1
|
Garcia JF, Figueroa-Balderas R, Comont G, Delmas CEL, Baumgartner K, Cantu D. Genome analysis of the esca-associated Basidiomycetes Fomitiporia mediterranea, Fomitiporia polymorpha, Inonotus vitis, and Tropicoporus texanus reveals virulence factor repertoires characteristic of white-rot fungi. G3 (BETHESDA, MD.) 2024; 14:jkae189. [PMID: 39141591 PMCID: PMC11457069 DOI: 10.1093/g3journal/jkae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Some Basidiomycete fungi are important plant pathogens, and certain species have been associated with the grapevine trunk disease esca. We present the genomes of 4 species associated with esca: Fomitiporia mediterranea, Fomitiporia polymorpha, Tropicoporus texanus, and Inonotus vitis. We generated high-quality phased genome assemblies using long-read sequencing. The genomic and functional comparisons identified potential virulence factors, suggesting their roles in disease development. Similar to other white-rot fungi known for their ability to degrade lignocellulosic substrates, these 4 genomes encoded a variety of lignin peroxidases and carbohydrate-active enzymes (CAZymes) such as CBM1, AA9, and AA2. The analysis of gene family expansion and contraction revealed dynamic evolutionary patterns, particularly in genes related to secondary metabolite production, plant cell wall decomposition, and xenobiotic degradation. The availability of these genomes will serve as a reference for further studies of diversity and evolution of virulence factors and their roles in esca symptoms and host resistance.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Gwenaëlle Comont
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
- Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Zhang H, Jin P, Kong Y, Jia C, Qiao P, Dong Y, Zhou Y, Hu J, Yang Z, Jung G. Mutations across Diverse Domains of CjXDR1 Lead to Multidrug Resistance in Clarireedia jacksonii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39352294 DOI: 10.1021/acs.jafc.4c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, Clarireedia jacksonii has emerged as a significant pathogen threatening turfgrass, and its escalating resistance to multiple drugs often undermines field interventions. This study highlighted the critical role of the fungus-specific transcription factor CjXDR1 (formerly ShXDR1) in regulating multidrug resistance (MDR) in C. jacksonii. This was demonstrated through experiments involving CjXDR1-knockout and CjXDR1-complemented strains. Our sequence analysis revealed five mutations in CjXDR1: G445D, K453E, S607F, D676H, and V690A. All five gain-of-function (GOF) mutations were confirmed to directly contribute to MDR against three different classes of fungicides (propiconazole: demethylation inhibitor, boscalid: succinate dehydrogenase inhibitor, and iprodione: dicarboximide) using the genetic transformation system and in vitro fungicide-sensitivity assay. Comparative transcriptome analysis revealed that CjXDR1 and its GOF mutations led to the overexpression of downstream genes encoding a Phase I metabolizing enzyme (CYP68) and two Phase III transporters (CjPDR1 and CjAtrD) previously reported. Knockout mutants of CYP68, CjPDR1, CjAtrD, and double-knockout mutants of CjPDR1 and CjAtrD exhibited increased sensitivity to all three fungicides tested. Among these, the CYP68-knockout mutants displayed the highest sensitivity to propiconazole, while the CjPDR1 knockout mutant exhibited significantly increased sensitivity to all three fungicides. Double-knockout mutants of CjPDR1 and CjAtrD displayed greater sensitivity than the single knockouts. In conclusion, multiple GOF mutants in CjXDR1 contribute to MDR by upregulating the expression of CjPDR1, CjAtrD, and CYP68. This study enhances our understanding of the molecular mechanisms underlying MDR in plant pathogenic fungi, providing valuable insights into GOF mutation structures and advancing the development of antifungal drugs.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peiyuan Jin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Kong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenchen Jia
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Qiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210095, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Zhang L, Huang Y, Shi Y, Si H, Luo H, Chen S, Wang Z, He H, Liao S. Synthesis, antifungal activity and action mechanism of novel citral amide derivatives against Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2024; 80:4482-4494. [PMID: 38676622 DOI: 10.1002/ps.8153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Rice sheath blight caused by Rhizoctonia solani is a severe threat to the yield and quality of rice. Due to the unscientific abuse of common fungicides causing resistance and environmental issues, the development of new fungicides is necessary. In this study, we used citral as the lead compound, designed and synthesized a series of novel citral amide derivatives, and evaluated their antifungal activity and mode of action against R. solani. RESULT Bioassay results indicated that the antifungal activities of most citral amide derivatives against R. solani were significantly improved compared to citral, with EC50 values ranging from 9.50-27.12 mg L-1. Among them, compound d21 containing the N-(pyridin-4-yl)carboxamide group exhibited in vitro and in vivo fungicidal activities, with curative effects at 500 mg L-1 as effectively as the commercial fungicide validamycin·bacillus. Furthermore, d21 prolonged the lag phase of the growth curve of R. solani, reduced the amount of growth, and inhibited sclerotium germination and formation. Mechanistically, d21 deformed the mycelia, increased cell membrane permeability, and inhibited the activities of antioxidant and tricarboxylic acid cycle (TCA)-related enzymes. Metabolome analysis showed the abundance of some energy-related metabolites within R. solani increased, and simultaneously the antifungal substances secreted by itself reduced. Transcriptome analysis showed that most genes encoding ATP-binding cassette (ABC) transporters and peroxisomes upregulated after the treatment of d21 and cell membrane destruction. CONCLUSION This study indicates that novel citral amide derivatives possess antifungal activity against R. solani and are expected to develop an alternative option for chemical control of rice sheath blight. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang, China
| | - Yunfei Shi
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Haohua He
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| |
Collapse
|
4
|
Sofianos G, Piombo E, Dubey M, Karlsson M, Karaoglanidis G, Tzelepis G. Transcriptomic and functional analyses on a Botrytis cinerea multidrug-resistant (MDR) strain provides new insights into the potential molecular mechanisms of MDR and fitness. MOLECULAR PLANT PATHOLOGY 2024; 25:e70004. [PMID: 39244735 PMCID: PMC11380696 DOI: 10.1111/mpp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Botrytis cinerea is a notorious pathogen causing pre- and post-harvest spoilage in many economically important crops. Excessive application of site-specific fungicides to control the pathogen has led to the selection of strains possessing target site alterations associated with resistance to these fungicides and/or strains overexpressing efflux transporters associated with multidrug resistance (MDR). MDR in B. cinerea has been correlated with the overexpression of atrB and mfsM2, encoding an ATP-binding cassette (ABC) and a major facilitator superfamily (MFS) transporter, respectively. However, it remains unknown whether other transporters may also contribute to the MDR phenotype. In the current study, the transcriptome of a B. cinerea multidrug-resistant (MDR) field strain was analysed upon exposure to the fungicide fludioxonil, and compared to the B05.10 reference strain. The transcriptome of this field strain displayed significant differences as compared to B05.10, including genes involved in sugar membrane transport, toxin production and virulence. Among the induced genes in the field strain, even before exposure to fludioxonil, were several putatively encoding ABC and MFS transmembrane transporters. Overexpression of a highly induced MFS transporter gene in the B05.10 strain led to an increased tolerance to the fungicides fluopyram and boscalid, indicating an involvement in efflux transport of these compounds. Overall, the data from this study give insights towards better understanding the molecular mechanisms involved in MDR and fitness cost, contributing to the development of more efficient control strategies against this pathogen.
