two HS:19 strains exhibited novel methylation patterns (5′-CATG-3 and 5′-m6AGTNNNNNNRTTG-3) that could differentially effect gene-expression patterns of C. jejuni HS:19 strains. Our study provides novel insight into specific genetic features and possible virulence factors of C. jejuni associated with the HS:19 serotype that may explain the increased risk of GBS.
Collapse
Affiliation(s)
- Astrid P. Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
- *Correspondence: Astrid P. Heikema,
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Deborah Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
- *Correspondence: Craig T. Parker,
| |
Collapse
|
17
|
AT Homopolymer Strings in Salmonella enterica Subspecies I Contribute to Speciation and Serovar Diversity. Microorganisms 2021; 9:microorganisms9102075. [PMID: 34683396 PMCID: PMC8538453 DOI: 10.3390/microorganisms9102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Adenine and thymine homopolymer strings of at least 8 nucleotides (AT 8+mers) were characterized in Salmonella enterica subspecies I. The motif differed between other taxonomic classes but not between Salmonella enterica serovars. The motif in plasmids was possibly associated with serovar. Approximately 12.3% of the S. enterica motif loci had mutations. Mutability of AT 8+mers suggests that genomes undergo frequent repair to maintain optimal gene content, and that the motif facilitates self-recognition; in addition, serovar diversity is associated with plasmid content. A theory that genome regeneration accounts for both persistence of predominant Salmonella serovars and serovar diversity provides a new framework for investigating root causes of foodborne illness.
Collapse
|
18
|
Saedi S, Safarchi A, Moghadam FT, Heidarzadeh S, Nikbin VS, Shahcheraghi F. Fha Deficient Bordetella pertussis Isolates in Iran with 50 Years Whole Cell Pertussis Vaccination. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1454-1462. [PMID: 34568185 PMCID: PMC8426785 DOI: 10.18502/ijph.v50i7.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
Background: Bordetella pertussis, a highly contagious respiratory. Notably, the resurgence of pertussis has recently been associated with the lacking production of vaccine virulence factors. This study aimed to screen pertactin (Prn) and filamentous hemagglutinin (Fha) production in Iran with 50 years’ whole cell vaccine (WCV) immunization program. Methods: Overall, 130 B. pertussis isolates collected from Pertussis Reference Laboratory of Iran during 2005–2018. Real-time PCR was performed by targeting IS481, ptxP, IS1001 and IS1002 for species confirmation of B. pertussis. Western-blot was used to evaluate the expression of virulence factors (pertactin and filamentous hemagglutinin). Results: All tested B. pertussis isolates expressed Prn and all except two isolates expressed Fha. We have sequenced genomes of these strains and identified differences compared with genome reference B. pertussis Tohama I. Conclusion: Many countries reporting Prn and Fha-deficiency due to acellular vaccine (ACV) pressure. Our results demonstrate in a country with WCV history, Fha-deficient isolates may rise independently. However, Prn-deficient isolates are more under the ACV pressure in B. pertussis isolates. Continues surveillance will provide a better understanding of the effect of WCV on the evolution of the pathogen deficiency.
Collapse
Affiliation(s)
- Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Safarchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Grekov I, Thöming JG, Kordes A, Häussler S. Evolution of Pseudomonas aeruginosa toward higher fitness under standard laboratory conditions. THE ISME JOURNAL 2021; 15:1165-1177. [PMID: 33273720 PMCID: PMC8115180 DOI: 10.1038/s41396-020-00841-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Identifying genetic factors that contribute to the evolution of adaptive phenotypes in pathogenic bacteria is key to understanding the establishment of infectious diseases. In this study, we performed mutation accumulation experiments to record the frequency of mutations and their effect on fitness in hypermutator strains of the environmental bacterium Pseudomonas aeruginosa in comparison to the host-niche-adapted Salmonella enterica. We demonstrate that P. aeruginosa, but not S. enterica, hypermutators evolve toward higher fitness under planktonic conditions. Adaptation to increased growth performance was accompanied by a reversible perturbing of the local genetic context of membrane and cell wall biosynthesis genes. Furthermore, we observed a fine-tuning of complex regulatory circuits involving multiple di-guanylate modulating enzymes that regulate the transition between fast growing planktonic and sessile biofilm-associated lifestyles. The redundancy and local specificity of the di-guanylate signaling pathways seem to allow a convergent shift toward increased growth performance across niche-adapted clonal P. aeruginosa lineages, which is accompanied by a pronounced heterogeneity of their motility, virulence, and biofilm phenotypes.
Collapse
Affiliation(s)
- Igor Grekov
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Janne Gesine Thöming
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Adrian Kordes
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Staton GJ, Clegg SR, Ainsworth S, Armstrong S, Carter SD, Radford AD, Darby A, Wastling J, Hall N, Evans NJ. Dissecting the molecular diversity and commonality of bovine and human treponemes identifies key survival and adhesion mechanisms. PLoS Pathog 2021; 17:e1009464. [PMID: 33780514 PMCID: PMC8049484 DOI: 10.1371/journal.ppat.1009464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.
