1
|
Teh LS, Shalom SR, James I, Dolgova A, Chiel E, Dale C. Sodalis praecaptivus subsp. spalangiae subsp. nov., a nascent bacterial endosymbiont isolated from the parasitoid wasp, Spalangia cameroni. Int J Syst Evol Microbiol 2024; 74. [PMID: 39466691 DOI: 10.1099/ijsem.0.006552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
An endosymbiotic bacterium of the genus Sodalis, designated as strain HZT, was cultured from the parasitoid wasp Spalangia cameroni, which develops on the pupae of various host flies. The bacterium was detected in S. cameroni developed on houseflies, Musca domestica, in a poultry facility in Hazon, northern Israel. After culturing, this bacterium displayed no surface motility on Luria-Bertani agar and was rod-shaped and irregular in size, ~10-30 nm in diameter and 5-20 µm in length. Phylogenetic analyses revealed that strain HZT is closely related to Sodalis praecaptivus strain HST, a free-living species of the genus Sodalis that includes many insect endosymbionts. Although these bacteria maintain >98% sequence identity in shared genes, genomic characterization revealed that strain HZT has undergone substantial reductive evolution, such that it lacks many gene functions that are maintained in S. praecaptivus strain HST. Based on the results of phylogenetic, genomic and chemotaxonomic analyses, we propose that this endosymbiont should be classified in a new subspecies as S. praecaptivus subsp. spalangiae subsp. nov. The type strain for this new subspecies is HZT (=ATCC TSD-398T=NCIMB 15482T). The subspecies Sodalis praecaptivus subsp. praecaptivus strain HST is created automatically with the type strain ATCC BAA-2554T (=DSMZ 27494T).
Collapse
Affiliation(s)
- Li Szhen Teh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarit Rohkin Shalom
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Ian James
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Dolgova
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Hanke DM, Wang Y, Dagan T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res 2024; 52:7049-7062. [PMID: 38808675 PMCID: PMC11229322 DOI: 10.1093/nar/gkae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Evidence for gene non-functionalization due to mutational processes is found in genomes in the form of pseudogenes. Pseudogenes are known to be rare in prokaryote chromosomes, with the exception of lineages that underwent an extreme genome reduction (e.g. obligatory symbionts). Much less is known about the frequency of pseudogenes in prokaryotic plasmids; those are genetic elements that can transfer between cells and may encode beneficial traits for their host. Non-functionalization of plasmid-encoded genes may alter the plasmid characteristics, e.g. mobility, or their effect on the host. Analyzing 10 832 prokaryotic genomes, we find that plasmid genomes are characterized by threefold-higher pseudogene density compared to chromosomes. The majority of plasmid pseudogenes correspond to deteriorated transposable elements. A detailed analysis of enterobacterial plasmids furthermore reveals frequent gene non-functionalization events associated with the loss of plasmid self-transmissibility. Reconstructing the evolution of closely related plasmids reveals that non-functionalization of the conjugation machinery led to the emergence of non-mobilizable plasmid types. Examples are virulence plasmids in Escherichia and Salmonella. Our study highlights non-functionalization of core plasmid mobility functions as one route for the evolution of domesticated plasmids. Pseudogenes in plasmids supply insights into past transitions in plasmid mobility that are akin to transitions in bacterial lifestyle.
Collapse
Affiliation(s)
- Dustin M Hanke
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Schober I, Bunk B, Carril G, Freese HM, Ojeda N, Riedel T, Meier-Kolthoff JP, Göker M, Spröer C, Flores-Herrera PA, Nourdin-Galindo G, Gómez F, Cárdenas C, Vásquez-Ponce F, Labra A, Figueroa J, Olivares-Pacheco J, Nübel U, Sikorski J, Marshall SH, Overmann J. Ongoing diversification of the global fish pathogen Piscirickettsia salmonis through genetic isolation and transposition bursts. THE ISME JOURNAL 2023; 17:2247-2258. [PMID: 37853183 PMCID: PMC10689435 DOI: 10.1038/s41396-023-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.
Collapse
Affiliation(s)
- Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabriela Carril
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Patricio A Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Guillermo Nourdin-Galindo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constanza Cárdenas
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Felipe Vásquez-Ponce
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alvaro Labra
- Laboratorio de Patógenos Acuícolas, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge Olivares-Pacheco
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Milenio para la Investigación Colaborativa en Resistencia Antimicrobiana (MICROB-R), Santiago, Chile
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Casas-Sanchez A, Ramaswamy R, Perally S, Haines LR, Rose C, Aguilera-Flores M, Portillo S, Verbeelen M, Hussain S, Smithson L, Yunta C, Lehane MJ, Vaughan S, van den Abbeele J, Almeida IC, Boulanger MJ, Acosta-Serrano Á. The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector. PLoS Pathog 2023; 19:e1011269. [PMID: 36996244 PMCID: PMC10089363 DOI: 10.1371/journal.ppat.1011269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/11/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.