Collapse
Affiliation(s)
- Georgios Sofianos
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - George Karaoglanidis
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| |
Collapse
|
5
|
Jiang J, He K, Wang X, Zhang Y, Guo X, Qian L, Gao X, Liu S. Transcriptional dynamics of Fusarium pseudograminearum under high fungicide stress and the important role of FpZRA1 in fungal pathogenicity and DON toxin production. Int J Biol Macromol 2024; 276:133662. [PMID: 39025188 DOI: 10.1016/j.ijbiomac.2024.133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Fusarium pseudograminearum, the causal agent of Fusarium crown rot, poses a significant threat to cereal crops. Building upon our previous investigation of the transcriptional response of this pathogen to four key fungicides (carbendazim, phenamacril, pyraclostrobin, and tebuconazole), this study delves into the impact of elevated fungicide concentrations using RNA-seq. Global transcriptomic analysis and gene clustering revealed significant enrichment of genes involved in the ABC transporter pathway. Among these transporters, FPSE_06011 (FpZRA1), a conserved gene in eukaryotes, exhibited consistent upregulation at both low and high fungicide concentrations. Targeted deletion of FpZRA1 resulted in reduced sporulation, spore germination, and tolerance to cell wall stress, osmotic stress, and oxidative stress. Furthermore, the FpZRA1 knockout mutants exhibited decreased pathogenicity on wheat coleoptiles and reduced production of the mycotoxin deoxynivalenol (DON), as evidenced by the markedly down-regulated expression of TRI5, TRI6, and TRI10 in the RT-qPCR analysis. In summary, our findings highlight the impact of fungicide concentration on transcriptional reprogramming in F. pseudograminearum and identify FpZRA1 as a critical regulator of fungal development, stress tolerance, and pathogenicity.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Kai He
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyu Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Yuan Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuheng Gao
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China.
| |
Collapse
|
6
|
Nazarov T, Liu Y, Chen X, See DR. Molecular Mechanisms of the Stripe Rust Interaction with Resistant and Susceptible Wheat Genotypes. Int J Mol Sci 2024; 25:2930. [PMID: 38474176 DOI: 10.3390/ijms25052930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Rust fungi cause significant damage to wheat production worldwide. In order to mitigate disease impact and improve food security via durable resistance, it is important to understand the molecular basis of host-pathogen interactions. Despite a long history of research and high agricultural importance, still little is known about the interactions between the stripe rust fungus and wheat host on the gene expression level. Here, we present analysis of the molecular interactions between a major wheat pathogen-Puccinia striiformis f. sp. tritici (Pst)-in resistant and susceptible host backgrounds. Using plants with durable nonrace-specific resistance along with fully susceptible ones allowed us to show how gene expression patterns shift in compatible versus incompatible interactions. The pathogen showed significantly greater number and fold changes of overexpressed genes on the resistant host than the susceptible host. Stress-related pathways including MAPK, oxidation-reduction, osmotic stress, and stress granule formation were, almost exclusively, upregulated in the resistant host background, suggesting the requirement of the resistance-countermeasure mechanism facilitated by Pst. In contrast, the susceptible host background allowed for broad overrepresentation of the nutrient uptake pathways. This is the first study focused on the stripe rust pathogen-wheat interactions, on the whole transcriptome level, from the pathogen side. It lays a foundation for the better understanding of the resistant/susceptible hosts versus pathogenic fungus interaction in a broader sense.
Collapse
Affiliation(s)
- Taras Nazarov
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
| |
Collapse
|
7
|
Zhao J, Wang A, Wang Q. Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa. J Fungi (Basel) 2024; 10:96. [PMID: 38392768 PMCID: PMC10889539 DOI: 10.3390/jof10020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Wood-rotting fungi's degradation of wood not only facilitates the eco-friendly treatment of organic materials, decreasing environmental pollution, but also supplies crucial components for producing biomass energy, thereby reducing dependence on fossil fuels. The ABC gene family, widely distributed in wood-rotting fungi, plays a crucial role in the metabolism of lignin, cellulose, and hemicellulose. Trametes gibbosa, as a representative species of wood-rotting fungi, exhibits robust capabilities in wood degradation. To investigate the function of the ABC gene family in wood degradation by T. gibbosa, we conducted a genome-wide analysis of T. gibbosa's ABC gene family. We identified a total of 12 Tg-ABCs classified into four subfamilies (ABCA, ABCB, ABCC, and ABCG). These subfamilies likely play significant roles in wood degradation. Scaffold localization and collinearity analysis results show that Tg-ABCs are dispersed on scaffolds and there is no duplication of gene sequences in the Tg-ABCs in the genome sequence of T. gibbosa. Phylogenetic and collinearity analyses of T. gibbosa along with four other wood-rotting fungi show that T. gibbosa shares a closer phylogenetic relationship with its same-genus fungus (Trametes versicolor), followed by Ganoderma leucocontextum, Laetiporus sulphureus, and Phlebia centrifuga in descending order of phylogenetic proximity. In addition, we conducted quantitative analyses of Tg-ABCs from T. gibbosa cultivated in both woody and non-woody environments for 10, 15, 20, 25, 30, and 35 days using an RT-qPCR analysis. The results reveal a significant difference in the expression levels of Tg-ABCs between woody and non-woody environments, suggesting an active involvement of the ABC gene family in wood degradation. During the wood degradation period of T. gibbosa, spanning from 10 to 35 days, the relative expression levels of most Tg-ABCs exhibited a trend of increasing, decreasing, and then increasing again. Additionally, at 20 and 35 days of wood degradation by T. gibbosa, the relative expression levels of Tg-ABCs peak, suggesting that at these time points, Tg-ABCs exert the most significant impact on the degradation of poplar wood by T. gibbosa. This study systematically reveals the biological characteristics of the ABC gene family in T. gibbosa and their response to woody environments. It establishes the foundation for a more profound comprehension of the wood-degradation mechanism of the ABC gene family and provides strong support for the development of more efficient wood-degradation strategies.
Collapse
Affiliation(s)
- Jia Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Achuan Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qian Wang
- Department of Computer Science, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
8
|
Wang L, He W, Lu JM, Sun J, Jiang SD, Wang JJ, Wei DD. Characterization and transcriptional expression of ABCG genes in Bactrocera dorsalis: Insights into their roles in fecundity and insecticidal stress response. Int J Biol Macromol 2023; 253:126836. [PMID: 37714235 DOI: 10.1016/j.ijbiomac.2023.126836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are essential for regulating various physiological processes and insecticide resistance across different living organisms. ABCG subfamily genes have diverse functions in insects, but little is known about the function of ABCGs in a serious agricultural pest, Bactrocera dorsalis. In this study, 15 BdABCG genes were identified, and BdABCG6 and BdABCG11 were highly expressed in the pupal and adult stages, especially during the transition period from pupae to adults. Silencing of these two genes resulted in a significant reduction of egg production in B. dorsalis, confirming their importance in reproduction. Analysis of tissue expression patterns showed that most genes, including BdABCG1, 3, 8, and 14, exhibited tissue-specificity, with significantly higher expression levels observed in the intestine, Malpighian tubule, and fat body compared to other tissues. Meanwhile, the induction of malathion and avermectin can significantly upregulate the expression of the above four genes. Furthermore, knockdown of BdABCG3 by RNAi significantly increased the mortality of B. dorsalis upon exposure to avermectin, which suggested that BdABCG3 is involved in the transport or metabolism of avermectin in B. dorsalis. Overall, our work provides valuable insights into the function of BdABCGs involved in the reproduction and detoxification system of B. dorsalis.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
9
|
Wang Y, Wang J, Wang W. Identification of mycoparasitism-related genes in Trichoderma harzianum T4 that are active against Colletotrichum musae. Arch Microbiol 2023; 206:29. [PMID: 38117327 DOI: 10.1007/s00203-023-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Trichoderma harzianum is a well-known biological control agent (BCA) that shows great potential in controlling many pathogenic fungi. To screen for genes associated with mycoparasitism, we sequenced and analyzed the transcriptome of T. harzianum T4 grown in dual culture with Colletotrichum musae. We analyzed differentially expressed genes (DEGs) of Trichoderma harzianum T4 in three different culture periods: before contact (BC), during contact (C) and after contact (AC). A total of 1453 genes were significantly differentially expressed compared to when T. harzianum T4 was cultured alone. During the three periods of double culture of T. harzianum T4 with C. musae, 74, 516, and 548 genes were up-regulated, respectively, and 11, 315, and 216 genes were down-regulated, respectively. The DEGs were screened using GO and KEGG enrichment analyses combined with differential expression multiples. Six gene categories related to mycoparasitism were screened: (a) pathogen recognition and signal transduction, (b) hydrolases, (c) ribosomal proteins and secreted proteins, (d) multidrug-resistant proteins and transporters, (e) heat shock proteins and detoxification, and (f) oxidative stress and antibiotics-related genes. The expression levels of 24 up-regulated genes during T. harzianum T4's antagonistic interaction with C. musae were detected via real-time fluorescence quantitative PCR (RT-qPCR). This study provided information on the transcriptional expression of T. harzianum T4 against C. musae. These results may help us to further understand the mechanism of mycoparasitism, which can provide a potential molecular target for improving the biological control capacity of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China.
| |
Collapse
|
10
|
Jeennor S, Anantayanon J, Panchanawaporn S, Chutrakul C, Vongsangnak W, Laoteng K. Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform. Microb Cell Fact 2023; 22:253. [PMID: 38071331 PMCID: PMC10710699 DOI: 10.1186/s12934-023-02261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.
