1
|
Li C, Cao S, Yang Z, Watkins CB, Wang K. Editorial: The physiology, molecular biology and biochemistry in ripening and stored fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1296816. [PMID: 37841631 PMCID: PMC10570823 DOI: 10.3389/fpls.2023.1296816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Chunhong Li
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Christopher B. Watkins
- Horticulture Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kaituo Wang
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing, China
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
2
|
Encarnação M, David H, Coutinho MF, Moreira L, Alves S. MicroRNA Profile, Putative Diagnostic Biomarkers and RNA-Based Therapies in the Inherited Lipid Storage Disease Niemann-Pick Type C. Biomedicines 2023; 11:2615. [PMID: 37892989 PMCID: PMC10604387 DOI: 10.3390/biomedicines11102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Lipids are essential for cellular function and are tightly controlled at the transcriptional and post-transcriptional levels. Dysregulation of these pathways is associated with vascular diseases, diabetes, cancer, and several inherited metabolic disorders. MicroRNAs (miRNAs), in particular, are a family of post-transcriptional gene repressors associated with the regulation of many genes that encode proteins involved in multiple lipid metabolism pathways, thereby influencing their homeostasis. Thus, this class of non-coding RNAs (ncRNAs) has emerged as a promising therapeutic target for the treatment of lipid-related metabolic alterations. Most of these miRNAs act at an intracellular level, but in the past few years, a role for miRNAs as intercellular signaling molecules has also been uncovered since they can be transported in bodily fluids and used as potential biomarkers of lipid metabolic alterations. In this review, we point out the current knowledge on the miRNA signature in a lysosomal storage disorder associated with lipid dysfunction, Niemann-Pick type C, and discuss the potential use of miRNAs as biomarkers and therapeutic targets for RNA-based therapies.
Collapse
Affiliation(s)
- Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Deciphering the Molecular Mechanism of Incurable Muscle Disease by a Novel Method for the Interpretation of miRNA Dysregulation. Noncoding RNA 2022; 8:ncrna8040048. [PMID: 35893231 PMCID: PMC9326546 DOI: 10.3390/ncrna8040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well-established that microRNA dysregulation is a hallmark of human diseases, and that aberrant expression of miRNA is not randomly associated with human pathologies but plays a causal role in the pathological process. Investigations of the molecular mechanism that links miRNA dysregulation to pathophysiology can therefore further the understanding of human diseases. The biological effect of miRNA is thought to be mediated principally by miRNA target genes. Consequently, the target genes of dysregulated miRNA serve as a proxy for the biological interpretation of miRNA dysregulation, which is performed by target gene pathway enrichment analysis. However, this method unfortunately often fails to provide testable hypotheses concerning disease mechanisms. In this paper, we describe a method for the interpretation of miRNA dysregulation, which is based on miRNA host genes rather than target genes. Using this approach, we have recently identified the perturbations of lipid metabolism, and cholesterol in particular, in Duchenne muscular dystrophy (DMD). The host gene-based interpretation of miRNA dysregulation therefore represents an attractive alternative method for the biological interpretation of miRNA dysregulation.
Collapse
|
6
|
Wang J, Bando M, Shirahige K, Nakato R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat Commun 2022; 13:3218. [PMID: 35680859 PMCID: PMC9184728 DOI: 10.1038/s41467-022-30792-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Yang G, Xiog Y, Wang G, Li W, Tang T, Sun J, Li J. miR‑374c‑5p regulates PTTG1 and inhibits cell growth and metastasis in hepatocellular carcinoma by regulating epithelial‑mesenchymal transition. Mol Med Rep 2022; 25:148. [PMID: 35234260 PMCID: PMC8915393 DOI: 10.3892/mmr.2022.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
A large number of studies have reported that microRNA (miR)-374c-5p plays an important role in the occurrence and development of malignant tumors, but there is no research on the role of miR-374c-5p in hepatocellular carcinoma (HCC). The aim of the present study was to investigate the role of miR-374c-5p in HCC and the underlying molecular mechanism. The expression of miR-374c-5p in HCC tissues and HCC cell lines was analyzed via reverse transcription-quantitative PCR. The association between miR-374c-5p and clinical pathology was also analyzed in patients with HCC. Kaplan-Meier analysis and Cox multivariate analysis were used to evaluate the prognostic significance of miR-374c-5p in HCC. The biological functions of miR-374c-5p, including cell proliferation, migration and invasion and its potential molecular mechanism were analyzed in vivo and in vitro. In addition, the molecular mechanism of miR-374c-5p in HCC was further explored. The results demonstrated that miR-374c-5p expression was lower in HCC than in matched adjacent tissue samples. Patients with low expression of miR-374c-5p had poor prognosis and short survival time. Overexpression of miR-374c-5p inhibited HCC cell proliferation, migration and invasion in vitro. In vivo, it was found that overexpression of miR-374c-5p significantly inhibited the growth and proliferation of HCC cells. Dual-luciferase reporter assays verified that miR-374c-5p directly targets the 3′-untranslated region of pituitary tumor-transforming 1 (PTTG1) and regulates PTTG1 expression. In general, it was revealed that miR-374c-5p regulates the malignant biological behavior of HCC through PTTG1, thereby affecting epithelial-mesenchymal transition. Thus, miR-374c-5p is a potential biological indicator to predict poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Gang Yang
- First Clinical Medical College, Jinan University, Tianhe, Guangzhou, Guangdong 510632, P.R. China
| | - Yongfu Xiog
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guan Wang
- Physical Examination Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Weinan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Tao Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ji Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jingdong Li
- First Clinical Medical College, Jinan University, Tianhe, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
8
|
Namløs HM, Skårn M, Ahmed D, Grad I, Andresen K, Kresse SH, Munthe E, Serra M, Scotlandi K, Llombart-Bosch A, Myklebost O, Lind GE, Meza-Zepeda LA. miR-486-5p expression is regulated by DNA methylation in osteosarcoma. BMC Genomics 2022; 23:142. [PMID: 35172717 PMCID: PMC8851731 DOI: 10.1186/s12864-022-08346-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has been shown to be downregulated in osteosarcoma and in cancer in general. Results To investigate if the mir-486 locus is epigenetically regulated, we integrated DNA methylation and miR-486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. A CpG island in the promoter of the ANK1 host gene of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient samples, xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2′-deoxycytidine treatment of osteosarcoma cell lines caused induction of miR-486-5p and ANK1, indicating common epigenetic regulation in osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology. Conclusions miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma, and this knowledge contributes to the understanding of osteosarcoma biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08346-6.