Collapse
Affiliation(s)
- Aitor Casas-Sanchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Samïrah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Susana Portillo
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | | | - Laura Smithson
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cristina Yunta
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sue Vaughan
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Igor C. Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Halter T, Hendrickx F, Horn M, Manzano-Marín A. A Novel Widespread MITE Element in the Repeat-Rich Genome of the Cardinium Endosymbiont of the Spider Oedothorax gibbosus. Microbiol Spectr 2022; 10:e0262722. [PMID: 36301108 PMCID: PMC9769881 DOI: 10.1128/spectrum.02627-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Free-living bacteria have evolved multiple times to become host-restricted endosymbionts. The transition from a free-living to a host-restricted lifestyle comes with a number of different genomic changes, including a massive loss of genes. In host-restricted endosymbionts, gene inactivation and genome reduction are facilitated by mobile genetic elements, mainly insertion sequences (ISs). ISs are small autonomous mobile elements, and one of, if not the most, abundant transposable elements in bacteria. Proliferation of ISs is common in some facultative endosymbionts, and is likely driven by the transmission bottlenecks, which increase the level of genetic drift. In this study, we present a manually curated genome annotation for a Cardinium endosymbiont of the dwarf spider Oedothorax gibbosus. Cardinium species are host-restricted endosymbionts that, similarly to ColbachiaWolbachia spp., include strains capable of manipulating host reproduction. Through the focus on mobile elements, the annotation revealed a rampant spread of ISs, extending earlier observations in other Cardinium genomes. We found that a large proportion of IS elements are pseudogenized, with many displaying evidence of recent inactivation. Most notably, we describe the lineage-specific emergence and spread of a novel IS-derived Miniature Inverted repeat Transposable Element (MITE), likely being actively maintained by intact copies of its parental IS982-family element. This study highlights the relevance of manual curation of these repeat-rich endosymbiont genomes for the discovery of novel MITEs, as well as the possible role these understudied elements might play in genome streamlining. IMPORTANCE Cardinium bacteria, a widespread symbiont lineage found across insects and nematodes, have been linked to reproductive manipulation of their hosts. However, the study of Cardinium has been hampered by the lack of comprehensive genomic resources. The high content of mobile genetic elements, namely, insertion sequences (ISs), has long complicated the analyses and proper annotations of these genomes. In this study, we present a manually curated annotation of the Cardinium symbiont of the spider Oedothorax gibbosus. Most notably, we describe a novel IS-like element found exclusively in this strain. We show that this mobile element likely evolved from a defective copy of its parental IS and then spread throughout the genome, contributing to the pseudogenization of several other mobile elements. We propose this element is likely being maintained by the intact copies of its parental IS element and that other similar elements in the genome could potentially follow this route.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
8
|
Exchange of Vitamin B 1 and Its Biosynthesis Intermediates Shapes the Composition of Synthetic Microbial Cocultures and Reveals Complexities of Nutrient Sharing. J Bacteriol 2022; 204:e0050321. [PMID: 35357164 DOI: 10.1128/jb.00503-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microbial communities occupy diverse niches in nature, and community members routinely exchange a variety of nutrients among themselves. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. In this study, we follow the exchange of vitamin B1 (thiamin) and its intermediates between microbes within synthetic cocultures of Escherichia coli and Vibrio anguillarum. Thiamin contains two moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), which are synthesized by distinct pathways using enzymes ThiC and ThiG, respectively, and then coupled by ThiE to form thiamin. Even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, we observed that cocultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG mutants are able to grow in a thiamin-deficient medium, whereas the ΔthiE-ΔthiG coculture does not. Further, the exchange of thiamin and its intermediates in V. anguillarum cocultures and in mixed cocultures of V. anguillarum and E. coli revealed that there exist specific patterns for thiamin metabolism and exchange among these microbes. Our findings show that HMP is shared more frequently than THZ, concurrent with previous observations that free HMP and HMP auxotrophy is commonly found in various environments. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. These findings collectively underscore the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities. IMPORTANCE Vitamin B1 (thiamin) is an essential nutrient for cellular metabolism. Microorganisms that are unable to synthesize thiamin either fully or in part exogenously obtain it from their environment or via exchanges with other microbial members in their community. In this study, we created synthetic microbial cocultures that rely on sharing thiamin and its biosynthesis intermediates and observed that some of them are preferentially exchanged. We also observed that the coculture composition is dictated by the production and/or availability of thiamin and its intermediates. Our studies with synthetic cocultures provide the molecular basis for understanding thiamin sharing among microorganisms and lay out broad guidelines for setting up synthetic microbial cocultures by using the exchange of an essential metabolite as their foundation.
Collapse
|
9
|
Bohr LL, Youngblom MA, Eldholm V, Pepperell CS. Genome reorganization during emergence of host-associated Mycobacterium abscessus. Microb Genom 2021; 7. [PMID: 34874249 PMCID: PMC8767326 DOI: 10.1099/mgen.0.000706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.
Collapse
Affiliation(s)
- Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison A Youngblom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Garber AI, Kupper M, Laetsch DR, Weldon SR, Ladinsky MS, Bjorkman PJ, McCutcheon JP. The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biol Evol 2021; 13:evab123. [PMID: 34061185 PMCID: PMC8331144 DOI: 10.1093/gbe/evab123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Maria Kupper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephanie R Weldon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
11
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
13
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
14
|
Gupta A, Nair S. Dynamics of Insect-Microbiome Interaction Influence Host and Microbial Symbiont. Front Microbiol 2020; 11:1357. [PMID: 32676060 PMCID: PMC7333248 DOI: 10.3389/fmicb.2020.01357] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Insects share an intimate relationship with their gut microflora and this symbiotic association has developed into an essential evolutionary outcome intended for their survival through extreme environmental conditions. While it has been clearly established that insects, with very few exceptions, associate with several microbes during their life cycle, information regarding several aspects of these associations is yet to be fully unraveled. Acquisition of bacteria by insects marks the onset of microbial symbiosis, which is followed by the adaptation of these bacterial species to the gut environment for prolonged sustenance and successful transmission across generations. Although several insect-microbiome associations have been reported and each with their distinctive features, diversifications and specializations, it is still unclear as to what led to these diversifications. Recent studies have indicated the involvement of various evolutionary processes operating within an insect body that govern the transition of a free-living microbe to an obligate or facultative symbiont and eventually leading to the establishment and diversification of these symbiotic relationships. Data from various studies, summarized in this review, indicate that the symbiotic partners, i.e., the bacteria and the insect undergo several genetic, biochemical and physiological changes that have profound influence on their life cycle and biology. An interesting outcome of the insect-microbe interaction is the compliance of the microbial partner to its eventual genome reduction. Endosymbionts possess a smaller genome as compared to their free-living forms, and thus raising the question what is leading to reductive evolution in the microbial partner. This review attempts to highlight the fate of microbes within an insect body and its implications for both the bacteria and its insect host. While discussion on each specific association would be too voluminous and outside the scope of this review, we present an overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association and speculate that, in the future, a better understanding of the nature of this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