Collapse
Affiliation(s)
- Sukanya Jeennor
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Jutamas Anantayanon
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarocha Panchanawaporn
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chanikul Chutrakul
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
11
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
12
|
Tang L, Zhai H, Zhang S, Lv Y, Li Y, Wei S, Ma P, Wei S, Hu Y, Cai J. Functional Characterization of Aldehyde Dehydrogenase in Fusarium graminearum. Microorganisms 2023; 11:2875. [PMID: 38138019 PMCID: PMC10745421 DOI: 10.3390/microorganisms11122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH), a common oxidoreductase in organisms, is an aldehyde scavenger involved in various metabolic processes. However, its function in different pathogenic fungi remains unknown. Fusarium graminearum causes Fusarium head blight in cereals, which reduces grain yield and quality and is an important global food security problem. To elucidate the pathogenic mechanism of F. graminearum, seven genes encoding ALDH were knocked out and then studied for their function. Single deletions of seven ALDH genes caused a decrease in spore production and weakened the pathogenicity. Furthermore, these deletions altered susceptibility to various abiotic stresses. FGSG_04194 is associated with a number of functions, including mycelial growth and development, stress sensitivity, pathogenicity, toxin production, and energy metabolism. FGSG_00139 and FGSG_11482 are involved in sporulation, pathogenicity, and SDH activity, while the other five genes are multifunctional. Notably, we found that FGSG_04194 has an inhibitory impact on ALDH activity, whereas FGSG_00979 has a positive impact. RNA sequencing and subcellular location analysis revealed that FGSG_04194 is responsible for biological process regulation, including glucose and lipid metabolism. Our results suggest that ALDH contributes to growth, stress responses, pathogenicity, deoxynivalenol synthesis, and mitochondrial energy metabolism in F. graminearum. Finally, ALDH presents a potential target and theoretical basis for fungicide development.
Collapse
Affiliation(s)
| | - Huanchen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.T.); (S.Z.); (Y.L.); (Y.L.); (S.W.); (P.M.); (S.W.); (Y.H.); (J.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
O'Mara SP, Broz K, Schwister EM, Singh L, Dong Y, Elmore JM, Kistler HC. The Fusarium graminearum Transporters Abc1 and Abc6 Are Important for Xenobiotic Resistance, Trichothecene Accumulation, and Virulence to Wheat. PHYTOPATHOLOGY 2023; 113:1916-1923. [PMID: 37260101 DOI: 10.1094/phyto-09-22-0345-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The plant pathogenic fungus Fusarium graminearum is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters. In this study, we show that the deletion of membrane-bound transporters results in reduced DON accumulation as well as reduced FHB symptoms on wheat. Deletion of the ATP-binding cassette (ABC) transporter gene Abc1 results in the greatest reduction in DON accumulation and virulence. Deletion of another ABC transporter gene, Abc6, also reduces FHB symptoms to a lesser degree. Combining deletions fails to reduce DON accumulation or virulence in an additive fashion, even when a ∆abc1 deletion is included. Heterologous expression of F. graminearum transporters in a DON-sensitive strain of yeast confirms Abc1 as a major DON resistance mechanism; furthermore, it suggests that Abc1 is directly participating in DON transport rather than facilitating DON transport though other means. Yeast expression further indicates that multiple transporters, including Abc1, play an important role in resistance to the wheat phytoalexin 2-benzoxazolinone (BOA) and other xenobiotics. Thus, Abc1 may contribute to virulence on wheat both by facilitating export of DON and by providing resistance to the wheat phytoalexin BOA. This research provides useful information that may aid in designing novel management techniques of FHB or other destructive plant diseases.
Collapse
Affiliation(s)
- Sean P O'Mara
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Karen Broz
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Erin M Schwister
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Lovepreet Singh
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - J Mitch Elmore
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - H Corby Kistler
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
14
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
16
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
17
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
18
|
Shi WJ, Zhao R, Zhu JQ, Wan XH, Wang LB, Li H, Qin S. Complete genome analysis of pathogenic Metschnikowia bicuspidata strain MQ2101 isolated from diseased ridgetail white prawn, Exopalaemon carinicauda. BMC Microbiol 2023; 23:120. [PMID: 37120526 PMCID: PMC10148492 DOI: 10.1186/s12866-023-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Metschnikowia bicuspidata is a pathogenic yesst that can cause disease in many different economic aquatic animal species. In recent years, there was a new disease outbreak in ridgetail white prawn (Exopalaemon carinicauda) in coastal areas of Jiangsu Province China that was referred to as zombie disease by local farmers. The pathogen was first isolated and identified as M. bicuspidata. Although the pathogenicity and pathogenesis of this pathogen in other animals have been reported in some previous studies, research on its molecular mechanisms is still very limited. Therefore, a genome-wide study is necessary to better understand the physiological and pathogenic mechanisms of M. bicuspidata. RESULT In this study, we obtained a pathogenic strain, MQ2101, of M. bicuspidata from diseased E. carinicauda and sequenced its whole genome. The size of the whole genome was 15.98 Mb, and it was assembled into 5 scaffolds. The genome contained 3934 coding genes, among which 3899 genes with biological functions were annotated in multiple underlying databases. In KOG database, 2627 genes were annotated, which were categorized into 25 classes including general function prediction only, posttranslational modification, protein turnover, chaperones, and signal transduction mechanisms. In KEGG database, 2493 genes were annotated, which were categorized into five classes, including cellular processes, environmental information processing, genetic information processing, metabolism and organismal systems. In GO database, 2893 genes were annotated, which were mainly classified in cell, cell part, cellular processes and metabolic processes. There were 1055 genes annotated in the PHI database, accounting for 26.81% of the total genome, among which 5 genes were directly related to pathogenicity (identity ≥ 50%), including hsp90, PacC, and PHO84. There were also some genes related to the activity of the yeast itself that could be targeted by antiyeast drugs. Analysis based on the DFVF database showed that strain MQ2101 contained 235 potential virulence genes. BLAST searches in the CAZy database showed that strain MQ2101 may have a more complex carbohydrate metabolism system than other yeasts of the same family. In addition, two gene clusters and 168 putative secretory proteins were predicted in strain MQ2101, and functional analysis showed that some of the secretory proteins may be directly involved in the pathogenesis of the strain. Gene family analysis with five other yeasts revealed that strain MQ2101 has 245 unique gene families, including 274 genes involved in pathogenicity that could serve as potential targets. CONCLUSION Genome-wide analysis elucidated the pathogenicity-associated genes of M. bicuspidate while also revealing a complex metabolic mechanism and providing putative targets of action for the development of antiyeast drugs for this pathogen. The obtained whole-genome sequencing data provide an important theoretical basis for transcriptomic, proteomic and metabolic studies of M. bicuspidata and lay a foundation for defining its specific mechanism of host infestation.