Collapse
Affiliation(s)
- Heidi M Namløs
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Magne Skårn
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Deeqa Ahmed
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Iwona Grad
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kim Andresen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Stine H Kresse
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Munthe
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
9
|
Kaushik P, Kumar A. Emerging role and function of miR-198 in human health and diseases. Pathol Res Pract 2021; 229:153741. [PMID: 34952425 DOI: 10.1016/j.prp.2021.153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Ever since their discovery, microRNAs (miRNAs/miRs) have astonished us by the plethora of processes they regulate, and thus adding another dimension to the gene regulation. They have been implicated in several diseases affecting cardiovascular, neurodegenerative, hepatic, autoimmune and inflammatory functions. A primate specific exonic miRNA, miR-198 has been vastly studied during the past decade, and shown to have a critical role in wound healing. The aberrant expression of miR-198 was first reported in schizophrenia, linking it to neural development. Later, its dysregulation and tumor suppressive role was reported in hepatocellular carcinoma. However, this was just a beginning, and after which there was an explosion of reports linking miR-198 deregulation to cancers and other ailments. The first target to be identified for miR-198 was Cyclin T1 in monocytes affecting HIV1 replication. Depending on the type of cancer, miR-198 has been shown to function either as a tumor suppressor or an oncomir. Interestingly, miR-198 is not only known to regulate multiple targets and pathways, but also is itself regulated by several circular RNAs and long-non-coding RNAs, highlighting a complex regulatory network. This review highlights the currently understood mechanism and regulation of miR-198 in different diseases, and its possible diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Co-upregulation of miR-31 and its host gene lncRNA MIR31HG in oral squamous cell carcinoma. J Dent Sci 2021; 17:696-706. [PMID: 35756773 PMCID: PMC9201660 DOI: 10.1016/j.jds.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background/purpose Several long non-coding RNAs (lncRNAs) harbor miRNA in their genome. MIR31HG harbors miR-31 in its intron and it is speculated that they are co-expressed in tumors. This study addressed whether frequent miR-31 and MIR31HG co-upregulation occurred in oral squamous cell carcinoma (OSCC) and its clinical implications. Materials and methods Microarray was performed to retrieve dis-regulated lncRNAs from tissue sample. The ectopic gene expression was carried out to specify the phenotypic influences of selected lncRNA screened from bioinformatic algorithms. The expression of miR-31 and MIR31HG in tissues or scrapped samples was analyzed using qRT-PCR. The implications of gene expression as related to metastasis or survival were further dissected. Results Microarray identified disrupted transcripts including MIR31HG and other 152 lncRNAs aberrantly expressed in OSCC tissues. In silico algorithms annotated an eminent involvement of aberrant transcripts in the regulation of cell cycle, extracellular modulation, adhesion, and wound healing. The enhancement of proliferation, wound healing, invasion and anchorage-independent colony formation mediated by MIR31HG was ascertained by ectopic expression in OECM1 cells. Besides, co-upregulation of miR-31 and MIR31HG was conspicuous in OSCC tissues. High expression of miR-31 and MIR31HG designated a trend of worse OSCC prognosis. Interestingly, high MIR31HG expression defined a very poor survival in stage IV diseases. By contrast, high miR-31 expression predicted nodal metastasis in stage I–III diseases. Conclusion Assessment of miR-31 and MIR31HG expression in OSCC may enable the prognostic prediction. The candidate lncRNAs isolated from this work can be further validated as crucial factors contributing to OSCC pathogenesis.