Collapse
Affiliation(s)
- Gareth J. Staton
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Simon R. Clegg
- School of Life Sciences, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart Armstrong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart D. Carter
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alan D. Radford
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alistair Darby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nicholas J. Evans
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| |
Collapse
|
21
|
Gor V, Ohniwa RL, Morikawa K. No Change, No Life? What We Know about Phase Variation in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9020244. [PMID: 33503998 PMCID: PMC7911514 DOI: 10.3390/microorganisms9020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Phase variation (PV) is a well-known phenomenon of high-frequency reversible gene-expression switching. PV arises from genetic and epigenetic mechanisms and confers a range of benefits to bacteria, constituting both an innate immune strategy to infection from bacteriophages as well as an adaptation strategy within an infected host. PV has been well-characterized in numerous bacterial species; however, there is limited direct evidence of PV in the human opportunistic pathogen Staphylococcus aureus. This review provides an overview of the mechanisms that generate PV and focuses on earlier and recent findings of PV in S. aureus, with a brief look at the future of the field.
Collapse
Affiliation(s)
- Vishal Gor
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (V.G.); (K.M.)
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
- Correspondence: (V.G.); (K.M.)
| |
Collapse
|
22
|
Genetic Basis Underlying the Hyperhemolytic Phenotype of Streptococcus agalactiae Strain CNCTC10/84. J Bacteriol 2020; 202:JB.00504-20. [PMID: 32958630 DOI: 10.1128/jb.00504-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is a major cause of infections in newborns, pregnant women, and immunocompromised patients. GBS strain CNCTC10/84 is a clinical isolate that has high virulence in animal models of infection and has been used extensively to study GBS pathogenesis. Two unusual features of this strain are hyperhemolytic activity and hypo-CAMP factor activity. These two phenotypes are typical of GBS strains that are functionally deficient in the CovR-CovS two-component regulatory system. A previous whole-genome sequencing study found that strain CNCTC10/84 has intact covR and covS regulatory genes. We investigated CovR-CovS regulation in CNCTC10/84 and discovered that a single-nucleotide insertion in a homopolymeric tract in the covR promoter region underlies the strong hemolytic activity and weak CAMP activity of this strain. Using isogenic mutant strains, we demonstrate that this single-nucleotide insertion confers significantly decreased expression of covR and covS and altered expression of CovR-CovS-regulated genes, including that of genes encoding β-hemolysin and CAMP factor. This single-nucleotide insertion also confers significantly increased GBS survival in human whole blood ex vivo IMPORTANCE Group B streptococcus (GBS) is the leading cause of neonatal sepsis, pneumonia, and meningitis. GBS strain CNCTC10/84 is a highly virulent blood isolate that has been used extensively to study GBS pathogenesis for over 20 years. Strain CNCTC10/84 has an unusually strong hemolytic activity, but the genetic basis is unknown. In this study, we discovered that a single-nucleotide insertion in an intergenic homopolymeric tract is responsible for the elevated hemolytic activity of CNCTC10/84.
Collapse
|
23
|
Mutant and Recombinant Phages Selected from In Vitro Coevolution Conditions Overcome Phage-Resistant Listeria monocytogenes. Appl Environ Microbiol 2020; 86:AEM.02138-20. [PMID: 32887717 DOI: 10.1128/aem.02138-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages.IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.
Collapse
|
24
|
Wellington-Oguri R, Fisker E, Zada M, Wiley M, Townley J, Players E. Evidence of an Unusual Poly(A) RNA Signature Detected by High-Throughput Chemical Mapping. Biochemistry 2020; 59:2041-2046. [PMID: 32412236 DOI: 10.1021/acs.biochem.0c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homopolymeric adenosine RNA plays numerous roles in both cells and noncellular genetic material. We report herein an unusual poly(A) signature in chemical mapping data generated by the Eterna Massive Open Laboratory. Poly(A) sequences of length seven or more show unexpected results in the selective 2'-hydroxyl acylation read out by primer extension (SHAPE) and dimethyl sulfate (DMS) chemical probing. This unusual signature first appears in poly(A) sequences of length seven and grows to its maximum strength at length ∼10. In a long poly(A) sequence, the substitution of a single A by any other nucleotide disrupts the signature, but only for the 6 or so nucleotides on the 5' side of the substitution.
Collapse
Affiliation(s)
- Roger Wellington-Oguri
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Eli Fisker
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Mathew Zada
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Michelle Wiley
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Jill Townley
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Eterna Players
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| |
Collapse
|
25
|
Eraso JM, Kachroo P, Olsen RJ, Beres SB, Zhu L, Badu T, Shannon S, Cantu CC, Saavedra MO, Kubiak SL, Porter AR, DeLeo FR, Musser JM. Genetic heterogeneity of the Spy1336/R28-Spy1337 virulence axis in Streptococcus pyogenes and effect on gene transcript levels and pathogenesis. PLoS One 2020; 15:e0229064. [PMID: 32214338 PMCID: PMC7098570 DOI: 10.1371/journal.pone.0229064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Traci Badu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Sydney Shannon
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
26
|
Rodríguez-Campos D, Rodríguez-Melcón C, Alonso-Calleja C, Capita R. Persistent Listeria monocytogenes Isolates from a Poultry-Processing Facility Form more Biofilm but Do Not Have a Greater Resistance to Disinfectants Than Sporadic Strains. Pathogens 2019; 8:E250. [PMID: 31756896 PMCID: PMC6963312 DOI: 10.3390/pathogens8040250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.