Collapse
Affiliation(s)
- Wen-Jun Shi
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Yantai, Shandong Province, 264003, People's Republic of China
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Zhao
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jian-Qiang Zhu
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Xi-He Wan
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China.
| | - Li-Bao Wang
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
| | - Hui Li
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
| | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Yantai, Shandong Province, 264003, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
19
|
Víglaš J, Olejníková P. Antifungal azoles trigger a xenobiotic detoxification pathway and chitin synthesis in Neurospora crassa. Res Microbiol 2023:104055. [PMID: 36963554 DOI: 10.1016/j.resmic.2023.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The presence of antifungal drugs is prompting the fungal microorganisms to react by mechanisms broader than the resistance. The fungi evolved mechanisms, by which they respond to various stress conditions, including the presence of antifungal compounds. In this work, we studied the response of model filamentous fungus Neurospora crassa to azole antifungals in the broader context of the adaptation mechanisms. We demonstrated the increase in expression of filamentous fungi-specific genes encoding cytochrome enzymes of CYP65 clan and plasma membrane-localized ABCC transporters. Azoles appear not to conjugate with glutathione. Surprisingly, the azoles caused changes in the hyphae organization and the amount of chitin in cell wall by the same manner that was thought to be echinocandin-specific. The response to individual azoles appeared to be influenced by the structure of azole compound (prochloraz - main outlier). Taken together, these findings demonstrate the importance of study of stress response mechanisms, specifically in filamentous fungi. Many aspects of the reaction within azoles seem to be similar, though specificities are occurring.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
| |
Collapse
|
20
|
Liu Z, Fan C, Xiao J, Sun S, Gao T, Zhu B, Zhang D. Metabolomic and Transcriptome Analysis of the Inhibitory Effects of Bacillus subtilis Strain Z-14 against Fusarium oxysporum Causing Vascular Wilt Diseases in Cucumber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2644-2657. [PMID: 36706360 DOI: 10.1021/acs.jafc.2c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlling cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC) with Bacillus strains is a hot research topic. However, the molecular mechanism of Bacillus underlying the biocontrol of cucumber wilt is rarely reported. In this study, B. subtilis strain Z-14 showed significant antagonistic activity against FOC, and the control effect reached 88.46% via pot experiment. Microscopic observations showed that strain Z-14 induced the expansion and breakage of FOC hyphae. The cell wall thickness was uneven, and the organelle structure was degraded. The combined analysis of metabolome and transcriptome showed that strain Z-14 inhibited the FOC infection by inhibiting the synthesis of cell wall and cell membrane, energy metabolism, and amino acid synthesis of FOC mycelium, inhibiting the clearance of reactive oxygen species (ROS) and the secretion of cell wall-degrading enzymes (CWDEs), thereby affecting mitogen-activated protein kinase (MAPK) signal transduction and inhibiting the transport function.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Jiawen Xiao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Baocheng Zhu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding 071000, Hebei, China
| |
Collapse
|
21
|
Esquivel BD, White TC. Transport across Membranes: Techniques for Measuring Efflux in Fungal Cells. Methods Mol Biol 2023; 2658:201-213. [PMID: 37024704 DOI: 10.1007/978-1-0716-3155-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
One of the most prevalent mechanisms of antifungal drug resistance is export of the molecule from the fungal cells through the action of putative efflux pumps or transporters. Drug efflux is a particularly common mechanism of resistance to azole antifungals, one of the most widely used classes of antifungal drugs. Here, we provide detailed protocols for two assays of small-molecule efflux activity: rhodamine 6G efflux and alanine-naphthylamide accumulation. Protocols applicable to both yeast and filamentous fungi are provided.
Collapse
Affiliation(s)
- Brooke D Esquivel
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO, USA.
| | - Theodore C White
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO, USA
| |
Collapse
|
22
|
Wang C, Xu L, Liang X, Zhang Y, Zheng H, Chen J, Yang Y. Biochemical and Molecular Characterization of Prochloraz Resistance in Lasiodiplodia theobromae Field Isolates. PLANT DISEASE 2023; 107:177-187. [PMID: 35640950 DOI: 10.1094/pdis-10-21-2316-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stem-end rot (SER), caused by Lasiodiplodia theobromae, is one of the most critical diseases of mango in China. The demethylation inhibitor fungicide prochloraz has been widely used in China to control mango diseases. Isolates (n = 139) of L. theobromae were collected in 2019 from six mango-producing regions in Hainan Province, China. The fungicide sensitivity of L. theobromae isolates to prochloraz revealed that the EC50 (50% effective concentration) values ranged from 0.0006 to 16.4131 µg/ml. In total, 21 of the 139 isolates were categorized as resistant to prochloraz. The resistant isolates sprayed with prochloraz could not be effectively controlled in detached fruit. The mycelial growth, conidia germination, and ability to grow at temperatures ranging from 12 to 35°C of resistant isolates decreased, suggesting fitness penalties. The experiment showed that, after treatment with prochloraz at 10 µg/ml, the content of ergosterol in the mycelia of the sensitive isolate decreased by 80.23%, whereas the resistant strain decreased by only 57.52%. The damage to membranes in the sensitive isolates was more serious than for resistant isolates. The target gene CYP51 and the ATP-binding cassette (ABC) subfamily ABCG gene were cloned but no mutation was found. When treated with prochloraz, the expression of CYP51 and ABCG in resistant isolates was significantly higher than in the sensitive isolates. Thus, induced expression of its target gene combined with the induction of expression drug efflux transporters appeared to mediate the prochloraz resistance of L. theobromae.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Luxi Xu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Xiaoyu Liang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yu Zhang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - HuiYing Zheng
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - JunLiu Chen
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Ye Yang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
23
|
Chatterjee S, Das S. Whole-genome sequencing of biofilm-forming and chromium-resistant mangrove fungus Aspergillus niger BSC-1. World J Microbiol Biotechnol 2022; 39:55. [PMID: 36565384 DOI: 10.1007/s11274-022-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Filamentous fungus Aspergillus niger has gained significant industrial and ecological value due to its great potential in enzymatic activities. The present study reports the complete genome sequence of A. niger BSC-1 which was isolated from Indian Sundarban mangrove ecosystem. The study revealed that the genome of A. niger BSC-1 was 35.1 Mbp assembled in 40 scaffolds with 49.2% GC content. A total of 10,709 genes were reported out of which 10,535 genes were predicted for encoding the proteins. BUSCO assessment showed 98.6% of genome completeness indicating high quality genome sequencing. The genome sequencing of A. niger BSC-1 revealed the presence of rodA and exgA genes for initial adhesion to surface and Ags genes for matrix formation, during biofilm growth. OrthoVenn2 analysis revealed that A.niger BSC-1 shared 9552 gene clusters with the reference strain A. niger CBS554.65. Semi-quantitative RT-PCR analysis unveiled the role of Ags1 and P-type ATPase in fungal biofilm formation and chromium (Cr) resistance, respectively. During biofilm growth the expression of Ags1 significantly (P < 0.0001; two-way ANOVA followed by Sidak's multiple comparisons test) increased with respect to planktonic culture revealing the possible involvement of Ags1 in biofilm matrix formation. Expression of P-type ATPase gene was significantly upregulated (P < 0.0001; one-way ANOVA followed by Dunnett's multiple comparisons test) with the increasing chromium concentration in the fungal culture. Besides, several other genes encoding metalloprotease, copper and zinc binding proteins, and NADH-dependent oxidoreductase were also found in the genome of A. niger BSC-1. These proteins are also involved in heavy metal tolerance and nanofabrication indicating that this filamentous fungus A. niger BSC-1 could be potentially utilized for chromium detoxification through biofilm or nanobiremediation.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
24
|
Fijarczyk A, Bernier L, Sakalidis ML, Medina-Mora CM, Porth I. Independent Evolution Has Led to Distinct Genomic Signatures in Dutch Elm Disease-Causing Fungi and Other Vascular Wilts-Causing Fungal Pathogens. J Fungi (Basel) 2022; 9:2. [PMID: 36675823 PMCID: PMC9864908 DOI: 10.3390/jof9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular wilts are important diseases caused by plant pathogenic fungi that result in the rapid death of their plant hosts. This is due to a systemic defense mechanism whereby the plant induces the compartmentalization of the infected vascular system in order to reduce the propagation of the fungus. The ascomycete class Sordariomycetes contains several species that cause vascular wilts in diverse plant hosts, and they can be classified into four taxonomic orders. The genetic mechanisms of pathogenesis have already been investigated in Fusarium and Verticillium species, but they have not yet been compared with other well-known wilt-causing species, especially fungi causing oak wilt or Dutch elm disease (DED). Here we analyzed 20 whole genome assemblies of wilt-causing fungi together with 56 other species using phylogenetic approaches to trace expansions and contractions of orthologous gene families and gene classes related to pathogenicity. We found that the wilt-causing pathogens evolved seven times, experiencing the largest fold changes in different classes of genes almost every time. However, some similarities exist across groups of wilt pathogens, particularly in Microascales and Ophiostomatales, and these include the common gains and losses of genes that make up secondary metabolite clusters (SMC). DED pathogens do not experience large-scale gene expansions, with most of the gene classes, except for some SMC families, reducing in number. We also found that gene family expansions in the most recent common ancestors of wilt pathogen groups are enriched for carbohydrate metabolic processes. Our study shows that wilt-causing species evolve primarily through distinct changes in their repertoires of pathogenicity-related genes and that there is the potential importance of carbohydrate metabolism genes for regulating osmosis in those pathogens that penetrate the plant vascular system.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Carmen M Medina-Mora
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Ilga Porth
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, Reinhart C. Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules. Proc Natl Acad Sci U S A 2022; 119:e2202822119. [PMID: 36256814 PMCID: PMC9618074 DOI: 10.1073/pnas.2202822119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.