Collapse
|
11
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
12
|
Liu B, Shyr Y, Liu Q. Pan-Cancer Analysis Reveals Common and Specific Relationships between Intragenic miRNAs and Their Host Genes. Biomedicines 2021; 9:1263. [PMID: 34572448 PMCID: PMC8471046 DOI: 10.3390/biomedicines9091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play important roles in regulating gene expression. Most miRNAs are located within or close to genes (host). miRNAs and their host genes have either coordinated or independent transcription. We performed a comprehensive investigation on co-transcriptional patterns of miRNAs and host genes based on 4707 patients across 21 cancer types. We found that only 11.6% of miRNA-host pairs were co-transcribed consistently and strongly across cancer types. Most miRNA-host pairs showed a strong coexpression only in some specific cancer types, demonstrating a high heterogenous pattern. For two particular types of intergenic miRNAs, readthrough and divergent miRNAs, readthrough miRNAs showed higher coexpression with their host genes than divergent ones. miRNAs located within non-coding genes had tighter co-transcription with their hosts than those located within protein-coding genes, especially exonic and junction miRNAs. A few precursor miRNAs changed their dominate form between 5' and 3' strands in different cancer types, including miR-486, miR-99b, let-7e, miR-125a, let-7g, miR-339, miR-26a, miR-16, and miR-218, whereas only two miRNAs with multiple host genes switched their co-transcriptional partner in different cancer types (miR-219a-1 with SLC39A7/HSD17B8 and miR-3615 with RAB37/SLC9A3R1). miRNAs generated from distinct precursors (such as miR-125b from miR-125b-1 or miR-125b-2) were more likely to have cancer-dependent main contributors. miRNAs and hosts were less co-expressed in KIRC than other cancer types, possibly due to its frequent VHL mutations. Our findings shed new light on miRNA biogenesis and cancer diagnosis and treatments.
Collapse
Affiliation(s)
- Baohong Liu
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Desvignes T, Sydes J, Montfort J, Bobe J, Postlethwait JH. Evolution after Whole-Genome Duplication: Teleost MicroRNAs. Mol Biol Evol 2021; 38:3308-3331. [PMID: 33871629 PMCID: PMC8321539 DOI: 10.1093/molbev/msab105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
14
|
Amor F, Vu Hong A, Corre G, Sanson M, Suel L, Blaie S, Servais L, Voit T, Richard I, Israeli D. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2021; 12:677-693. [PMID: 34037326 PMCID: PMC8200436 DOI: 10.1002/jcsm.12708] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a lethal muscle disease detected in approximately 1:5000 male births. DMD is caused by mutations in the DMD gene, encoding a critical protein that links the cytoskeleton and the extracellular matrix in skeletal and cardiac muscles. The primary consequence of the disrupted link between the extracellular matrix and the myofibre actin cytoskeleton is thought to involve sarcolemma destabilization, perturbation of Ca2+ homeostasis, activation of proteases, mitochondrial damage, and tissue degeneration. A recently emphasized secondary aspect of the dystrophic process is a progressive metabolic change of the dystrophic tissue; however, the mechanism and nature of the metabolic dysregulation are yet poorly understood. In this study, we characterized a molecular mechanism of metabolic perturbation in DMD. METHODS We sequenced plasma miRNA in a DMD cohort, comprising 54 DMD patients treated or not by glucocorticoid, compared with 27 healthy controls, in three groups of the ages of 4-8, 8-12, and 12-20 years. We developed an original approach for the biological interpretation of miRNA dysregulation and produced a novel hypothesis concerning metabolic perturbation in DMD. We used the mdx mouse model for DMD for the investigation of this hypothesis. RESULTS We identified 96 dysregulated miRNAs (adjusted P-value <0.1), of which 74 were up-regulated and 22 were down-regulated in DMD. We confirmed the dysregulation in DMD of Dystro-miRs, Cardio-miRs, and a large number of the DLK1-DIO3 miRNAs. We also identified numerous dysregulated miRNAs yet unreported in DMD. Bioinformatics analysis of both target and host genes for dysregulated miRNAs predicted that lipid metabolism might be a critical metabolic perturbation in DMD. Investigation of skeletal muscles of the mdx mouse uncovered dysregulation of transcription factors of cholesterol and fatty acid metabolism (SREBP-1 and SREBP-2), perturbation of the mevalonate pathway, and the accumulation of cholesterol in the dystrophic muscles. Elevated cholesterol level was also found in muscle biopsies of DMD patients. Treatment of mdx mice with Simvastatin, a cholesterol-reducing agent, normalized these perturbations and partially restored the dystrophic parameters. CONCLUSIONS This investigation supports that cholesterol metabolism and the mevalonate pathway are potential therapeutic targets in DMD.
Collapse
Affiliation(s)
- Fatima Amor
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Ai Vu Hong
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Guillaume Corre
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Mathilde Sanson
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Laurence Suel
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | | | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, UK & Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of PaediatricsUniversity Hospital of Liège & University of LiègeLiègeBelgium
| | - Thomas Voit
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Isabelle Richard
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - David Israeli
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| |
Collapse
|
15
|
Loss of Setd2 associates with aberrant microRNA expression and contributes to inflammatory bowel disease progression in mice. Genomics 2021; 113:2441-2454. [PMID: 34052319 DOI: 10.1016/j.ygeno.2021.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Both SETD2-mediated H3K36me3 and miRNAs play critical epigenetic roles in inflammatory bowel disease (IBD) and involve in the dysfunctional intestinal barrier. However, little is known about cross-talk between these two types of regulators in IBD progression. We performed small RNA sequencing of Setd2 epithelium-specific knockout mice (Setd2Vil-KO) and wild-type controls, both with DSS-induced colitis, and designed a framework for integrative analysis. Firstly, we integrated the downloaded ChIP-seq data with miRNA expression profiles and identified a significant intersection of pre-miRNA expression and H3K36me3 modification. A significant inverse correlation was detected between changes of H3K36me3 modification and expression of the 171 peak-covered miRNAs. We further integrated RNA-seq data with predicted miRNA targets to screen negatively regulated miRNA-mRNA pairs and found the H3K36me3-associated differentially expressed microRNAs significantly enriched in cell-cell junction and signaling pathways. Using network analysis, we identified ten hub miRNAs, among which six are H3K36me3-associated, suggesting therapeutic targets for IBD patients with SETD2-deficiency.