15
|
Cervantes-Rivera R, Tronnet S, Puhar A. Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serotype 5a M90T and genome-wide transcriptional start site determination. BMC Genomics 2020; 21:285. [PMID: 32252626 PMCID: PMC7132871 DOI: 10.1186/s12864-020-6565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
Background Shigella is a Gram-negative facultative intracellular bacterium that causes bacillary dysentery in humans. Shigella invades cells of the colonic mucosa owing to its virulence plasmid-encoded Type 3 Secretion System (T3SS), and multiplies in the target cell cytosol. Although the laboratory reference strain S. flexneri serotype 5a M90T has been extensively used to understand the molecular mechanisms of pathogenesis, its complete genome sequence is not available, thereby greatly limiting studies employing high-throughput sequencing and systems biology approaches. Results We have sequenced, assembled, annotated and manually curated the full genome of S. flexneri 5a M90T. This yielded two complete circular contigs, the chromosome and the virulence plasmid (pWR100). To obtain the genome sequence, we have employed long-read PacBio DNA sequencing followed by polishing with Illumina RNA-seq data. This provides a new hybrid strategy to prepare gapless, highly accurate genome sequences, which also cover AT-rich tracks or repetitive sequences that are transcribed. Furthermore, we have performed genome-wide analysis of transcriptional start sites (TSS) and determined the length of 5′ untranslated regions (5′-UTRs) at typical culture conditions for the inoculum of in vitro infection experiments. We identified 6723 primary TSS (pTSS) and 7328 secondary TSS (sTSS). The S. flexneri 5a M90T annotated genome sequence and the transcriptional start sites are integrated into RegulonDB (http://regulondb.ccg.unam.mx) and RSAT (http://embnet.ccg.unam.mx/rsat/) databases to use their analysis tools in the S. flexneri 5a M90T genome. Conclusions We provide the first complete genome for S. flexneri serotype 5a, specifically the laboratory reference strain M90T. Our work opens the possibility of employing S. flexneri M90T in high-quality systems biology studies such as transcriptomic and differential expression analyses or in genome evolution studies. Moreover, the catalogue of TSS that we report here can be used in molecular pathogenesis studies as a resource to know which genes are transcribed before infection of host cells. The genome sequence, together with the analysis of transcriptional start sites, is also a valuable tool for precise genetic manipulation of S. flexneri 5a M90T. Further, we present a new hybrid strategy to prepare gapless, highly accurate genome sequences. Unlike currently used hybrid strategies combining long- and short-read DNA sequencing technologies to maximize accuracy, our workflow using long-read DNA sequencing and short-read RNA sequencing provides the added value of using non-redundant technologies, which yield distinct, exploitable datasets.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Sophie Tronnet
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden. .,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
16
|
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 2019; 116:22219-22228. [PMID: 31611373 DOI: 10.1073/pnas.1909844116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Collapse
|
17
|
Hall RJ, Flanagan LA, Bottery MJ, Springthorpe V, Thorpe S, Darby AC, Wood AJ, Thomas GH. A Tale of Three Species: Adaptation of Sodalis glossinidius to Tsetse Biology, Wigglesworthia Metabolism, and Host Diet. mBio 2019; 10:e02106-18. [PMID: 30602581 PMCID: PMC6315101 DOI: 10.1128/mbio.02106-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
The tsetse fly is the insect vector for the Trypanosoma brucei parasite, the causative agent of human African trypanosomiasis. The colonization and spread of the trypanosome correlate positively with the presence of a secondary symbiotic bacterium, Sodalis glossinidius The metabolic requirements and interactions of the bacterium with its host are poorly understood, and herein we describe a metabolic model of S. glossinidius metabolism. The model enabled the design and experimental verification of a defined medium that supports S. glossinidius growth ex vivo This has been used subsequently to analyze in vitro aspects of S. glossinidius metabolism, revealing multiple unique adaptations of the symbiont to its environment. Continued dependence on a sugar, and the importance of the chitin monomer N-acetyl-d-glucosamine as a carbon and energy source, suggests adaptation to host-derived molecules. Adaptation to the amino acid-rich blood diet is revealed by a strong dependence on l-glutamate as a source of carbon and nitrogen and by the ability to rescue a predicted l-arginine auxotrophy. Finally, the selective loss of thiamine biosynthesis, a vitamin provided to the host by the primary symbiont Wigglesworthia glossinidia, reveals an intersymbiont dependence. The reductive evolution of S. glossinidius to exploit environmentally derived metabolites has resulted in multiple weaknesses in the metabolic network. These weaknesses may become targets for reagents that inhibit S. glossinidius growth and aid the reduction of trypanosomal transmission.IMPORTANCE Human African trypanosomiasis is caused by the Trypanosoma brucei parasite. The tsetse fly vector is of interest for its potential to prevent disease spread, as it is essential for T. brucei life cycle progression and transmission. The tsetse's mutualistic endosymbiont Sodalis glossinidius has a link to trypanosome establishment, providing a disease control target. Here, we describe a new, experimentally verified model of S. glossinidius metabolism. This model has enabled the development of a defined growth medium that was used successfully to test aspects of S. glossinidius metabolism. We present S. glossinidius as uniquely adapted to life in the tsetse, through its reliance on the blood diet and host-derived sugars. Additionally, S. glossinidius has adapted to the tsetse's obligate symbiont Wigglesworthia glossinidia by scavenging a vitamin it produces for the insect. This work highlights the use of metabolic modeling to design defined growth media for symbiotic bacteria and may provide novel inhibitory targets to block trypanosome transmission.
Collapse
Affiliation(s)
- Rebecca J Hall
- Department of Biology, University of York, York, United Kingdom
| | | | | | | | - Stephen Thorpe
- Department of Biology, University of York, York, United Kingdom
| | - Alistair C Darby
- University of Liverpool, Institute of Integrative Biology, Liverpool, United Kingdom
| | - A Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
18
|
Avni E, Montoya D, Lopez D, Modlin R, Pellegrini M, Snir S. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes-The Mycobacterium leprae case. PLoS One 2018; 13:e0204322. [PMID: 30383852 PMCID: PMC6211624 DOI: 10.1371/journal.pone.0204322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pseudogenes are non-functional sequences in the genome with homologous sequences that are functional (i.e. genes). They are abundant in eukaryotes where they have been extensively investigated, while in prokaryotes they are significantly scarcer and less well studied. Here we conduct a comprehensive analysis of the evolution of orthologs of Mycobacterium leprae pseudogenes in prokaryotes. The leprosy pathogen M. leprae is of particular interest since it contains an unusually large number of pseudogenes, comprising approximately 40% of its entire genome. The analysis is conducted in both broad and narrow phylogenetic ranges. RESULTS We have developed an informatics-based approach to characterize the evolution of pseudogenes. This approach combines tools from phylogenomics, genomics, and transcriptomics. The results we obtain are used to assess the contributions of two mechanisms for pseudogene formation: failed horizontal gene transfer events and disruption of native genes. CONCLUSIONS We conclude that, although it was reported that in most bacteria the former is most likely responsible for the majority of pseudogenization events, in mycobacteria, and in particular in M. leprae with its exceptionally high pseudogene numbers, the latter predominates. We believe that our study sheds new light on the evolution of pseudogenes in bacteria, by utilizing new methodologies that are applied to the unusually abundant M. leprae pseudogenes and their orthologs.