Collapse
Affiliation(s)
- E. Sabine M. Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Cai H, Zhang H, Guo DH, Wang Y, Gu J. Genomic Data Mining Reveals Abundant Uncharacterized Transporters in Coccidioides immitis and Coccidioides posadasii. J Fungi (Basel) 2022; 8:jof8101064. [PMID: 36294626 PMCID: PMC9604845 DOI: 10.3390/jof8101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are causative agents of coccidioidomycosis, commonly known as Valley Fever. The increasing Valley Fever cases in the past decades, the expansion of endemic regions, and the rising azole drug-resistant strains have underscored an urgent need for a better understanding of Coccidioides biology and new antifungal strategies. Transporters play essential roles in pathogen survival, growth, infection, and adaptation, and are considered as potential drug targets. However, the composition and roles of transport machinery in Coccidioides remain largely unknown. In this study, genomic data mining revealed an abundant, uncharacterized repertoire of transporters in Coccidioides genomes. The catalog included 1288 and 1235 transporter homologs in C. immitis and C. posadasii, respectively. They were further annotated to class, subclass, family, subfamily and range of substrates based on the Transport Classification (TC) system. They may play diverse roles in nutrient uptake, metabolite secretion, ion homeostasis, drug efflux, or signaling. This study represents an initial effort for a systems-level characterization of the transport machinery in these understudied fungal pathogens.
Collapse
Affiliation(s)
- Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel H. Guo
- Strake Jesuit College Preparatory, Houston, TX 77036, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (Y.W.); (J.G.)
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
- Correspondence: (Y.W.); (J.G.)
| |
Collapse
|
27
|
Tandem Mass Tags Quantitative Proteome Identification and Function Analysis of ABC Transporters in Neofusicoccum parvum. Int J Mol Sci 2022; 23:ijms23179908. [PMID: 36077305 PMCID: PMC9456026 DOI: 10.3390/ijms23179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum can cause twig blight of the walnut (Juglans spp.), resulting in great economic losses and ecological damage. We performed proteomic tandem mass tags (TMT) quantification of two Neofusicoccum parvum strains with different substrates, BH01 in walnut substrate (SW) and sterile water (SK), and BH03 in walnut substrate (WW) and sterile water (WK), in order to identify differentially expressed proteins. We identified 998, 95, and 489 differentially expressed proteins (DEPs) between the SK vs. WK, SW vs. SK, and WW vs. WK comparison groups, respectively. A phylogenetic analysis was performed to classify the ABC transporter proteins annotated in the TMT protein quantification into eight groups. Physicochemical and structural analyses of the 24 ATP-binding cassette (ABC) transporter proteins revealed that 14 of them had transmembrane structures. To elucidate the functions of these transmembrane proteins, we determined the relative expression levels of ABC transporter genes in strains cultured in sodium chloride, hydrogen peroxide, copper sulfate, and carbendazim mediums, in comparison with pure medium; analysis revealed differential upregulation. To verify the expression results, we knocked out the NpABC2 gene and compared the wild-type and knockout mutant strains. The knockout mutant strains exhibited a higher sensitivity to antifungal drugs. Furthermore, the virulence of the knockout mutant strains was significantly lower than the wild-type strains, thus implying that NpABC2 plays a role in the drug resistance of N. parvum and affects its virulence.
Collapse
|
28
|
Qiao Y, Jie Chen Z, Liu J, Nan Z, Yang H. Genome-wide identification of Oryza sativa: A new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene 2022; 834:146613. [PMID: 35643224 DOI: 10.1016/j.gene.2022.146613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
ATP-binding cassette (ABC) transporter is a large genes superfamily. It involves transportation of diverse substrates (e.g., heavy metal, amino acids, pesticides, metabolites). The ABC transporters can be strongly induced by environmental stress and responsible for the phase III metabolic process of toxic compounds in plants. To investigate the potential molecular and biochemical function of ABC transporters in response to pesticides, we used bioinformatics and high-throughput sequencing to identify 107 loci from rice (Oryza sativa) exposed to different pesticides (ametryn, AME; bentazone, BNTZ; fomesafen, FSA; mesotrione, MTR) and annotated as ABC transporter genes. ABC transporter genes were categorized to eight subfamilies including ABCA-G and ABCI. ABCG subfamily was the largest group in rice genome followed by ABCC subfamily and ABCB subfamily. The distribution of each ABC transporter on twelve chromosomes was identified. The result showed that a large number of genes were scattered around chromosome. Differentially expressed genes (DEGs) were selected for cis-acting analysis under pesticide stress. Multiple cis-elements for biological functions such as hormone-sensitive elements and defense-related elements were found to involve the initiation and regulation of transcription. Comprehensive phylogenetic analysis and domain prediction of all ABC DEGs from rice and Arabidopsis were carried out. The docking analysis of ABC transporters and pesticides provided insights into the key amino acid residues involved in the binding of the pesticides. Consequently, the results provided applicable information and reference for a more functional analysis of ABC transporter genes on regulation of pesticide metabolism and transport in plants.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhang Nan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Chen J, Han S, Li S, Wang M, Zhu H, Qiao T, Lin T, Zhu T. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Neofusicoccum parvum in Walnut. Front Microbiol 2022; 13:926620. [PMID: 35910616 PMCID: PMC9335079 DOI: 10.3389/fmicb.2022.926620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
Neofusicoccum parvum can cause stem and branch blight of walnut (Juglans spp.), resulting in great economic losses and ecological damage. A total of two strains of N. parvum were subjected to RNA-sequencing after being fed on different substrates, sterile water (K1/K2), and walnut (T1/T2), and the function of ABC1 was verified by gene knockout. There were 1,834, 338, and 878 differentially expressed genes (DEGs) between the K1 vs. K2, T1 vs. K1, and T2 vs. K2 comparison groups, respectively. The expression changes in thirty DEGs were verified by fluorescent quantitative PCR. These thirty DEGs showed the same expression patterns under both RNA-seq and PCR. In addition, ΔNpABC1 showed weaker virulence due to gene knockout, and the complementary strain NpABC1c showed the same virulence as the wild-type strain. Compared to the wild-type and complemented strains, the relative growth of ΔNpABC1 was significantly decreased when grown with H2O2, NaCl, Congo red, chloramphenicol, MnSO4, and CuSO4. The disease index of walnuts infected by the mutants was significantly lower than those infected by the wild-type and complementary strains. This result indicates that ABC1 gene is required for the stress response and virulence of N. parvum and may be involved in heavy metal resistance.