Collapse
|
16
|
Butterworth MB. Non-coding RNAs and the mineralocorticoid receptor in the kidney. Mol Cell Endocrinol 2021; 521:111115. [PMID: 33301840 PMCID: PMC7796954 DOI: 10.1016/j.mce.2020.111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
The final steps in the Renin-Angiotensin-Aldosterone signaling System (RAAS) involve binding of the corticosteroid hormone, aldosterone to its mineralocorticoid receptor (MR). The bound MR interacts with response elements to induce or repress the transcription of aldosterone-regulated genes. Along with the classic genomic targets of aldosterone that alter mRNA and protein expression, aldosterone also regulates the expression of non-coding RNAs (ncRNAs). Short ncRNAs termed microRNAs (miRs) have been shown to play a role in transducing aldosterone's actions via MR signaling. The role of miRs in homeostatic regulation of aldosterone signaling, and the potential for aldosterone-regulated miRs to act as feedback regulators of MR have been recently reported. In this review, the role of miRs in RAAS signaling and feedback regulation of MR in kidney epithelial cells will be discussed.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Kwok ZH, Zhang B, Chew XH, Chan JJ, Teh V, Yang H, Kappei D, Tay Y. Systematic Analysis of Intronic miRNAs Reveals Cooperativity within the Multicomponent FTX Locus to Promote Colon Cancer Development. Cancer Res 2020; 81:1308-1320. [PMID: 33172934 DOI: 10.1158/0008-5472.can-20-1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
Approximately half of all miRNA reside within intronic regions and are often cotranscribed with their host genes. However, most studies of intronic miRNA focus on individual miRNA, while conversely most studies of protein-coding and noncoding genes frequently ignore any intron-derived miRNA. We hypothesize that the individual components of such multigenic loci may play cooperative or competing roles in driving disease progression and that examining the combinatorial effect of these components would uncover deeper insights into their functional importance. To address this, we performed systematic analyses of intronic miRNA:host loci in colon cancer. The FTX locus, comprising of a long noncoding RNA FTX and multiple intronic miRNA, was highly upregulated in cancer, and cooperativity within this multicomponent locus promoted cancer growth. FTX interacted with DHX9 and DICER and regulated A-to-I RNA editing and miRNA expression. These results show for the first time that a long noncoding RNA can regulate A-to-I RNA editing, further expanding the functional repertoire of long noncoding RNA. Intronic miR-374b and miR-545 inhibited tumor suppressors PTEN and RIG-I to enhance proto-oncogenic PI3K-AKT signaling. Furthermore, intronic miR-421 may exert an autoregulatory effect on miR-374b and miR-545. Taken together, our data unveil the intricate interplay between intronic miRNA and their host transcripts in the modulation of key signaling pathways and disease progression, adding new perspectives to the functional landscape of multigenic loci. SIGNIFICANCE: This study illustrates the functional relationships between individual components of multigenic loci in regulating cancer progression.See related commentary by Calin, p. 1212.
Collapse
Affiliation(s)
- Zhi Hao Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Velda Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
Cruz A, Ferian A, Alves PKN, Silva WJ, Bento MR, Gasch A, Labeit S, Moriscot AS. Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA Cell Biol 2020; 39:2289-2299. [PMID: 33136436 DOI: 10.1089/dna.2020.5423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lack of mechanical load leads to skeletal muscle atrophy, and one major underlying mechanism involves the myostatin pathway that negatively regulates protein synthesis and also activates Atrogin-1/MAFbx and MuRF1 genes. In hindlimb immobilization, leucine was observed to attenuate the upregulation of the referred atrogenes, thereby shortening the impact on fiber cross-sectional area, nonetheless, the possible connection with myostatin is still elusive. This study sought to verify the impact of leucine supplementation on myostatin expression. Male Wistar rats were supplemented with leucine and hindlimb immobilized for 3 and 7 days, after which soleus muscles were removed for morphometric measurements and analyzed for gene and protein expression by real-time PCR and Western blotting, respectively. Muscle wasting was prominent 7 days after immobilization, as expected, leucine feeding mitigated this effect. Atrogin-1/MAFbx gene expression was upregulated only after 3 days of immobilization, and this effect was attenuated by leucine supplementation. Atrogin-1/MAFbx protein levels were elevated after 7 days of immobilization, which leucine supplementation was not able to lessen. On the other hand, myostatin gene expression was upregulated in immobilization for 3 and 7 days, which returned to normal levels after leucine supplementation. Myostatin protein levels followed gene expression at a 3-day time point only. Follistatin gene expression was upregulated during immobilization and accentuated by leucine after 3 days of supplementation. Concerning protein expression, follistatin was not altered neither by immobilization nor in immobilized animals treated with leucine. In conclusion, leucine protects against skeletal muscle mass loss during disuse, and the underlying molecular mechanisms appear to involve myostatin inhibition and Atrogin-1 normalization independently of follistatin signaling.