Collapse
Affiliation(s)
- Daniel Rodríguez-Campos
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
27
|
Alonso-Calleja C, Gómez-Fernández S, Carballo J, Capita R. Prevalence, Molecular Typing, and Determination of the Biofilm-Forming Ability of Listeria monocytogenes Serotypes from Poultry Meat and Poultry Preparations in Spain. Microorganisms 2019; 7:E529. [PMID: 31694193 PMCID: PMC6920909 DOI: 10.3390/microorganisms7110529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
A study was undertaken of the presence of Listeria monocytogenes in 260 samples of poultry meat obtained from retail outlets in northwestern Spain. L. monocytogenes was detected in 20 samples (7.7%). Twenty strains (one strain per positive sample) were characterized. The strains belonged to 10 serotypes: 1/2a (2 strains), 1/2b (2), 1/2c (2), 3a (1), 3b (2), 3c (2), 4a (2), 4b (4), 4c (1), and 4d (2). Cluster analysis (ribotyping; EcoRI) showed a strong genetic relationship between strains isolated from samples coming from different outlets. Ribotyping permitted some isolates of the same serotype to be differentiated, which points to the possible usefulness of this technique in the epidemiological surveillance of L. monocytogenes. All strains formed biofilm on polystyrene, as shown by confocal laser scanning microscopy. The biovolume (between 621.7 ± 36.0 µm3 and 62,984.0 ± 14,888.2 µm3 in the observational field of 14,161 μm2), percentage of surface coverage (from 2.17 ± 0.84% to 94.43 ± 3.97%), roughness (between 0.399 ± 0.052 and 0.830 ± 0.022), and maximum thickness (between 9.00 ± 0.00 µm and 24.00 ± 14.93 µm) of biofilms varied between strains (p < 0.05). These results expand knowledge of the characteristics of L. monocytogenes isolates from poultry.
Collapse
Affiliation(s)
- Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.A.-C.); (S.G.-F.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Sara Gómez-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.A.-C.); (S.G.-F.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Javier Carballo
- Area of Food Technology, University of Vigo, E-32004 Ourense, Spain;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.A.-C.); (S.G.-F.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
28
|
Safi H, Gopal P, Lingaraju S, Ma S, Levine C, Dartois V, Yee M, Li L, Blanc L, Ho Liang HP, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Dick T, Alland D. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc Natl Acad Sci U S A 2019; 116:19665-19674. [PMID: 31488707 PMCID: PMC6765255 DOI: 10.1073/pnas.1907631116] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The length and complexity of tuberculosis (TB) therapy, as well as the propensity of Mycobacterium tuberculosis to develop drug resistance, are major barriers to global TB control efforts. M. tuberculosis is known to have the ability to enter into a drug-tolerant state, which may explain many of these impediments to TB treatment. We have identified a mechanism of genetically encoded but rapidly reversible drug tolerance in M. tuberculosis caused by transient frameshift mutations in a homopolymeric tract (HT) of 7 cytosines (7C) in the glpK gene. Inactivating frameshift mutations associated with the 7C HT in glpK produce small colonies that exhibit heritable multidrug increases in minimal inhibitory concentrations and decreases in drug-dependent killing; however, reversion back to a fully drug-susceptible large-colony phenotype occurs rapidly through the introduction of additional insertions or deletions in the same glpK HT region. These reversible frameshift mutations in the 7C HT of M. tuberculosis glpK occur in clinical isolates, accumulate in M. tuberculosis-infected mice with further accumulation during drug treatment, and exhibit a reversible transcriptional profile including induction of dosR and sigH and repression of kstR regulons, similar to that observed in other in vitro models of M. tuberculosis tolerance. These results suggest that GlpK phase variation may contribute to drug tolerance, treatment failure, and relapse in human TB. Drugs effective against phase-variant M. tuberculosis may hasten TB treatment and improve cure rates.