Collapse
Affiliation(s)
- Jie Chen
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ming Wang
- Ecological Institute, Academy of Sichuan Forestry and Grassland Inventory and Planning, Chengdu, China
| | - Hanmingyue Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianmin Qiao
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
The AbcCl1 transporter of Colletotrichum lindemuthianum acts as a virulence factor involved in fungal detoxification during common bean (Phaseolus vulgaris) infection. Braz J Microbiol 2022; 53:1121-1132. [PMID: 35821347 DOI: 10.1007/s42770-022-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/21/2022] [Indexed: 11/02/2022] Open
Abstract
Anthracnose, caused by Colletotrichum lindemuthianum, is a disease affecting the common bean plant, Phaseolus vulgaris. To establish infection, the phytopathogen must survive the toxic compounds (phytoanticipins and phytoalexins) that are produced by the plant as a defense mechanism. To study the detoxification and efflux mechanisms in C. lindemuthianum, the abcCl1 gene, which encodes an ABC transporter, was analyzed. The abcCl1 gene (4558 pb) was predicted to encode a 1450-amino acid protein. Structural analysis of 11 genome sequences from Colletotrichum spp. showed that the number of ABC transporters varied from 34 to 64. AbcCl1 was classified in the ABC-G family of transporters, and it appears to be orthologs to ABC1 from Magnaporthe grisea and FcABC1 from Fusarium culmorum, which are involved in pleiotropic drug resistance. A abcT3 (ΔabcCl1) strain showed reduction on aggressivity when inoculated on bean leaves that presented diminishing anthracnose symptoms, which suggests the important role of AbcCl1 as a virulence factor and in fungal resistance to host compounds. The expression of abcCl1 increased in response to different toxic compounds, such as eugenol, hygromycin, and pisatin phytoalexin. Together, these results suggest that AbcCl1 is involved in fungal resistance to the toxic compounds produced by plants or antagonistic microorganisms.
Collapse
|
31
|
Park JJC, Kim DH, Kim MS, Sayed AEDH, Hagiwara A, Hwang UK, Park HG, Lee JS. Comparative genome analysis of the monogonont marine rotifer Brachionus manjavacas Australian strain: Potential application for ecotoxicology and environmental genomics. MARINE POLLUTION BULLETIN 2022; 180:113752. [PMID: 35617743 DOI: 10.1016/j.marpolbul.2022.113752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.
Collapse
Affiliation(s)
- Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Un-Ki Hwang
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
32
|
An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. mBio 2022; 13:e0153922. [PMID: 35726920 PMCID: PMC9426558 DOI: 10.1128/mbio.01539-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest protein superfamilies. Functionally diverse, ABC transporters have been implicated in many aspects of microbial physiology. The genome of the human fungal pathogen Cryptococcus neoformans encodes 54 putative ABC transporters and most of them remain uncharacterized. In a previous genetic screen for fungal regulators of phagocytosis, we identified an uncharacterized gene, CNAG_06909, that modulates host interactions. This gene encoded a half-size ABC transporter of the PDR-type, and phenotypic studies of a strain with this gene deleted revealed an altered antifungal susceptibility profile, including hypersensitivity to fluconazole (FLC). This gene, which we named PDR6, localized to the endoplasmic reticulum (ER) and plasma membrane (PM), and when absent, less ergosterol was observed in the PM. Additionally, we observed that the pdr6Δ strain displayed a reduction in secreted polysaccharide capsular material. These changes to the cellular surface may explain the observed increased uptake by macrophages and the reduced intracellular survival. Finally, studies in mice demonstrated that Pdr6 function was required for the normal progression of cryptococcal infection. Taken together, this study demonstrates a novel dual role for PDR transporters in C. neoformans, which could represent a potential target for antifungal therapeutics. Furthermore, the atypical half-size transporter encoded by PDR6 is conserved in many fungal pathogens, but absent in model nonpathogenic fungi. Hence, this study provided a function for this unique group of fungal half-size PDR transporters that, although conserved, remain largely understudied.
Collapse
|
33
|
Transcriptome analysis of Antarctic Rhodococcus sp. NJ-530 in the response to dimethylsulfoniopropionate. Polar Biol 2022. [DOI: 10.1007/s00300-022-03049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pei J, Cong Q. Evolutionary origin and sequence signatures of the heterodimeric ABCG5/ABCG8 transporter. Protein Sci 2022; 31:e4297. [PMID: 35481657 PMCID: PMC8994503 DOI: 10.1002/pro.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
ATP-binding cassette (ABC) systems, characterized by ABC-type nucleotide-binding domains (NBDs), play crucial roles in various aspects of human physiology. Human ABCG5 and ABCG8 form a heterodimeric transporter that functions in the efflux of sterols. We used sequence similarity search, multiple sequence alignment, phylogenetic analysis, and structure comparison to study the evolutionary origin and sequence signatures of ABCG5 and ABCG8. Orthologs of ABCG5 and ABCG8, supported by phylogenetic analysis and signature residues, were identified in bilaterian animals, Filasterea, Fungi, and Amoebozoa. Such a phylogenetic distribution suggests that ABCG5 and ABCG8 could have originated in the last common ancestor of Amorphea (the unikonts), the eukaryotic group including Amoebozoa and Opisthokonta. ABCG5 and ABCG8 were missing in genomes of various lineages such as snakes, jawless vertebrates, non-vertebrate chordates, echinoderms, and basal metazoan groups. Amino-acid changes in key positions in ABCG8 Walker A motif and/or ABCG5 C-loop were observed in most tetrapod organisms, likely resulted in the loss of ATPase activity at one nucleotide-binding site. ABCG5 and ABCG8 in Ecdysozoa (such as insects) exhibit elevated evolutionary rates and accumulate various changes in their NBD functional motifs. Alignment inspection revealed several residue positions that show different amino-acid usages in ABCG5/ABCG8 compared to other ABCG subfamily proteins. These residues were mapped to the structural cores of transmembrane domains (TMDs), the NBD-TMD interface, and the interface between TMDs. They serve as sequence signatures to differentiate ABCG5/ABCG8 from other ABCG subfamily proteins, and some of them may contribute to substrate specificity of the ABCG5/ABCG8 transporter.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
35
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
36
|
Nekrakalaya B, Arefian M, Kotimoole CN, Krishna RM, Palliyath GK, Najar MA, Behera SK, Kasaragod S, Santhappan P, Hegde V, Prasad TSK. Towards Phytopathogen Diagnostics? Coconut Bud Rot Pathogen Phytophthora palmivora Mycelial Proteome Analysis Informs Genome Annotation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:189-203. [PMID: 35353641 DOI: 10.1089/omi.2021.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planetary agriculture stands to benefit immensely from phytopathogen diagnostics, which would enable early detection of pathogens with harmful effects on crops. For example, Phytophthora palmivora is one of the most destructive phytopathogens affecting many economically important tropical crops such as coconut. P. palmivora causes diseases in over 200 host plants, and notably, the bud rot disease in coconut and oil palm, which is often lethal because it is usually detected at advanced stages of infection. Limited availability of large-scale omics datasets for P. palmivora is an important barrier for progress toward phytopathogen diagnostics. We report here the mycelial proteome of P. palmivora using high-resolution mass spectrometry analysis. We identified 8073 proteins in the mycelium. Gene Ontology-based functional classification of detected proteins revealed 4884, 4981, and 3044 proteins, respectively, with roles in biological processes, molecular functions, and cellular components. Proteins such as P-loop, NTPase, and WD40 domains with key roles in signal transduction pathways were identified. KEGG pathway analysis annotated 2467 proteins to various signaling pathways, such as phosphatidylinositol, Ca2+, and mitogen-activated protein kinase, and autophagy and cell cycle. These molecular substrates might possess vital roles in filamentous growth, sporangia formation, degradation of damaged cellular content, and recycling of nutrients in P. palmivora. This large-scale proteomics data and analyses pave the way for new insights on biology, genome annotation, and vegetative growth of the important plant pathogen P. palmivora. They also can help accelerate research on future phytopathogen diagnostics and preventive interventions.