Collapse
Affiliation(s)
- Eliran Avni
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dennis Montoya
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - David Lopez
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Robert Modlin
- Dept. of Microbiology, Immunology and Molecular Genetics, and Division of Dermatology, David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Matteo Pellegrini
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Sagi Snir
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biol Evol 2018; 9:2893-2910. [PMID: 29036401 PMCID: PMC5737371 DOI: 10.1093/gbe/evx202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Spain
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Konrad Dettner
- Department of Animal Ecology II, University of Bayreuth, Germany
| | | |
Collapse
|
20
|
Betelman K, Caspi-Fluger A, Shamir M, Chiel E. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids. FEMS Microbiol Ecol 2018; 93:4097188. [PMID: 28957585 DOI: 10.1093/femsec/fix107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Facultative bacterial symbionts are widespread among insects and have diverse effects on their biology. Here, we focused on bacterial symbionts of three ecologically and economically important filth flies parasitoid species-Spalangia cameroni, Spalangia endius and Muscidifurax raptor.
Both Spalangia species harbored a Sodalis bacterium that is closely related to Sodalis praecaptivus (a free-living bacterium) and to Sodalis symbionts of weevils. This is the only case of Sodalis infection in the important order Hymenoptera. We also found, for the first time in this parasitoid guild, a Rickettsia infecting the two Spalangia spp., albeit in much higher prevalence in S. cameroni. Molecular and phylogenetic analyses revealed that it is closely related to Rickettsia felis and other Rickettsia species from the 'transitional' group. All three parasitoid species harbored Wolbachia. Using multi-locus sequence typing, we found that M. raptor harbors a single Wolbachia strain whereas the Spalangia spp. have multiple strains. By controlled crossings, we found that Wolbachia infection in S. endius causes incomplete cytoplasmic incompatibility and increased longevity, thereby promoting Wolbachia's spread. In contrast, no effects of Wolbachia on the reproduction and longevity of M. raptor were found. This study underscores the diversity and nature of symbiotic interactions between microbes and insects.
Collapse
Affiliation(s)
- Kfir Betelman
- Department of Biology and Environment, University of Haifa-Oranim, Oranim College, Qiryat Amal Rd., Tivon 3600600, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Ayelet Caspi-Fluger
- Department of Biology and Environment, University of Haifa-Oranim, Oranim College, Qiryat Amal Rd., Tivon 3600600, Israel
| | - Maayan Shamir
- Department of Biology and Environment, University of Haifa-Oranim, Oranim College, Qiryat Amal Rd., Tivon 3600600, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Oranim College, Qiryat Amal Rd., Tivon 3600600, Israel
| |
Collapse
|
21
|
Šochová E, Husník F, Nováková E, Halajian A, Hypša V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 2017; 5:e4099. [PMID: 29250466 PMCID: PMC5729840 DOI: 10.7717/peerj.4099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Collapse
Affiliation(s)
- Eva Šochová
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Filip Husník
- Department of Molecular Biology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Václav Hypša
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
22
|
Kazamia E, Helliwell KE, Purton S, Smith AG. How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes. Ecol Lett 2017; 19:810-22. [PMID: 27282316 PMCID: PMC5103174 DOI: 10.1111/ele.12615] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/03/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co‐cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large‐scale data sets, which can identify persistently co‐occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species’ unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging‐to‐Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.
Collapse
Affiliation(s)
- Elena Kazamia
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alison Gail Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
23
|
Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 2016; 7:13155. [PMID: 27727237 PMCID: PMC5062602 DOI: 10.1038/ncomms13155] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. Viruses commonly exchange genetic material with their hosts, but not with species from other domains of life. Here, the authors find that the bacteriophage WO of Wolbachia contains eukaryotic-like genes, implicating lateral genetic transfer between eukaryotes and viruses infecting bacteria.
Collapse
|
24
|
Latorre A, Manzano-Marín A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci 2016; 1389:52-75. [DOI: 10.1111/nyas.13222] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
- Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública; València Spain
| | - Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
| |
Collapse
|
25
|
Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, Eberl L, Carlier A. Evidence of horizontal gene transfer between obligate leaf nodule symbionts. THE ISME JOURNAL 2016; 10:2092-105. [PMID: 26978165 PMCID: PMC4989318 DOI: 10.1038/ismej.2016.27] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 01/06/2023]
Abstract
Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Steven Dessein
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Karl Gademann
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurelien Carlier
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratory of Microbiology, Ghent University, 9000 Belgium, Switzerland
| |
Collapse
|
26
|
Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol 2016; 82:3185-97. [PMID: 26994086 PMCID: PMC4959230 DOI: 10.1128/aem.00282-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights into how new symbioses form and how this lifestyle is shaping the symbiont genome.
Collapse
|
27
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet 2015; 31:475-82. [DOI: 10.1016/j.tig.2015.05.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/21/2022]
|
29
|
Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies. Appl Environ Microbiol 2015; 81:6189-99. [PMID: 26150448 DOI: 10.1128/aem.01487-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host's "milk glands" or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, "Candidatus Arsenophonus melophagi," we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, "Ca. Arsenophonus melophagi" is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands.
Collapse
|
30
|
"Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness. Appl Environ Microbiol 2015; 81:5375-86. [PMID: 26025907 DOI: 10.1128/aem.00553-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 01/31/2023] Open
Abstract
Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between "Wigglesworthia morsitans" (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control.