Collapse
Affiliation(s)
- André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Ferian
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - William Jose Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mirella Ribeiro Bento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Gasch
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Kang T, Quarton T, Nowak CM, Ehrhardt K, Singh A, Li Y, Bleris L. Robust Filtering and Noise Suppression in Intragenic miRNA-Mediated Host Regulation. iScience 2020; 23:101595. [PMID: 33083753 PMCID: PMC7554026 DOI: 10.1016/j.isci.2020.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to target messenger RNAs (mRNAs). Many human miRNAs are intragenic, located within introns of protein-coding sequence (host). Intriguingly, a percentage of intragenic miRNAs downregulate the host transcript forming an incoherent feedforward motif topology. Here, we study intragenic miRNA-mediated host gene regulation using a synthetic gene circuit stably integrated within a safe-harbor locus of human cells. When the intragenic miRNA is directed to inhibit the host transcript, we observe a reduction in reporter expression accompanied by output filtering and noise reduction. Specifically, the system operates as a filter with respect to promoter strength, with the threshold being robust to promoter strength and measurement time. Additionally, the intragenic miRNA regulation reduces expression noise compared to splicing-alone architecture. Our results provide a new insight into miRNA-mediated gene expression, with direct implications to gene therapy and synthetic biology applications. Intragenic miRNA-based host regulation was recreated using a synthetic miRNA The system was integrated in HEK293 cells via CRISPR-based safe-harbor integration The system generates a gene expression threshold robust to host promoter strength Host gene output has reduced noise compared to a splicing-alone architecture
Collapse
Affiliation(s)
- Taek Kang
- Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tyler Quarton
- Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chance M Nowak
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kristina Ehrhardt
- Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Abhyudai Singh
- Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
20
|
Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1625. [PMID: 32945142 PMCID: PMC7965793 DOI: 10.1002/wrna.1625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins. LncRNAs play crucial regulatory roles in several biological processes via diverse mechanisms and their aberrant expression is associated with various diseases. LncRNA genes are further subcategorized based on their relative organization in the genome. MicroRNA (miRNA)-host-gene-derived lncRNAs (lnc-MIRHGs) refer to lncRNAs whose genes also harbor miRNAs. There exists crosstalk between the processing of lnc-MIRHGs and the biogenesis of the encoded miRNAs. Although the functions of the encoded miRNAs are usually well understood, whether those lnc-MIRHGs play independent functions are not fully elucidated. Here, we review our current understanding of lnc-MIRHGs, including their biogenesis, function, and mechanism of action, with a focus on discussing the miRNA-independent functions of lnc-MIRHGs, including their involvement in cancer. Our current understanding of lnc-MIRHGs strongly indicates that this class of lncRNAs could play important roles in basic cellular events as well as in diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
21
|
Politano G, Benso A. IL6-mediated HCoV-host interactome regulatory network and GO/Pathway enrichment analysis. PLoS Comput Biol 2020; 16:e1008238. [PMID: 32997660 PMCID: PMC7561109 DOI: 10.1371/journal.pcbi.1008238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/15/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
During these days of global emergency for the COVID-19 disease outbreak, there is an urgency to share reliable information able to help worldwide life scientists to get better insights and make sense of the large amount of data currently available. In this study we used the results presented in [1] to perform two different Systems Biology analyses on the HCoV-host interactome. In the first one, we reconstructed the interactome of the HCoV-host proteins, integrating it with highly reliable miRNA and drug interactions information. We then added the IL-6 gene, identified in recent publications [2] as heavily involved in the COVID-19 progression and, interestingly, we identified several interactions with the reconstructed interactome. In the second analysis, we performed a Gene Ontology and a Pathways enrichment analysis on the full set of the HCoV-host interactome proteins and on the ones belonging to a significantly dense cluster of interacting proteins identified in the first analysis. Results of the two analyses provide a compact but comprehensive glance on some of the current state-of-the-art regulations, GO, and pathways involved in the HCoV-host interactome, and that could support all scientists currently focusing on SARS-CoV-2 research.