Collapse
Affiliation(s)
- Bhagya Nekrakalaya
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Mohammad Altaf Najar
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Vinayaka Hegde
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | | |
Collapse
|
37
|
Transcriptional Network in Colletotrichum gloeosporioides Mutants Lacking Msb2 or Msb2 and Sho1. J Fungi (Basel) 2022; 8:jof8020207. [PMID: 35205961 PMCID: PMC8878819 DOI: 10.3390/jof8020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Colletotrichum gloeosporioides is a hemibiotrophic ascomycetous fungus that causes anthracnose in many plants worldwide. During infections, C. gloeosporioides produces an appressorium in response to various plant surface signals. However, the mechanism mediating host surface signal recognition remains unclear. In this study, C. gloeosporioides ΔCgMsb2 and ΔCgMsb2Sho1 mutants lacking hypothetical sensors of plant surface signals were examined. The mutations in ΔCgMsb2 and ΔCgMsb2Sho1 adversely affected conidial size and sporulation, while also inhibiting growth. Significant transcriptional changes were detected for nearly 19% and 26% of the genes in ΔCgMsb2 and ΔCgMsb2Sho1, respectively. The lack of these plasma membrane receptors altered the expression of specific genes, especially those encoding hydrolases, ABC transporters, and mitogen-activated protein kinases (MAPKs). The encoded MAPKs participate in the signal transduction of ERK and JNK signaling pathways, activate downstream signals, and contribute to metabolic regulation. Our data demonstrate that the C. gloeosporioides membrane proteins Msb2 and Sho1 affect gene regulation, thereby influencing conidial growth, metabolism, and development. These findings provide new insights into the regulation of C. gloeosporioides's development and infection of plant hosts.
Collapse
|
38
|
Sang H, Chang HX, Choi S, Son D, Lee G, Chilvers MI. Genome-wide transcriptional response of the causal soybean sudden death syndrome pathogen Fusarium virguliforme to a succinate dehydrogenase inhibitor fluopyram. PEST MANAGEMENT SCIENCE 2022; 78:530-540. [PMID: 34561937 DOI: 10.1002/ps.6657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) have been widely used to manage plant diseases caused by phytopathogenic fungi. Although attention to and use of SDHI fungicides has recently increased, molecular responses of fungal pathogens to SDHIs have often not been investigated. A SDHI fungicide, fluopyram, has been used as a soybean seed treatment and has displayed effective control of Fusarium virguliforme, one of the causal agents of soybean sudden death syndrome. To examine genome-wide gene expression of F. virguliforme to fluopyram, RNA-seq analysis was conducted on two field strains of F. virguliforme with differing SDHI fungicide sensitivity in the absence and presence of fluopyram. RESULTS The analysis indicated that several xenobiotic detoxification-related genes, such as those of deoxygenase, transferases and transporters, were highly induced by fluopyram. Among the genes, four ATP-binding cassette (ABC) transporters were characterized by the yeast expression system. The results revealed that expression of three ABCG transporters was associated with reduced sensitivity to multiple fungicides including fluopyram. In addition, heterologous expression of a major facilitator superfamily (MFS) transporter that was highly expressed in the fluopyram-insensitive F. virguliforme strain in the yeast system conferred decreased sensitivity to fluopyram. CONCLUSION This study demonstrated that xenobiotic detoxification-related genes were highly upregulated in response to fluopyram, and expression of ABC or MFS transporter genes was associated with reduced sensitivity to the SDHI fungicide. This is the first transcriptomic analysis of the fungal species response to fluopyram and the finding will help elucidate the molecular mechanisms of SDHI resistance. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Sungyu Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Doeun Son
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Gahee Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
39
|
Rafiei V, Ruffino A, Persson Hodén K, Tornkvist A, Mozuraitis R, Dubey M, Tzelepis G. A Verticillium longisporum pleiotropic drug transporter determines tolerance to the plant host β-pinene monoterpene. MOLECULAR PLANT PATHOLOGY 2022; 23:291-303. [PMID: 34825755 PMCID: PMC8743018 DOI: 10.1111/mpp.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 05/05/2023]
Abstract
Terpenes constitute a major part of secondary metabolites secreted by plants in the rhizosphere. However, their specific functions in fungal-plant interactions have not been investigated thoroughly. In this study we investigated the role of monoterpenes in interactions between oilseed rape (Brassica napus) and the soilborne pathogen Verticillium longisporum. We identified seven monoterpenes produced by B. napus, and production of α-pinene, β-pinene, 3-carene, and camphene was significantly increased upon fungal infection. Among them, β-pinene was chosen for further analysis. Transcriptome analysis of V. longisporum on exposure to β-pinene resulted in identification of two highly expressed pleotropic drug transporters paralog genes named VlAbcG1a and VlAbcG1b. Overexpression of VlAbcG1a in Saccharomyces cerevisiae increased tolerance to β-pinene, while deletion of the VlAbcG1a homologous gene in Verticillium dahliae resulted in mutants with increased sensitivity to certain monoterpenes. Furthermore, the VlAbcG1a overexpression strain displayed an increased tolerance to β-pinene and increased virulence in tomato plants. Data from this study give new insights into the roles of terpenes in plant-fungal pathogen interactions and the mechanisms fungi deploy to cope with the toxicity of these secondary metabolites.
Collapse
Affiliation(s)
- Vahideh Rafiei
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Alessandra Ruffino
- Department of Plant BiologyUppsala BiocenterSwedish University of Agricultural SciencesLinnean Center for Plant BiologyUppsalaSweden
| | - Kristian Persson Hodén
- Department of Plant BiologyUppsala BiocenterSwedish University of Agricultural SciencesLinnean Center for Plant BiologyUppsalaSweden
| | - Anna Tornkvist
- Department of Plant BiologyUppsala BiocenterSwedish University of Agricultural SciencesLinnean Center for Plant BiologyUppsalaSweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
40
|
Claus S, Jezierska S, Elbourne LDH, Van Bogaert I. Exploring the transportome of the biosurfactant producing yeast Starmerella bombicola. BMC Genomics 2022; 23:22. [PMID: 34998388 PMCID: PMC8742932 DOI: 10.1186/s12864-021-08177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Starmerella bombicola is a non-conventional yeast mainly known for its capacity to produce high amounts of the glycolipids 'sophorolipids'. Although its product has been used as biological detergent for a couple of decades, the genetics of S. bombicola are still largely unknown. Computational analysis of the yeast's genome enabled us to identify 254 putative transporter genes that make up the entire transportome. For each of them, a potential substrate was predicted using homology analysis, subcellular localization prediction and RNA sequencing in different stages of growth. One transporter family is of exceptional importance to this yeast: the ATP Binding Cassette (ABC) transporter Superfamily, because it harbors the main driver behind the highly efficient sophorolipid export. Furthermore, members of this superfamily translocate a variety of compounds ranging from antibiotics to hydrophobic molecules. We conducted an analysis of this family by creating deletion mutants to understand their role in the export of hydrophobic compounds, antibiotics and sophorolipids. Doing this, we could experimentally confirm the transporters participating in the efflux of medium chain fatty alcohols, particularly decanol and undecanol, and identify a second sophorolipid transporter that is located outside the sophorolipid biosynthetic gene cluster.
Collapse
Affiliation(s)
- Silke Claus
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sylwia Jezierska
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Inge Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
41
|
Detoxification and adaptation mechanisms of Trichoderma atroviride to antifungal agents. ACTA CHIMICA SLOVACA 2022. [DOI: 10.2478/acs-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Filamentous fungi are crucial for recycling of organic material in nature. In natural habitats, they cope with many stress factors and therefore their adaptation ability to various conditions is very high. Trichoderma sp., fungi used in agriculture as biocontrol agent, are exposed to a variety of toxic molecules including pesticides and fungicides. They have to fight with toxic molecules using stress adaptation mechanisms known as the stress response. Adaptation of fungi to stress, especially to chemical stress, is not well studied in environmental fungal strains. Moreover, the adaptation process presents a risk of resistance mechanism induction to antifungal agents. Such resistant strains could be spread in the environment. This work aims to contribute to the knowledge of the adaptation process spread throughout the fungal kingdom. Transcriptional response of ABC transporters, the main detoxification efflux pumps of subfamily B and G in presence of antifungal agents, is shown. On the other hand, as azoles are the most commonly used antifungal structures in clinical practice and agriculture, changes in important fungal ergosterol biosynthesis genes as a result of their exposure to various azoles structure are highlighted.