Collapse
|
31
|
Chari A, Oakeson KF, Enomoto S, Jackson DG, Fisher MA, Dale C. Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. Int J Syst Evol Microbiol 2015; 65:1400-1405. [PMID: 25782768 DOI: 10.1099/ijs.0.000091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A Gram-stain-negative bacterium, isolated from a human wound was previously found to share an unprecedentedly close relationship with Sodalis glossinidius and other members of the Sodalis-allied clade of insect symbionts. This relationship was inferred from sequence analysis of the 16S rRNA gene and genomic comparisons and suggested the strain belonged to a novel species. Biochemical and genetic analyses supported this suggestion and demonstrated that the organism has a wide repertoire of metabolic properties, which is consistent with the presence of a relatively large gene inventory. Among members of the Sodalis-allied clade, this is the first representative that has sufficient metabolic capabilities to sustain growth in minimal media. On the basis of the results of this study, we propose that this organism be classified as a representative of a novel species, Sodalis praecaptivus sp. nov. (type strain HS(T) = DSM 27494(T) = ATCC BAA-2554(T)).
Collapse
Affiliation(s)
- Abhishek Chari
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - D Grant Jackson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84132, USA.,Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
Manzano-Marín A, Latorre A. Settling down: the genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life. Genome Biol Evol 2014; 6:1683-98. [PMID: 24951564 PMCID: PMC4122931 DOI: 10.1093/gbe/evu133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrthosiphon pisum, in Cinara cedri it has established a co-obligate endosymbiotic consortium along with B. aphidicola to fulfill the aphid’s nutritional requirements. The state of this association in C. tujafilina, an aphid belonging to the same subfamily (Lachninae) that C. cedri, remained unknown. Here, we report the genome of S. symbiotica strain SCt-VLC from the aphid C. tujafilina. While being phylogenetically and genomically very closely related to the facultative endosymbiont S. symbiotica from the aphid A. pisum, it shows a variety of metabolic, genetic, and architectural features, which point toward this endosymbiont being one step closer to an obligate intracellular one. We also describe in depth the process of genome rearrangements suffered by S. symbiotica and the role mobile elements play in gene inactivations. Finally, we postulate the supply to the host of the essential riboflavin (vitamin B2) as key to the establishment of S. symbiotica as a co-obligate endosymbiont in the aphids belonging to the subfamily Lachninane.
Collapse
Affiliation(s)
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, SpainUnidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain
| |
Collapse
|
33
|
The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: Possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness? INFECTION GENETICS AND EVOLUTION 2014; 24:41-56. [DOI: 10.1016/j.meegid.2014.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 01/30/2023]
|
34
|
Hamidou Soumana I, Tchicaya B, Loriod B, Rihet P, Geiger A. Identification of overexpressed genes in Sodalis glossinidius inhabiting trypanosome-infected self-cured tsetse flies. Front Microbiol 2014; 5:255. [PMID: 24904565 PMCID: PMC4033830 DOI: 10.3389/fmicb.2014.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/09/2014] [Indexed: 02/03/2023] Open
Abstract
Sodalis glossinidius, one of the three tsetse fly maternally inherited symbionts, was previously shown to favor fly infection by trypanosomes, the parasites causing human sleeping sickness. Among a population of flies taking a trypanosome-infected blood meal, only a few individuals will acquire the parasite; the others will escape infection and be considered as refractory to trypanosome infection. The aim of the work was to investigate whether fly refractoriness could be associated with specific Sodalis gene expression. The transcriptome of S. glossinidius harbored by flies that were fed either with a non-infected blood meal (control) or with a trypanosome-infected meal but that did not develop infection were analyzed, using microarray technology, and compared. The analysis using the microarray procedure yielded 17 genes that were found to have a significant differential expression between the two groups. Interestingly, all these genes were overexpressed in self-cured (refractory) flies. Further analysis of functional annotation of these genes indicated that most associated biological process terms were related to metabolic and biosynthetic processes as well as to oxido-reduction mechanisms. These results evidence the occurrence of molecular crosstalk between the different partners, induced by the passage of the trypanosomes through the fly's gut even though the parasites were unable to establish in the gut and to develop a permanent infection.
Collapse
Affiliation(s)
| | | | - Béatrice Loriod
- INSERM, UMR1090 TAGC Marseille, France ; Biology Department, Aix-Marseille University Marseille, France
| | - Pascal Rihet
- INSERM, UMR1090 TAGC Marseille, France ; Biology Department, Aix-Marseille University Marseille, France
| | | |
Collapse
|
35
|
Schneider DI, Klasson L, Lind AE, Miller WJ. More than fishing in the dark: PCR of a dispersed sequence produces simple but ultrasensitive Wolbachia detection. BMC Microbiol 2014; 14:121. [PMID: 24885505 PMCID: PMC4029913 DOI: 10.1186/1471-2180-14-121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities. Wolbachia, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase Chain Reaction (PCR). These low-titer infections can be reliably detected by combining PCR with DNA hybridization, but less elaborate strategies based on end-point PCR alone have proven less sensitive or less general. RESULTS We introduce a multicopy PCR target that allows fast and reliable detection of A-supergroup Wolbachia--even at low infection titers--with standard end-point PCR. The target is a multicopy motif (designated ARM: A-supergroup repeat motif) discovered in the genome of wMel (the Wolbachia in Drosophila melanogaster). ARM is found in at least seven other Wolbachia A-supergroup strains infecting various Drosophila, the wasp Muscidifurax and the tsetse fly Glossina. We demonstrate that end-point PCR targeting ARM can reliably detect both high- and low-titer Wolbachia infections in Drosophila, Glossina and interspecific hybrids. CONCLUSIONS Simple end-point PCR of ARM facilitates detection of low-titer Wolbachia A-supergroup infections. Detecting these infections previously required more elaborate procedures. Our ARM target seems to be a general feature of Wolbachia A-supergroup genomes, unlike other multicopy markers such as insertion sequences (IS).