Collapse
Affiliation(s)
| | - Alfredo Benso
- Computer Science and Automation Department, Politecnico di Torino, Italy
| |
Collapse
|
22
|
Abdel-Gawad AR, Shaheen S, Babteen NA, Toraih EA, Elshazli RM, Fawzy MS, Gouda NS. Association of microRNA 17 host gene variant (rs4284505) with susceptibility and severity of systemic lupus erythematosus. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:595-604. [PMID: 32852903 PMCID: PMC7654399 DOI: 10.1002/iid3.344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Objective MicroRNAs are large family clusters of small noncoding RNAs that implicated in genetic and epigenetic regulation of several immunological processes and pathways. As an epigenetic modifier, the microRNA 17‐92 cluster host gene (MIR17HG) has been shown to regulate the expression of genes involved in systemic lupus erythematosus (SLE) pathway. This study aimed to explore the association of MIR17HG (rs4284505; A>G) variant with SLE development and phenotype in a sample of the Eastern Mediterranean population. Methods A total of 326 participants (163 patients with SLE and 163 healthy controls) were enrolled in this study. The different genotypes of the MIR17HG (rs4284505) variant were characterized using the TaqMan real‐time polymerase chain reaction technique. Association with the available clinical and laboratory data, including the systemic lupus erythematosus disease activity index (SLEDAI), was also executed. Results The MIR17HG (rs4284505) variant showed a protective effect against developing SLE under heterozygote (A/G vs A/A; odds ratio [OR] = 0.10, 95% confidence interval [CI] = 0.05‐0.20, P < 0.001) and dominant (A/G+G/G vs A/A; OR = 0.39, 95% CI = 0.25‐0.61, P < .001) models. This association was consistent even after SLE stratified by lupus nephritis. In contrast, rs4284505 (G/G) genotype conferred increased susceptibility to SLE (G/G vs A/A+A/G; OR = 2.15, 95% CI = 1.31‐3.53, P = .002). Moreover, the rs4284505 variant showed a statistically significant association with mucocutaneous lesions and SLEDAI scores (all P < .05). Conclusion This study is the first one to explore that the MIR17HG rs4284505 is associated with SLE risk; (A/G) genotype conferred a protective effect, while the (G/G) genotype showed increased susceptibility to SLE and association with the disease severity in the study population.
Collapse
Affiliation(s)
| | - Sameerah Shaheen
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nouf A Babteen
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rami M Elshazli
- Department of Biochemistry, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Nawal S Gouda
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
23
|
Kim J, Park S, Chang Y, Park KH, Lee H. Synergetic Effects of Intronic Mature miR-944 and ΔNp63 Isoforms on Tumorigenesis in a Cervical Cancer Cell Line. Int J Mol Sci 2020; 21:ijms21165612. [PMID: 32764455 PMCID: PMC7460632 DOI: 10.3390/ijms21165612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
miR-944 is located in an intron of the tumor protein p63 gene (TP63). miR-944 expression levels in cervical cancer tissues are significantly higher than in normal tissues and are associated with tumor size, International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and survival. However, associations of miR-944 with its host gene, TP63, which encodes TAp63 and ΔNp63, in cervical cancer have not been fully investigated. A positive correlation between miR-944 and ΔNp63 mRNA expression was identified in cervical cancer tissues. Furthermore, when the expression of miR-944 and ΔNp63 was simultaneously inhibited, cell proliferation-, differentiation- epithelial-mesenchymal transition (EMT)-, transcription-, and virus-associated gene clusters were shown to be significantly more active according to functional annotation analysis. Cell viability and migration were more reduced upon simultaneous inhibition with anti-miR-944 or ΔNp63 siRNA than with inhibition with anti-miR-944 or ΔNp63 siRNA alone, or scramble. In addition, Western blot analysis showed that the simultaneous inhibition of miR-944 and ΔNp63 reduced EMT by increasing the expression of epithelial markers such as claudin and by decreasing mesenchymal markers such as N-cadherin and vimentin. Slug, an EMT transcription factor, was also decreased by the simultaneous inhibition of miR-944 and ΔNp63. Thus, associations between miR-944 and ΔNp63 in cervical cancer could help to elucidate the function of this intronic microRNA and its role in carcinogenesis.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju 26426, Korea;
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- Correspondence: ; Tel.: +82-33-760-2740; Fax: +82-33-760-2561
| |
Collapse
|
24
|
Kang L, Han C, Yang G, Li H, Li T, Yang S, Liang N, Zhong R, Jia L, Zhu D, Zhang Y. miR-378 and its host gene Ppargc1β exhibit independent expression in mouse skeletal muscle. Acta Biochim Biophys Sin (Shanghai) 2020; 52:883-890. [PMID: 32602911 DOI: 10.1093/abbs/gmaa061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in multiple biological processes in physiological and pathological settings. Nearly half of the known miRNAs are classified as 'intronic' miRNAs because they are embedded within the introns of protein-coding or noncoding genes. Such miRNAs were thought to be processed from primary host gene transcripts and share the promoter of their host. Recent analyses predicted that some intronic miRNAs might be transcribed and regulated as independent units, but there is little direct evidence for this in a specific biological context. Here, we focused on miR-378, which is located within the first intron of the peroxisome proliferator-activated receptor γ coactivator 1-beta (Ppargc1β) gene and critically regulates skeletal muscle cell differentiation and muscle regeneration. We demonstrate that miR-378 and Ppargc1β exhibit distinct expression patterns during skeletal muscle cell differentiation. In terminally differentiated adult skeletal muscle tissues of mice, miR-378 is predominantly expressed in glycolytic muscle, whereas Ppargc1β is mainly expressed in oxidative soleus muscle. Mechanistically, miR-378, but not Ppargc1β, is regulated by the transcription factor, MyoD, in muscle cells. Our findings identify a regulatory model of miR-378 expression, thereby helping us to understand its physiological function in skeletal muscle.