Collapse
|
42
|
Chertemps T, Le Goff G, Maïbèche M, Hilliou F. Detoxification gene families in Phylloxera: Endogenous functions and roles in response to the environment. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100867. [PMID: 34246923 DOI: 10.1016/j.cbd.2021.100867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic analyses for each detoxification gene family. We found expansions of several gene sub-families in the genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the same genomic position and orientation suggesting recent successive duplications. These results highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in adaptation to plant secondary metabolites, and provide gene candidates for further functional analyses.
Collapse
Affiliation(s)
- Thomas Chertemps
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Martine Maïbèche
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France.
| |
Collapse
|
43
|
Inhibitor Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrob Agents Chemother 2021; 66:e0174821. [PMID: 34780272 PMCID: PMC8765293 DOI: 10.1128/aac.01748-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters. We isolated twenty Saccharomyces cerevisiae mutants overexpressing Candida albicans ABC pump Cdr1 variants resistant to fluconazole efflux inhibition by milbemycin α25 (eight mutants), enniatin B (eight) or beauvericin (four). The twenty mutations were in just nine residues at the centres of transmembrane segment 1 (TMS1) (six mutations), TMS4 (four), TMS5 (four), TMS8 (one) and TMS11 (two) and in A713P (three), a previously reported FK506-resistant 'hotspot 1' mutation in extracellular loop 3. Six Cdr1-G521S/C/V/R (TMS1) variants were resistant to all four inhibitors, four Cdr1-M639I (TMS4) isolates were resistant to milbemycin α25 and enniatin B, and two Cdr1-V668I/D (TMS5) variants were resistant to enniatin B and beauvericin. The eight milbemycin α25 resistant mutants were altered in four amino acids: G521R, M639I, A713P and T1355N. These four Cdr1 variants responded differently to various types of inhibitors, and each exhibited altered substrate specificity and kinetic properties. The data infer an entry gate function for Cdr1-G521 and a role for Cdr1-A713 in the constitutively high Cdr1 ATPase activity. Cdr1-M639I and -T1355N (TMS11) possibly cause inhibitor-resistance by altering TMS-contacts near the substrate/inhibitor-binding pocket. Models for the interactions of substrates and different types of inhibitors with Cdr1 at various stages of the transport cycle are presented.
Collapse
|
44
|
Liu W, Sun X, Sun W, Zhou A, Li R, Wang B, Li X, Yan C. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105940. [PMID: 34455205 DOI: 10.1016/j.aquatox.2021.105940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Non-biting midges are dominant species in aquatic systems and often used for studying the toxicological researches of insecticides. ATP-binding cassette (ABC) transporters represent the largest known members in detoxification genes but is little known about their function in non-biting midges. Here, we selected Propsilocerus akamusi, widespread in urban streams, to first uncover the gene structure, location, characteristics, and phylogenetics of chironomid ABC transporters at genome-scale. Fifty-seven ABC transporter genes are located on four chromosomes, including eight subfamilies (ABCA-H). The ABCC, ABCG, and ABCH subfamilies experienced the duplication events to different degrees. The study showed that expression of the PaABCG17 gene is uniquely significantly elevated, with deltamethrin concentration increasing (1, 4, and 20 ug/L) both in RNA-seq and qPCR results. Additionally, the ABC transporter members of other six chironomids with assembled genomes are first described and used to investigate the characteristic of those living in the different adverse habitats. The ABC transporter frame for Propsilocerus akamusi and its transcriptomic results lay an important foundation for providing valuable resources for understanding the ABC transporter function in insecticide toxification of this species as well as those of other non-biting midges. The PaABCG17 gene is shown to play an important role in deltamethrin detoxification, and it functions need to be further investigated and might be used in the management of insecticide-resistance in chironomid adults.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bin Wang
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Xun Li
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
45
|
Yang R, Chen X, Huang Q, Chen C, Rengasamy KRR, Chen J, Wan C(C. Mining RNA-Seq Data to Depict How Penicillium digitatum Shapes Its Transcriptome in Response to Nanoemulsion. Front Nutr 2021; 8:724419. [PMID: 34595200 PMCID: PMC8476847 DOI: 10.3389/fnut.2021.724419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.
Collapse
Affiliation(s)
- Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Xiu Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
46
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
47
|
Cho CH, Jang S, Choi BY, Hong D, Choi DS, Choi S, Kim H, Han SK, Kim S, Kim M, Palmgren M, Sohn KH, Yoon HS, Lee Y. Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens. PHYSIOLOGIA PLANTARUM 2021; 172:1422-1438. [PMID: 31828796 PMCID: PMC8359288 DOI: 10.1111/ppl.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 05/02/2023]
Abstract
ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Sunghoon Jang
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Bae Young Choi
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Daewoong Hong
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Du Seok Choi
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Present address:
GreenBio Center, Corporate R&D, LG Chem, LtdSeoul07796Korea
| | - Sera Choi
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Haseong Kim
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Seong Kyu Han
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Sanguk Kim
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Min‐Sung Kim
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Michael Palmgren
- Department of Plant and Environmental ScienceUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Kee Hoon Sohn
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Hwan Su Yoon
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Youngsook Lee
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| |
Collapse
|
48
|
Lee DW, Hong CP, Thak EJ, Park SG, Lee CH, Lim JY, Seo JA, Kang HA. Integrated genomic and transcriptomic analysis reveals unique mechanisms for high osmotolerance and halotolerance in Hyphopichia yeast. Environ Microbiol 2021; 23:3499-3522. [PMID: 33830651 DOI: 10.1111/1462-2920.15464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022]
Abstract
The yeast species Hyphopichia is common in nature and strongly competitive under harsh environmental conditions. Here, we characterized Hyphopichia burtonii KJJ43 and H. pseudoburtonii KJS14, which exhibit strong halotolerance, using genomic and transcriptomic analyses. The genomes of H. burtonii and H. pseudoburtonii comprised eight chromosomes with 85.17% nucleotide identity and significant divergence in synteny. Notably, both Hyphopichia genomes possessed extended gene families of amino acid permeases and ATP-binding cassette (ABC) transporters, whose dynamic expression patterns during osmotic stress were revealed using transcriptome profiling. Intriguingly, we found unique features of the HOG pathway activated by Hog1p even under non-osmotic stress conditions and the upregulation of cytosolic Gpd1 protein during osmotic stress. Associated with hyperfilamentation growth under high osmotic conditions, a set of genes in the FLO family with induced expression in response to NaCl, KCl, and sorbitol supplementation were identified. Moreover, comparative transcriptome analysis reveals the NaCl-specific induction of genes involved in amino acid biosynthesis and metabolism, particularly BAT2. This suggests the potential association between oxoacid reaction involving branched-chain amino acids and osmotolerance. The combined omics analysis of two Hyphopichia species provides insights into the novel mechanisms involved in salt and osmo-stress tolerance exploited by diverse eukaryotic organisms.
Collapse
Affiliation(s)
- Dong Wook Lee
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Eun Jung Thak
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Hyun Ah Kang
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
49
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Huang Q, Wu ZH, Li WF, Guo R, Xu JS, Dang XQ, Ma ZG, Chen YP, Evans JD. Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Front Microbiol 2021; 12:645353. [PMID: 34149635 PMCID: PMC8206274 DOI: 10.3389/fmicb.2021.645353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Wen Feng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Shan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiao Qun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng Gang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yan Ping Chen
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D Evans
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|