Collapse
Affiliation(s)
- Daniela I Schneider
- Laboratory of Genome Dynamics, Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 10, Vienna 1090, Austria
| | - Lisa Klasson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala, Sweden
| | - Anders E Lind
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala, Sweden
| | - Wolfgang J Miller
- Laboratory of Genome Dynamics, Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 10, Vienna 1090, Austria
| |
Collapse
|
36
|
Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Crit Rev Microbiol 2014; 42:144-57. [PMID: 24766052 DOI: 10.3109/1040841x.2014.907235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain of "antimicrobial resistance" and "adaptive virulence" has been the dominant view of Pseudomonas aeruginosa (Pa) in cystic fibrosis (CF) in the progressively damaged host airway over the course of this chronic infection. However, the pathogenic effects of CF airway-adapted Pa strains are notably reduced. We propose that CF Pa and other bacterial cohabitants undergo host adaptation which resembles the changes found in bacterial symbionts in animal hosts. Development of clonally selected and intraspecific isogenic Pa strains which display divergent colony morphology, growth rate, auxotrophy, and antibiotic susceptibility in vitro suggests an adaptive sequence of infective exploitation-parasitism-symbiotic evolution driven by host defenses. Most importantly, the emergence of CF pseudomonal auxotrophy is frequently associated with a few specific amino acids. The selective retention or loss of specific amino acid biosynthesis in CF-adapted Pa reflects bacterium-host symbiosis and coevolution during chronic infection, not nutrient availability. This principle also argues against the long-standing concept of dietary availability leading to evolution of essential amino acid requirements in humans. A novel model of pseudomonal adaptation through multicellular bacterial syntrophy is proposed to explain early events in bacterial gene decay and decreased (not increased) virulence due to symbiotic response to host defense.
Collapse
Affiliation(s)
- Xuan Qin
- a Microbiology Laboratory, Seattle Children's Hospital , and.,b Department of Laboratory Medicine , University of Washington , School of Medicine Seattle , Washington , USA
| |
Collapse
|
37
|
An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix. PLoS Negl Trop Dis 2014; 8:e2691. [PMID: 24763256 PMCID: PMC3998921 DOI: 10.1371/journal.pntd.0002691] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022] Open
Abstract
Background Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood. In order to better comprehend the molecular events surrounding trypanosome penetration of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism. Methods PMs from male teneral (young, unfed) flies were dissected, solubilised in urea/SDS buffer and the proteins precipitated with cold acetone/TCA. The PM proteins were either subjected to an in-solution tryptic digestion or fractionated on 1D SDS-PAGE, and the resulting bands digested using trypsin. The tryptic fragments from both preparations were purified and analysed by LC-MS/MS. Results Overall, nearly 300 proteins were identified from both analyses, several of those containing signature Chitin Binding Domains (CBD), including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, 27 proteins from the tsetse secondary endosymbiont, Sodalis glossinidius, were also identified, suggesting this bacterium is probably in close association with the tsetse PM. Conclusion To our knowledge this is the first report on the protein composition of teneral G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology and may help identify potential molecular targets to block trypanosome development within the tsetse. African trypanosomes are transmitted by the haematophagous tsetse vector. For transmission to occur, bloodmeal ingested trypanosomes must overcome numerous barriers imposed by the fly. The first obstacle is the crossing of peritrophic matrix (PM), a cell-free structure that protects the midgut epithelial cells from coming under attack by the hosts' digestive enzymes, aids in water retention and helps prevent harmful pathogens from establishing a systemic infection. Trypanosomes cross the tsetse PM at least twice in their development but how they do so remains to be elucidated. Despite being a recognised barrier to trypanosome infections, there is limited knowledge of the molecular components of the tsetse PM. In this study we identified nearly 300 PM proteins using two mass spectrometry approaches. Several of the identified components were peritrophins, which are a key group of glycoproteins essential for PM integrity. In addition, we detected proteins from Sodalis glossinidius, a commensal bacterium linked to increased susceptibility to trypanosome infection in tsetse. Our study provides the first comprehensive identification of proteins from the tsetse PM, which provides a starting point for research into potential targets for vector control.
Collapse
|
38
|
Santos-Garcia D, Rollat-Farnier PA, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol Evol 2014; 6:1013-30. [PMID: 24723729 PMCID: PMC4007549 DOI: 10.1093/gbe/evu077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors' gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Pierre-Antoine Rollat-Farnier
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Villeurbanne, France
- BAMBOO Research team, INRIA Grenoble, Rhône-Alpes, France
| | - Francisco Beitia
- Instituto Valenciano de Investigaciones Agrarias, Unidad Asociada de Entomología IVIA/CIB-CSIC, Valencia, Spain
| | - Einat Zchori-Fein
- Department of Entomology, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Fabrice Vavre
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Villeurbanne, France
- BAMBOO Research team, INRIA Grenoble, Rhône-Alpes, France
| | - Laurence Mouton
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud (FISABIO-Salud Pública and Universitat de València), Valencia, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud (FISABIO-Salud Pública and Universitat de València), Valencia, Spain
- *Corresponding author: E-mail: ;
| | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud (FISABIO-Salud Pública and Universitat de València), Valencia, Spain
- *Corresponding author: E-mail: ;
| |
Collapse
|
39
|
Abstract
Leprosy is a chronic infection of the skin and nerves caused by Mycobacterium leprae and the newly discovered Mycobacterium lepromatosis. Human leprosy has been documented for millennia in ancient cultures. Recent genomic studies of worldwide M. leprae strains have further traced it along global human dispersals during the past ∼ 100,000 years. Because leprosy bacilli are strictly intracellular, we wonder how long humans have been affected by this disease-causing parasite. Based on recently published data on M. leprae genomes, M. lepromatosis discovery, leprosy bacilli evolution, and human evolution, it is most likely that the leprosy bacilli started parasitic evolution in humans or early hominids millions of years ago. This makes leprosy the oldest human-specific infection. The unique adaptive evolution has likely molded the indolent growth and evasion from human immune defense that may explain leprosy pathogenesis. Accordingly, leprosy can be viewed as a natural consequence of a long parasitism. The burden of leprosy may have affected minor selection on human genetic polymorphisms.