Collapse
Affiliation(s)
- Hassan Safi
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103;
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Republic of Singapore
| | - Subramanya Lingaraju
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Shuyi Ma
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - Carly Levine
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Veronique Dartois
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Republic of Singapore
| | - Liping Li
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Landry Blanc
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Hsin-Pin Ho Liang
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Seema Husain
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Mainul Hoque
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | | | - Tige Rustad
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - David R Sherman
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - David Alland
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103;
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
29
|
Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiol 2018; 18:208. [PMID: 30526475 PMCID: PMC6286511 DOI: 10.1186/s12866-018-1360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. Results Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. Conclusions Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1360-z) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Pseudomonas aeruginosa Regulated Intramembrane Proteolysis: Protease MucP Can Overcome Mutations in the AlgO Periplasmic Protease To Restore Alginate Production in Nonmucoid Revertants. J Bacteriol 2018; 200:JB.00215-18. [PMID: 29784885 DOI: 10.1128/jb.00215-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023] Open
Abstract
The progression of cystic fibrosis (CF) from an acute to a chronic disease is often associated with the conversion of the opportunistic pathogen Pseudomonas aeruginosa from a nonmucoid form to a mucoid form in the lung. This conversion involves the constitutive synthesis of the exopolysaccharide alginate, whose production is under the control of the AlgT/U sigma factor. This factor is regulated posttranslationally by an extremely unstable process and has been commonly attributed to mutations in the algT (algU) gene. By exploiting this unstable phenotype, we isolated 34 spontaneous nonmucoid variants arising from the mucoid strain PDO300, a PAO1 derivative containing the mucA22 allele commonly found in mucoid CF isolates. Complementation analysis using a minimal tiling path cosmid library revealed that most of these mutants mapped to two protease-encoding genes, algO, also known as prc or PA3257, and mucP Interestingly, our algO mutations were complemented by both mucP and algO, leading us to delete, clone, and overexpress mucP, algO, mucE, and mucD in both wild-type PAO1 and PDO300 backgrounds to better understand the regulation of this complex regulatory mechanism. Our findings suggest that the regulatory proteases follow two pathways for regulated intramembrane proteolysis (RIP), where both the AlgO/MucP pathway and MucE/AlgW pathway are required in the wild-type strain but where the AlgO/MucP pathway can bypass the MucE/AlgW pathway in mucoid strains with membrane-associated forms of MucA with shortened C termini, such as the MucA22 variant. This work gives us a better understanding of how alginate production is regulated in the clinically important mucoid variants of Pseudomonas aeruginosaIMPORTANCE Infection by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality seen in CF patients. Poor patient prognosis correlates with the genotypic and phenotypic change of the bacteria from a typical nonmucoid to a mucoid form in the CF lung, characterized by the overproduction of alginate. The expression of this exopolysaccharide is under the control an alternate sigma factor, AlgT/U, that is regulated posttranslationally by a series of proteases. A better understanding of this regulatory phenomenon will help in the development of therapies targeting alginate production, ultimately leading to an increase in the length and quality of life for those suffering from CF.
Collapse
|
31
|
Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc Natl Acad Sci U S A 2018; 115:E6283-E6290. [PMID: 29915083 PMCID: PMC6142220 DOI: 10.1073/pnas.1711888115] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Renal oncocytomas are benign kidney tumors with numerous mitochondria. Here, we analyze the mitochondrial (mtDNA) and nuclear genomes of these tumors. Our analysis finds mtDNA mutations in complex I (the first step in mitochondrial respiration) to be early genetic events that likely contribute to tumor formation. Since mtDNA mutations can lead to severe degenerative disorders, the cellular responses allowing renal oncocytoma cells to grow are important to consider. To properly understand authentic gene expression changes in tumors, we found it important to consider the gene expression pattern of the tumor’s cell of origin, the distal nephron. By doing so, we uncover alterations in glutathione synthesis and turnover that likely represent an adaptive metabolic response in renal oncocytoma. Renal oncocytomas are benign tumors characterized by a marked accumulation of mitochondria. We report a combined exome, transcriptome, and metabolome analysis of these tumors. Joint analysis of the nuclear and mitochondrial (mtDNA) genomes reveals loss-of-function mtDNA mutations occurring at high variant allele fractions, consistent with positive selection, in genes encoding complex I as the most frequent genetic events. A subset of these tumors also exhibits chromosome 1 loss and/or cyclin D1 overexpression, suggesting they follow complex I loss. Transcriptome data revealed that many pathways previously reported to be altered in renal oncocytoma were simply differentially expressed in the tumor’s cell of origin, the distal nephron, compared with other nephron segments. Using a heuristic approach to account for cell-of-origin bias we uncovered strong expression alterations in the gamma-glutamyl cycle, including glutathione synthesis (increased GCLC) and glutathione degradation. Moreover, the most striking changes in metabolite profiling were elevations in oxidized and reduced glutathione as well as γ-glutamyl-cysteine and cysteinyl-glycine, dipeptide intermediates in glutathione biosynthesis, and recycling, respectively. Biosynthesis of glutathione appears adaptive as blockade of GCLC impairs viability in cells cultured with a complex I inhibitor. Our data suggest that loss-of-function mutations in complex I are a candidate driver event in renal oncocytoma that is followed by frequent loss of chromosome 1, cyclin D1 overexpression, and adaptive up-regulation of glutathione biosynthesis.
Collapse
|
32
|
Poimenidou SV, Dalmasso M, Papadimitriou K, Fox EM, Skandamis PN, Jordan K. Virulence Gene Sequencing Highlights Similarities and Differences in Sequences in Listeria monocytogenes Serotype 1/2a and 4b Strains of Clinical and Food Origin From 3 Different Geographic Locations. Front Microbiol 2018; 9:1103. [PMID: 29922249 PMCID: PMC5996115 DOI: 10.3389/fmicb.2018.01103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
The prfA-virulence gene cluster (pVGC) is the main pathogenicity island in Listeria monocytogenes, comprising the prfA, plcA, hly, mpl, actA, and plcB genes. In this study, the pVGC of 36 L. monocytogenes isolates with respect to different serotypes (1/2a or 4b), geographical origin (Australia, Greece or Ireland) and isolation source (food-associated or clinical) was characterized. The most conserved genes were prfA and hly, with the lowest nucleotide diversity (π) among all genes (P < 0.05), and the lowest number of alleles, substitutions and non-synonymous substitutions for prfA. Conversely, the most diverse gene was actA, which presented the highest number of alleles (n = 20) and showed the highest nucleotide diversity. Grouping by serotype had a significantly lower π value (P < 0.0001) compared to isolation source or geographical origin, suggesting a distinct and well-defined unit compared to other groupings. Among all tested genes, only hly and mpl were those with lower nucleotide diversity in 1/2a serotype than 4b serotype, reflecting a high within-1/2a serotype divergence compared to 4b serotype. Geographical divergence was noted with respect to the hly gene, where serotype 4b Irish strains were distinct from Greek and Australian strains. Australian strains showed less diversity in plcB and mpl relative to Irish or Greek strains. Notable differences regarding sequence mutations were identified between food-associated and clinical isolates in prfA, actA, and plcB sequences. Overall, these results indicate that virulence genes follow different evolutionary pathways, which are affected by a strain's origin and serotype and may influence virulence and/or epidemiological dominance of certain subgroups.