Collapse
Affiliation(s)
- Lin Kang
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Chunmiao Han
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Guangyan Yang
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shu Yang
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Na Liang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ran Zhong
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijing Jia
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
25
|
Antunes J, Lee O, Alizadeh AH, LaMarre J, Koch TG. Why the hype - What are microRNAs and why do they provide unique investigative, diagnostic, and therapeutic opportunities in veterinary medicine? THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2020; 61:845-852. [PMID: 32741990 PMCID: PMC7350063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by inhibiting translation or inducing transcript degradation. MiRNAs act as fine-tuning factors that affect the expression of up to 60% of all mammalian protein coding genes. In contrast to proteins, there is widespread conservation of miRNA sequences across species. This conservation strongly suggests that miRNAs appeared early in evolution and have retained their functional importance. Cross-species conservation provides advantages when compiling candidate markers for health and disease compared to protein-based discoveries. This broad utility is accompanied by the emergence of inexpensive sequencing protocols for the identification of all RNAs in a sample (including miRNAs). With the use of miRNA mimics and antagonists, unique research questions can be answered in biological systems with 'cause and effect' methodology. MiRNAs are readily detectable in blood making them attractive candidates as biomarkers for disease. Here, we review their utility as biomarkers and their potential as therapeutic agents or targets to combat disease.
Collapse
Affiliation(s)
- Joshua Antunes
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Olivia Lee
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Thomas Gadegaard Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| |
Collapse
|
26
|
Ciuculete DM, Voisin S, Kular L, Jonsson J, Rask-Andersen M, Mwinyi J, Schiöth HB. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clin Epigenetics 2020; 12:99. [PMID: 32616021 PMCID: PMC7333393 DOI: 10.1186/s13148-020-00884-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Little is known about how genetics and epigenetics interplay in depression. Evidence suggests that genetic variants may change vulnerability to depression by modulating DNA methylation (DNAm) and non-coding RNA (ncRNA) levels. Therefore, the aim of the study was to investigate the effect of the genetic variation, previously identified in the largest genome-wide association study for depression, on proximal DNAm and ncRNA levels. RESULTS We performed DNAm quantitative trait locus (meQTL) analysis in two independent cohorts (total n = 435 healthy individuals), testing associations between 102 single-nucleotide polymorphisms (SNPs) and DNAm levels in whole blood. We identified and replicated 64 SNP-CpG pairs (padj. < 0.05) with meQTL effect. Lower DNAm at cg02098413 located in the HACE1 promoter conferred by the risk allele (C allele) at rs1933802 was associated with higher risk for depression (praw = 0.014, DNAm = 2.3%). In 1202 CD14+ cells sorted from blood, DNAm at cg02088412 positively correlated with HACE1 mRNA expression. Investigation in postmortem brain tissue of adults diagnosed with major depressive disorder (MDD) indicated 1% higher DNAm at cg02098413 in neurons and lower HACE1 mRNA expression in CA1 hippocampus of MDD patients compared with healthy controls (p = 0.008 and 0.012, respectively). Expression QTL analysis in blood of 74 adolescent revealed that hsa-miR-3664-5p was associated with rs7117514 (SHANK2) (padj. = 0.015, mRNA difference = 5.2%). Gene ontology analysis of the miRNA target genes highlighted implication in neuronal processes. CONCLUSIONS Collectively, our findings from a multi-tissue (blood and brain) and multi-layered (genetic, epigenetic, transcriptomic) approach suggest that genetic factors may influence depression by modulating DNAm and miRNA levels. Alterations at HACE1 and SHANK2 loci imply potential mechanisms, such as oxidative stress in the brain, underlying depression. Our results deepened the knowledge of molecular mechanisms in depression and suggest new epigenetic targets that should be further evaluated.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, Husargatan 3, 753124, Uppsala, Sweden.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, 3011, Australia
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, Husargatan 3, 753124, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetic and Pathology, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, Husargatan 3, 753124, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, Husargatan 3, 753124, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
27
|
Saieva L, Barreca MM, Zichittella C, Prado MG, Tripodi M, Alessandro R, Conigliaro A. Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β Activity in Colorectal Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21113832. [PMID: 32481626 PMCID: PMC7312749 DOI: 10.3390/ijms21113832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibition, in hypoxic cells, hampered β-catenin nuclear localization and its transcriptional activity, while lncH19 silencing did not induce the same effects. Interestingly, our data revealed that miRNA inhibition in hypoxic cells restored the activity of Glycogen Synthase Kinase 3β (GSK-3β) reducing the amount of P-Ser9 kinase, thus unveiling a role of the miR-675-5p in controlling GSK-3β activity. Bioinformatics analyses highlighted the serine/threonine-protein phosphatases PPP2CA, responsible for GSK-3β activation, among the miR-675-5p targets, thus indicating the molecular mediator through which miR-675-5p may control β-catenin nuclear localization. In conclusion, here we demonstrated that the inhibition of the hypoxia-induced non-coding RNA miR-675-5p hampered the nuclear localization of β-catenin by regulating GSK-3β activity, thus proposing the miR-675-5p as a new therapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Laura Saieva
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Maria Giulia Prado
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome Italy; (M.G.P.); (M.T.)