Collapse
Affiliation(s)
- Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States America
- * E-mail:
| | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
40
|
Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME JOURNAL 2014; 8:1237-46. [PMID: 24401857 DOI: 10.1038/ismej.2013.235] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/08/2022]
Abstract
Bacterial symbionts that undergo long-term maternal transmission experience elevated fixation of deleterious mutations, resulting in massive loss of genes and changes in gene sequences that appear to limit efficiency of gene products. Potentially, this dwindling of symbiont functionality impacts hosts that depend on these bacteria for nutrition. One evolutionary escape route is the acquisition of a novel symbiont with a robust genome and metabolic capabilities. Such an acquisition has occurred in an ancestor of Philaenus spumarius, the meadow spittlebug (Insecta: Cercopoidea), which has replaced its ancient association with the tiny genome symbiont Zinderia insecticola (Betaproteobacteria) with an association with a symbiont related to Sodalis glossinidius (Gammaproteobacteria). Spittlebugs feed exclusively on xylem sap, a diet that is low both in essential amino acids and in sugar or other substrates for energy production. The new symbiont genome has undergone proliferation of mobile elements resulting in many gene inactivations; nonetheless, it has selectively maintained genes replacing functions of its predecessor for amino-acid biosynthesis. Whereas ancient symbiont partners typically retain perfectly complementary sets of amino-acid biosynthetic pathways, the novel symbiont introduces some redundancy as it retains some pathways also present in the partner symbionts (Sulcia muelleri). Strikingly, the newly acquired Sodalis-like symbiont retains genes underlying efficient routes of energy production, including a complete TCA cycle, potentially relaxing the severe energy limitations of the xylem-feeding hosts. Although evolutionary replacements of ancient symbionts are infrequent, they potentially enable evolutionary and ecological novelty by conferring novel metabolic capabilities to host lineages.
Collapse
|
41
|
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76-93. [PMID: 24407854 PMCID: PMC3914690 DOI: 10.1093/gbe/evt210] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
Collapse
Affiliation(s)
- Kelly F. Oakeson
- Department of Biology, University of Utah
- *Corresponding author: E-mail:
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | | | | - Cindy Hamil
- Department of Human Genetics, University of Utah
| | - Alex Aoyagi
- Department of Human Genetics, University of Utah
| | - Brett Duval
- Department of Human Genetics, University of Utah
| | | | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Agnès Vallier
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | | | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | | | - Abdelaziz Heddi
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | - Colin Dale
- Department of Biology, University of Utah
| |
Collapse
|
42
|
Estes AM, Hearn DJ, Snell-Rood EC, Feindler M, Feeser K, Abebe T, Dunning Hotopp JC, Moczek AP. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS One 2013; 8:e79061. [PMID: 24223880 PMCID: PMC3815100 DOI: 10.1371/journal.pone.0079061] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 01/30/2023] Open
Abstract
Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The transmission of the dung beetle microbiome highlights the maintenance and likely importance of this newly-characterized bacterial community.
Collapse
Affiliation(s)
- Anne M. Estes
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - David J. Hearn
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
- J. Craig Venter Institute, Inc., Plant Genomics, Rockville, Maryland, United States of America,
| | - Emilie C. Snell-Rood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Michele Feindler
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Karla Feeser
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Tselotie Abebe
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
43
|
Wang J, Weiss BL, Aksoy S. Tsetse fly microbiota: form and function. Front Cell Infect Microbiol 2013; 3:69. [PMID: 24195062 PMCID: PMC3810596 DOI: 10.3389/fcimb.2013.00069] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
Tsetse flies are the primary vectors of African trypanosomes, which cause Human and Animal African trypanosomiasis in 36 countries in sub-Saharan Africa. These flies have also established symbiotic associations with bacterial and viral microorganisms. Laboratory-reared tsetse flies harbor up to four vertically transmitted organisms—obligate Wigglesworthia, commensal Sodalis, parasitic Wolbachia and Salivary Gland Hypertrophy Virus (SGHV). Field-captured tsetse can harbor these symbionts as well as environmentally acquired commensal bacteria. This microbial community influences several aspects of tsetse's physiology, including nutrition, fecundity and vector competence. This review provides a detailed description of tsetse's microbiome, and describes the physiology underlying host-microbe, and microbe-microbe, interactions that occur in this fly.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health New Haven, CT, USA
| | | | | |
Collapse
|
44
|
Hussa EA, Goodrich-Blair H. It Takes a Village: Ecological and Fitness Impacts of Multipartite Mutualism. Annu Rev Microbiol 2013; 67:161-78. [DOI: 10.1146/annurev-micro-092412-155723] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elizabeth A. Hussa
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| |
Collapse
|
45
|
Helliwell KE, Wheeler GL, Smith AG. Widespread decay of vitamin-related pathways: coincidence or consequence? Trends Genet 2013; 29:469-78. [DOI: 10.1016/j.tig.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/09/2013] [Accepted: 03/25/2013] [Indexed: 02/03/2023]
|
46
|
Abstract
Microbial symbionts can be instrumental to the evolutionary success of their hosts. Here, we discuss medically significant tsetse flies (Diptera: Glossinidae), a group comprised of over 30 species, and their use as a valuable model system to study the evolution of the holobiont (i.e., the host and associated microbes). We first describe the tsetse microbiota, which, despite its simplicity, harbors a diverse range of associations. The maternally transmitted microbes consistently include two Gammaproteobacteria, the obligate mutualists Wigglesworthia spp. and the commensal Sodalis glossinidius, along with the parasitic Alphaproteobacteria Wolbachia. These associations differ in their establishment times, making them unique and distinct from previously characterized symbioses, where multiple microbial partners have associated with their host for a significant portion of its evolution. We then expand into discussing the functional roles and intracommunity dynamics within this holobiont, which enhances our understanding of tsetse biology to encompass the vital functions and interactions of the microbial community. Potential disturbances influencing the tsetse microbiome, including salivary gland hypertrophy virus and trypanosome infections, are highlighted. While previous studies have described evolutionary consequences of host association for symbionts, the initial steps facilitating their incorporation into a holobiont and integration of partner biology have only begun to be explored. Research on the tsetse holobiont will contribute to the understanding of how microbial metabolic integration and interdependency initially may develop within hosts, elucidating mechanisms driving adaptations leading to cooperation and coresidence within the microbial community. Lastly, increased knowledge of the tsetse holobiont may also contribute to generating novel African trypanosomiasis disease control strategies.