Collapse
Affiliation(s)
- Sofia V. Poimenidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Marion Dalmasso
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Edward M. Fox
- CSIRO Agriculture and Food, Werribee, VIC, Australia
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
33
|
Screening and Genomic Characterization of Filamentous Hemagglutinin-Deficient Bordetella pertussis. Infect Immun 2018; 86:IAI.00869-17. [PMID: 29358336 DOI: 10.1128/iai.00869-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.
Collapse
|
34
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth. Toxins (Basel) 2017; 9:toxins9070225. [PMID: 28714887 PMCID: PMC5535172 DOI: 10.3390/toxins9070225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023] Open
Abstract
Bacillus cereus sensu lato species, as well as Staphylococcus aureus, are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA, hblA and entFM toxin genes, with lower prevalence of bceT and hlyII. When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log10(CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices.
Collapse
|
36
|
Piercey MJ, Ells TC, Macintosh AJ, Truelstrup Hansen L. Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada. Int J Food Microbiol 2017; 257:254-261. [PMID: 28710947 DOI: 10.1016/j.ijfoodmicro.2017.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/18/2017] [Accepted: 06/25/2017] [Indexed: 11/17/2022]
Abstract
Listeria monocytogenes is a pathogenic foodborne microorganism noted for its ability to survive in the environment and food processing facilities. Survival may be related to the phenotype of individual strains including the ability to form biofilms and resist desiccation and/or sanitizer exposure. The objectives of this research were to compare 14 L. monocytogenes strains isolated from blood (3), food (6) and water (5) with respect to their benzalkonium chloride (BAC) sensitivity, desiccation resistance, and ability to form biofilm. Correlations were tested between those responses, and the presence of the SSI-1 (Stress Survival Islet) and LGI1/CC8 (Listeria Genomic Island 1 in a clonal complex 8 background) genetic markers. Genetic sequences from four strains representing different phenotypes were also probed for predicted amino acid differences in biofilm, desiccation, and membrane related genes. The water isolates were among the most desiccation susceptible strains, while strains exhibiting desiccation resistance harboured SSI-1 or both the SSI-1 and LGI1/CC8 markers. BAC resistance was greatest in planktonic LGI1/CC8 cells (relative to non-LGI1/CC8 cells), and higher BAC concentrations were also needed to inhibit the formation of biofilm by LGI1/CC8 strains during incubation for 48h and 6days compared to other strains. Formation of biofilm on stainless steel was not significantly (p>0.05) different among the strains. Analysis of genetic sequence data from desiccation and BAC sensitive (CP4 5-1, CP5 2-3, both from water), intermediate (Lm568, food) and desiccation and BAC resistant (08 5578, blood, human outbreak) strains led to the finding of amino acid differences in predicted functional protein domains in several biofilm, desiccation and peptidoglycan related genes (e.g., lmo0263, lmo0433, lmo0434, lmo0771, lmo0973, lmo1080, lmo1224, lmo1370, lmo1744, and lmo2558). Notably, the LGI1/CC8 strain 08-5578 had a frameshift mutation in lmo1370, a gene previously associated with desiccation resistance. In conclusion, the more desiccation and BAC resistant LGI1/CC8 isolates may pose a challenge for sanitation efforts.
Collapse
Affiliation(s)
- Marta J Piercey
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | - Timothy C Ells
- Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada.
| | - Andrew J Macintosh
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | | |
Collapse
|
37
|
VAN Stelten A, Roberts AR, Manuel CS, Nightingale KK. Listeria monocytogenes Isolates Carrying Virulence-Attenuating Mutations in Internalin A Are Commonly Isolated from Ready-to-Eat Food Processing Plant and Retail Environments. J Food Prot 2016; 79:1733-1740. [PMID: 28221857 DOI: 10.4315/0362-028x.jfp-16-145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a human foodborne pathogen that may cause an invasive disease known as listeriosis in susceptible individuals. Internalin A (InlA; encoded by inlA) is a virulence factor that facilitates crossing of host cell barriers by L. monocytogenes . At least 19 single nucleotide polymorphisms (SNPs) in inlA that result in a premature stop codon (PMSC) have been described worldwide. SNPs leading to a PMSC in inlA have been shown to be causally associated with attenuated virulence. L. monocytogenes pathogens carrying virulence-attenuating (VA) mutations in inlA have been commonly isolated from ready-to-eat (RTE) foods but rarely have been associated with human disease. This study was conducted to determine the prevalence of VA SNPs in inlA among L. monocytogenes from environments associated with RTE food production and handling. More than 700 L. monocytogenes isolates from RTE food processing plant (n = 409) and retail (n = 319) environments were screened for the presence of VA SNPs in inlA. Overall, 26.4% of isolates from RTE food processing plant and 32.6% of isolates from retail environments carried a VA mutation in inlA. Food contact surfaces sampled at retail establishments were significantly (P < 0.0001) more likely to be contaminated by a L. monocytogenes isolate carrying a VA mutation in inlA (56% of 55 isolates) compared with nonfood contact surfaces (28% of 264 isolates). Overall, a significant proportion of L. monocytogenes isolated from RTE food production and handling environments have reduced virulence. These data will be useful in the revision of current and the development of future risk assessments that incorporate strain-specific virulence parameters.
Collapse
Affiliation(s)
- A VAN Stelten
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409
| | - A R Roberts
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - C S Manuel
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - K K Nightingale
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
38
|
Piercey MJ, Hingston PA, Truelstrup Hansen L. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C. Int J Food Microbiol 2016; 223:63-74. [PMID: 26900648 DOI: 10.1016/j.ijfoodmicro.2016.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium whose persistence in food processing environments is in part attributed to its biofilm formation. Most biofilm studies have been carried out at 30-37 °C rather than at temperatures found in the food processing plants (i.e., 10-20 °C). The objective of the present study was to mine for novel genes that contribute to L. monocytogenes biofilm formation at 15 °C using the random insertional mutagenesis approach. A library of 11,024 L. monocytogenes 568 (serotype 1/2a) Himar1 insertional mutants was created. Mutants with reduced or enhanced biofilm formation at 15 °C were detected in microtiter plate assays with crystal violet and safranin staining. Fourteen mutants expressed enhanced biofilm phenotypes, and harbored transposon insertions in genes encoding cell wall biosynthesis, motility, metabolism, stress response, and cell surface associated proteins. Deficient mutants (n=5) contained interruptions in genes related to peptidoglycan, teichoic acid, or lipoproteins. Enhanced mutants produced significantly (p<0.05) higher cell densities in biofilm formed on stainless steel (SS) coupons at 15 °C (48 h) than deficient mutants, which were also more sensitive to benzalkonium chloride. All biofilm deficient mutants and four enhanced mutants in the microtiter plate assay (flaA, cheR, lmo2563 and lmo2488) formed no biofilm in a peg lid assay (Calgary biofilm device) while insertions in lmo1224 and lmo0543 led to excess biofilm in all assays. Two enhanced biofilm formers were more resistant to enzymatic removal with DNase, proteinase K or pectinase than the parent strain. Scanning electron microscopy of individual biofilms made by five mutants and the parent on SS surfaces showed formation of heterogeneous biofilm with dense zones by immotile mutants, while deficient mutants exhibited sparse growth. In conclusion, interruptions of 9 genes not previously linked to biofilm formation in L. monocytogenes (lmo2572, lmo2488 (uvrA), lmo1224, lmo0434 (inlB), lmo0263 (inlH), lmo0543, lmo0057 (EsaA), lmo2563, lmo0453), caused enhanced biofilm formation in the bacterium at 15 °C. The remaining mutants harbored interruptions in 10 genetic loci previously associated with biofilm formation at higher temperatures, indicating some temperature driven differences in the formation of biofilm by L. monocytogenes.
Collapse
Affiliation(s)
- Marta J Piercey
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | - Patricia A Hingston
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | - Lisbeth Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| |
Collapse
|
39
|
Prevalence and distribution of Listeria monocytogenes inlA alleles prone to phase variation and inlA alleles with premature stop codon mutations among human, food, animal, and environmental isolates. Appl Environ Microbiol 2015; 81:8339-45. [PMID: 26407886 DOI: 10.1128/aem.02752-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/18/2015] [Indexed: 11/20/2022] Open
Abstract
In Listeria monocytogenes, 18 mutations leading to premature stop codons (PMSCs) in the virulence gene inlA have been identified to date. While most of these mutations represent nucleotide substitutions, a frameshift deletion in a 5' seven-adenine homopolymeric tract (HT) in inlA has also been reported. This HT may play a role in phase variation and was first identified among L. monocytogenes lineage II ribotype DUP-1039C isolates. In order to better understand the distribution of different inlA mutations in this ribotype, a newly developed multiplex real-time PCR assay was used to screen 368 DUP-1039C isolates from human, animal, and food-associated sources for three known 5' inlA HT alleles: (i) wild-type (WT) (A7), (ii) frameshift (FS) (A6), and (iii) guanine interruption (A2GA4) alleles. Additionally, 228 DUP-1039C isolates were screened for all inlA PMSCs; data on the presence of all inlA PMSCs for the other 140 isolates were obtained from previous studies. The statistical analysis based on 191 epidemiologically unrelated strains showed that strains with inlA PMSC mutations (n = 41) were overrepresented among food-associated isolates, while strains encoding full-length InlA (n = 150) were overrepresented among isolates from farm animals and their environments. Furthermore, the A6 allele was overrepresented and the A7 allele was underrepresented among food isolates, while the A6 allele was underrepresented among farm and animal isolates. Our results indicate that genetic variation in inlA contributes to niche adaptation within the lineage II subtype DUP-1039C.