Collapse
|
47
|
Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc Biol Sci 2013. [PMID: 23193123 DOI: 10.1098/rspb.2012.2103] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Terrestrial arthropods are often infected with heritable bacterial symbionts, which may themselves be infected by bacteriophages. However, what role, if any, bacteriophages play in the regulation and maintenance of insect-bacteria symbioses is largely unknown. Infection of the aphid Acyrthosiphon pisum by the bacterial symbiont Hamiltonella defensa confers protection against parasitoid wasps, but only when H. defensa is itself infected by the phage A. pisum secondary endosymbiont (APSE). Here, we use a controlled genetic background and correlation-based assays to show that loss of APSE is associated with up to sevenfold increases in the intra-aphid abundance of H. defensa. APSE loss is also associated with severe deleterious effects on aphid fitness: aphids infected with H. defensa lacking APSE have a significantly delayed onset of reproduction, lower weight at adulthood and half as many total offspring as aphids infected with phage-harbouring H. defensa, indicating that phage loss can rapidly lead to the breakdown of the defensive symbiosis. Our results overall indicate that bacteriophages play critical roles in both aphid defence and the maintenance of heritable symbiosis.
Collapse
Affiliation(s)
- S R Weldon
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
48
|
Boucias DG, Kariithi HM, Bourtzis K, Schneider DI, Kelley K, Miller WJ, Parker AG, Abd-Alla AMM. Transgenerational transmission of the Glossina pallidipes hytrosavirus depends on the presence of a functional symbiome. PLoS One 2013; 8:e61150. [PMID: 23613801 PMCID: PMC3632566 DOI: 10.1371/journal.pone.0061150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
The vertically transmitted endosymbionts (Sodalis glossinidius and Wigglesworthia glossinidia) of the tsetse fly (Diptera: Glossinidae) are known to supplement dietary deficiencies and modulate the reproductive fitness and the defense system of the fly. Some tsetse fly species are also infected with the bacterium, Wolbachia and with the Glossina hytrosavirus (GpSGHV). Laboratory-bred G. pallidipes exhibit chronic asymptomatic and acute symptomatic GpSGHV infection, with the former being the most common in these colonies. However, under as yet undefined conditions, the asymptomatic state can convert to the symptomatic state, leading to detectable salivary gland hypertrophy (SGH(+)) syndrome. In this study, we investigated the interplay between the bacterial symbiome and GpSGHV during development of G. pallidipes by knocking down the symbionts with antibiotic. Intrahaemocoelic injection of GpSGHV led to high virus titre (10(9) virus copies), but was not accompanied by either the onset of detectable SGH(+), or release of detectable virus particles into the blood meals during feeding events. When the F1 generations of GpSGHV-challenged mothers were dissected within 24 h post-eclosion, SGH(+) was observed to increase from 4.5% in the first larviposition cycle to >95% in the fourth cycle. Despite being sterile, these F1 SGH(+) progeny mated readily. Removal of the tsetse symbiome, however, suppressed transgenerational transfer of the virus via milk secretions and blocked the ability of GpSGHV to infect salivary glands of the F1 progeny. Whereas GpSGHV infects and replicates in salivary glands of developing pupa, the virus is unable to induce SGH(+) within fully differentiated adult salivary glands. The F1 SGH(+) adults are responsible for the GpSGHV-induced colony collapse in tsetse factories. Our data suggest that GpSGHV has co-evolved with the tsetse symbiome and that the symbionts play key roles in the virus transmission from mother to progeny.
Collapse
Affiliation(s)
- Drion G Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, Weiss RB, Fisher M, Dale C. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet 2012; 8:e1002990. [PMID: 23166503 PMCID: PMC3499248 DOI: 10.1371/journal.pgen.1002990] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023] Open
Abstract
Despite extensive study, little is known about the origins of the mutualistic bacterial endosymbionts that inhabit approximately 10% of the world's insects. In this study, we characterized a novel opportunistic human pathogen, designated “strain HS,” and found that it is a close relative of the insect endosymbiont Sodalis glossinidius. Our results indicate that ancestral relatives of strain HS have served as progenitors for the independent descent of Sodalis-allied endosymbionts found in several insect hosts. Comparative analyses indicate that the gene inventories of the insect endosymbionts were independently derived from a common ancestral template through a combination of irreversible degenerative changes. Our results provide compelling support for the notion that mutualists evolve from pathogenic progenitors. They also elucidate the role of degenerative evolutionary processes in shaping the gene inventories of symbiotic bacteria at a very early stage in these mutualistic associations. Many insects harbor symbiotic bacteria that perform diverse functions within their hosts. However, the origins of these associations have been difficult to define. In this study we isolate a novel bacterium from a human infection and show that this bacterium is a close relative of the Sodalis-allied clade of insect symbionts. Comparative genomic analyses reveal that this organism maintains many genes that have been inactivated and lost independently in derived insect symbionts as a result of rapid genome degeneration. Our work also shows that recently derived Sodalis-allied symbionts maintain a significant population of “cryptic” pseudogenes that are assumed to have no beneficial function in the symbiosis but have not yet accumulated mutations that disrupt their translation. Taken together, our results show that genome degeneration proceeds rapidly following the onset of symbiosis. They also highlight the potential for diverse insect taxa to acquire closely related insect symbionts as a consequence of vectoring bacterial pathogens to plants and animals.
Collapse
Affiliation(s)
- Adam L Clayton
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Factors behind junk DNA in bacteria. Genes (Basel) 2012; 3:634-50. [PMID: 24705080 PMCID: PMC3899985 DOI: 10.3390/genes3040634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022] Open
Abstract
Although bacterial genomes have been traditionally viewed as being very compact, with relatively low amounts of repetitive and non-coding DNA, this view has dramatically changed in recent years. The increase of available complete bacterial genomes has revealed that many species present abundant repetitive DNA (i.e., insertion sequences, prophages or paralogous genes) and that many of these sequences are not functional but can have evolutionary consequences as concerns the adaptation to specialized host-related ecological niches. Comparative genomics analyses with close relatives that live in non-specialized environments reveal the nature and fate of this bacterial junk DNA. In addition, the number of insertion sequences and pseudogenes, as well as the size of the intergenic regions, can be used as markers of the evolutionary stage of a genome.
Collapse
|