Collapse
|
40
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
41
|
Denes T, den Bakker HC, Tokman JI, Guldimann C, Wiedmann M. Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption. Appl Environ Microbiol 2015; 81:4295-305. [PMID: 25888172 PMCID: PMC4475870 DOI: 10.1128/aem.00087-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/12/2015] [Indexed: 02/06/2023] Open
Abstract
Listeria-infecting phages are readily isolated from Listeria-containing environments, yet little is known about the selective forces they exert on their host. Here, we identified that two virulent phages, LP-048 and LP-125, adsorb to the surface of Listeria monocytogenes strain 10403S through different mechanisms. We isolated and sequenced, using whole-genome sequencing, 69 spontaneous mutant strains of 10403S that were resistant to either one or both phages. Mutations from 56 phage-resistant mutant strains with only a single mutation mapped to 10 genes representing five loci on the 10403S chromosome. An additional 12 mutant strains showed two mutations, and one mutant strain showed three mutations. Two of the loci, containing seven of the genes, accumulated the majority (n = 64) of the mutations. A representative mutant strain for each of the 10 genes was shown to resist phage infection through mechanisms of adsorption inhibition. Complementation of mutant strains with the associated wild-type allele was able to rescue phage susceptibility for 6 out of the 10 representative mutant strains. Wheat germ agglutinin, which specifically binds to N-acetylglucosamine, bound to 10403S and mutant strains resistant to LP-048 but did not bind to mutant strains resistant to only LP-125. We conclude that mutant strains resistant to only LP-125 lack terminal N-acetylglucosamine in their wall teichoic acid (WTA), whereas mutant strains resistant to both phages have disruptive mutations in their rhamnose biosynthesis operon but still possess N-acetylglucosamine in their WTA.
Collapse
Affiliation(s)
- Thomas Denes
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Henk C den Bakker
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jeffrey I Tokman
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Claudia Guldimann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
42
|
Lin WH, Rocco MJ, Bertozzi-Villa A, Kussell E. Populations adapt to fluctuating selection using derived and ancestral allelic diversity. Evolution 2015; 69:1448-1460. [PMID: 25908222 DOI: 10.1111/evo.12665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Populations can adapt to changing environments by using allelic diversity, yet whether diversity is recently derived or ancestral is often debated. Although evolution could productively use both types of diversity in a changing environment, their relative frequency has not been quantified. We address this question experimentally using budding yeast strains that harbor a tandem repeat containing URA3 gene, which we expose to cyclical selection and counterselection. We characterize and quantify the dynamics of frameshift events in the URA3 gene in eight populations over 12 cycles of selection and find that ancestral alleles account for 10-20% of all adaptive events. Using a general model of fluctuating selection, we determine how these results depend on mutation rates, population sizes, and fluctuation timescales. We quantify the contribution of derived alleles to the adaptation process using the de novo mutation rate along the population's ancestral lineage, a novel measure that is applicable in a wide range of settings. We find that the adaptive dynamics undergoes a sharp transition from selection on ancestral alleles to selection on derived alleles as fluctuation timescales increase. Our results demonstrate that fluctuations can select between different modes of adaptation over evolutionary timescales.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Mark J Rocco
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Amelia Bertozzi-Villa
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Edo Kussell
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003.,Department of Physics, New York University, New York, New York, 10003
| |
Collapse
|
43
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
44
|
Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics 2014; 15:1020. [PMID: 25422040 PMCID: PMC4256060 DOI: 10.1186/1471-2164-15-1020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023] Open
Abstract
Background Acinetobacter baumannii is a significant hospital pathogen, particularly due to the dissemination of highly multidrug resistant isolates. Genome data have revealed that A. baumannii is highly genetically diverse, which correlates with major variations seen at the phenotypic level. Thus far, comparative genomic studies have been aimed at identifying resistance determinants in A. baumannii. In this study, we extend and expand on these analyses to gain greater insight into the virulence factors across eight A. baumannii strains which are clonally, temporally and geographically distinct, and includes an isolate considered non-pathogenic and a community-acquired A. baumannii. Results We have identified a large number of genes in the A. baumannii genomes that are known to play a role in virulence in other pathogens, such as the recently studied proline-alanine-alanine-arginine (PAAR)-repeat domains of the type VI secretion systems. Not surprising, many virulence candidates appear to be part of the A. baumannii core genome of virulent isolates but were often found to be insertionally disrupted in the avirulent A. baumannii strain SDF. Our study also reveals that many known or putative virulence determinants are restricted to specific clonal lineages, which suggests that these virulence determinants may be crucial for the success of these widespread common clones. It has previously been suggested that the high level of intrinsic and adaptive resistance has enabled the widespread presence of A. baumannii in the hospital environment. This appears to have facilitated the expansion of its repertoire of virulence traits, as in general, the nosocomial strains in this study possess more virulence genes compared to the community-acquired isolate. Conclusions Major genetic variation in known or putative virulence factors was seen across the eight strains included in this study, suggesting that virulence mechanisms are complex and multifaceted in A. baumannii. Overall, these analyses increase our understanding of A. baumannii pathogenicity and will assist in future studies determining the significance of virulence factors within clonal lineages and/or across the species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1020) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Melissa H Brown
- School of Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
45
|
Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription. J Bacteriol 2014; 196:3421-9. [PMID: 25022855 DOI: 10.1128/jb.01956-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.
Collapse
|
46
|
Qin L, Ma Y, Liang P, Tan Z, Li S. Differential distributions of mononucleotide repeat sequences in 256 viral genomes and its potential implications. Gene 2014; 544:159-64. [PMID: 24786215 DOI: 10.1016/j.gene.2014.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022]
Abstract
Mononucleotide repeats (MNRs) have been systematically investigated in the genomes of eukaryotic and prokaryotic organisms. However, detailed information on the distribution of MNRs in viral genomes is limited. In this study, we examined the distributions of MNRs in 256 fully sequenced virus genomes which showed extensive variations across viral genomes, and is significantly influenced by both genome size and CG content. Furthermore, the ratio of the observed to the expected number of MNRs (O/E ratio) appears to be influenced by both the host range and genome type of a particular virus. Additionally, the densities and frequencies of MNRs in genic regions are lower than in non-coding regions, suggesting that selective pressure acts on viral genomes. We also discuss the potential functional roles that these MNR loci could play in virus genomes. To our knowledge, this is the first analysis focusing on MNRs in viruses, and our study could have potential implications for a deeper understanding of virus genome stability and the co-evolution that occurs between a virus and its host.
Collapse
Affiliation(s)
- Lü Qin
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Biology, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuxin Ma
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengbo Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Zhongyang Tan
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Biology, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
47
|
Alfsnes K, Raynaud X, Tønjum T, Ambur OH. Mathematical and live meningococcal models for simple sequence repeat dynamics - coherent predictions and observations. PLoS One 2014; 9:e101637. [PMID: 24999629 PMCID: PMC4085013 DOI: 10.1371/journal.pone.0101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Evolvability by means of simple sequence repeat (SSR) instability is a feature under the constant influence of opposing selective pressures to expand and compress the repeat tract and is mechanistically influenced by factors that affect genetic instability. In addition to direct selection for protein expression and structural integrity, other factors that influence tract length evolution were studied. The genetic instability of SSRs that switch the expression of antibiotic resistance ON and OFF was modelled mathematically and monitored in a panel of live meningococcal strains. The mathematical model showed that the SSR length of a theoretical locus in an evolving population may be shaped by direct selection of expression status (ON or OFF), tract length dependent (α) and tract length independent factors (β). According to the model an increase in α drives the evolution towards shorter tracts. An increase in β drives the evolution towards a normal distribution of tract lengths given that an upper and a lower limit are set. Insertion and deletion biases were shown to skew allelic distributions in both directions. The meningococcal SSR model was tested in vivo by monitoring the frequency of spectinomycin resistance OFF→ON switching in a designed locus. The instability of a comprehensive panel of the homopolymeric SSRs, constituted of a range of 5-13 guanine nucleotides, was monitored in wildtype and mismatch repair deficient backgrounds. Both the repeat length itself and mismatch repair deficiency were shown to influence the genetic instability of the homopolymeric tracts. A possible insertion bias was observed in tracts ≤G10. Finally, an inverse correlation between the number of tract-encoded amino acids and growth in the presence of ON-selection illustrated a limitation to SSR expansion in an essential gene associated with the designed model locus and the protein function mediating antibiotic resistance.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Xavier Raynaud
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Ole Herman Ambur
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|
48
|
Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment. Genetics 2014; 197:981-90. [PMID: 24814466 PMCID: PMC4096375 DOI: 10.1534/genetics.114.163147] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of spontaneous mutations in a hypermutator (ΔmutS) strain of the bacterium Pseudomonas aeruginosa. After ∼644 generations of mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by rare mutations of large effect.
Collapse
|
49
|
Abstract
Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5′-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron–exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5′ and 3′ ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.
Collapse
|
50
|
Olivares-Quiroz L. Thermodynamics of ideal proteinogenic homopolymer chains as a function of the energy spectrum E, helical propensity ω and enthalpic energy barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:155103. [PMID: 23515207 DOI: 10.1088/0953-8984/25/15/155103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A reformulation and generalization of the Zwanzig model (ZW model) for ideal homopolymer chains poly-X, where X represents any of the twenty naturally occurring proteinogenic amino acid residues is presented. This reformulation and generalization provides a direct connection between coarse-grained parameters originally proposed in the ZW model with variables from the Lifson-Roig (LR) theory, such as the helical propensity per residue ω, and new variables introduced here, such as the energy gap Δ between unfolded and folded structures, as well as the ratio f of the energy scales involved. This enables us to discover the relevance of the energy spectrum E to the onset of configurational phase transitions. From the configurational partition function Q, thermodynamic properties such as the configurational entropy S, specific heat v and average energy <E> are calculated in terms of the number of residues K, temperature T, helical propensity ω and energy barrier ΔH for different poly-X chains in vacuo. Results obtained here provide substantial evidence that configurational phase transitions for ideal poly-X chains correspond to first-order phase transitions. An anomalous behavior of the thermodynamic functions <E>, Cv, S with respect to the number K of residues is also highlighted. On-going methods of solution are outlined.
Collapse
Affiliation(s)
- L Olivares-Quiroz
- Universidad Autónoma de la Ciudad de México, Campus Cuautepec, Av La Corona 320, Col Loma Alta CP 07160 DF, Mexico.
| |
Collapse
|