| | - Marco Tripodi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome Italy; (M.G.P.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00161 Rome, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
28
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics Chromatin 2020; 13:19. [PMID: 32228651 PMCID: PMC7106649 DOI: 10.1186/s13072-020-00340-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially sncRNAs, are selectively retained during spermiogenesis or specifically transferred during epididymis maturation, and are thus delivered to the oocyte at fertilization, providing resources for embryo development. However , a deep characterization of the sncRNA content of bull sperm and its expression profile across breeds is currently lacking. To fill this gap, we optimized a guanidinium–Trizol total RNA extraction protocol to prepare high-quality RNA from frozen bull sperm collected from 40 representative bulls from six breeds. Deep sequencing was performed (40 M single 50-bp reads per sample) to establish a comprehensive repertoire of cattle sperm sncRNA. Results Our study showed that it comprises mostly piRNAs (26%), rRNA fragments (25%), miRNAs (20%) and tRNA fragments (tsRNA, 14%). We identified 5p-halves as the predominant tsRNA subgroup in bull sperm, originating mostly from Gly and Glu isoacceptors. Our study also increased by ~ 50% the sperm repertoire of known miRNAs and identified 2022 predicted miRNAs. About 20% of sperm miRNAs were located within genomic clusters, expanding the list of known polycistronic pri-miRNA clusters and defining several networks of co-expressed miRNAs. Strikingly, our study highlighted the great diversity of isomiRs, resulting mainly from deletions and non-templated additions (A and U) at the 3p end. Substitutions within miRNA sequence accounted for 40% of isomiRs, with G>A, U>C and C>U substitutions being the most frequent variations. In addition, many sncRNAs were found to be differentially expressed across breeds. Conclusions Our study provides a comprehensive overview of cattle sperm sncRNA, and these findings will pave the way for future work on the role of sncRNAs in embryo development and their relevance as biomarkers of semen fertility.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
29
|
Persson H, Søkilde R, Häkkinen J, Vallon-Christersson J, Mitelman F, Borg Å, Höglund M, Rovira C. Analysis of fusion transcripts indicates widespread deregulation of snoRNAs and their host genes in breast cancer. Int J Cancer 2020; 146:3343-3353. [PMID: 32067223 DOI: 10.1002/ijc.32927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or noncoding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology.
Collapse
Affiliation(s)
- Helena Persson
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Jari Häkkinen
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | | | - Felix Mitelman
- Department of Laboratory Medicine, Clinical Genetics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Åke Borg
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden.,CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
| | - Mattias Höglund
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| |
Collapse
|
30
|
Baksa D, Gonda X, Eszlari N, Petschner P, Acs V, Kalmar L, Deakin JFW, Bagdy G, Juhasz G. Financial Stress Interacts With CLOCK Gene to Affect Migraine. Front Behav Neurosci 2020; 13:284. [PMID: 32038187 PMCID: PMC6993567 DOI: 10.3389/fnbeh.2019.00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that both maladaptive stress response and circadian dysregulation might have a role in the background of migraine. However, effects of circadian genes on migraine have not been tested yet. In the present study, we investigated the main effect of rs10462028 of the circadian locomotor output cycles kaput (CLOCK) gene and its interaction with different stress factors on migraine. In our cross-sectional study 2,157 subjects recruited from Manchester and Budapest completed the ID-Migraine questionnaire to detect migraine type headaches (migraineID). Additional stress factors were assessed by a shortened version of the Childhood Trauma Questionnaire, the List of Threatening Experiences questionnaire, and a validated questionnaire to identify financial difficulties. Rs10462028 showed no main genetic effect on migraineID. However, chronic stress indexed by financial difficulties showed a significant interaction effect with rs10462028 (p = 0.006 in recessive model) on migraineID. This result remained significant after correction for lifetime bipolar and unipolar depression and was replicated in both subsamples, although only a trend effect was reached after Bonferroni-correction, which is the strictest correction not considering interdependences. Childhood adversity (CHA) and Recent negative life events (RLE) showed no significant gene × stress interaction with rs10462028. In addition, in silico analysis demonstrated that the genetic region tagged by rs10462028 alters the binding of several miRNAs. Our exploratory study suggests that variations in the CLOCK gene, with moderating effect on gene function through miRNA binding, in interaction with financial difficulties might influence the risk of migraine-type headaches. Thus, financial hardship as a chronic stress factor may affect migraine through altering circadian rhythms.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Veronika Acs
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Lajos Kalmar
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Zeidler M, Hüttenhofer A, Kress M, Kummer KK. Intragenic MicroRNAs Autoregulate Their Host Genes in Both Direct and Indirect Ways-A Cross-Species Analysis. Cells 2020; 9:cells9010232. [PMID: 31963421 PMCID: PMC7016697 DOI: 10.3390/cells9010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) function as master switches for post-transcriptional gene expression. Their genes are either located in the extragenic space or within host genes, but these intragenic miRNA::host gene interactions are largely enigmatic. The aim of this study was to investigate the location and co-regulation of all to date available miRNA sequences and their host genes in an unbiased computational approach. The majority of miRNAs were located within intronic regions of protein-coding and non-coding genes. These intragenic miRNAs exhibited both increased target probability as well as higher target prediction scores as compared to a model of randomly permutated genes. This was associated with a higher number of miRNA recognition elements for the hosted miRNAs within their host genes. In addition, strong indirect autoregulation of host genes through modulation of functionally connected gene clusters by intragenic miRNAs was demonstrated. In addition to direct miRNA-to-host gene targeting, intragenic miRNAs also appeared to interact with functionally related genes, thus affecting their host gene function through an indirect autoregulatory mechanism. This strongly argues for the biological relevance of autoregulation not only for the host genes themselves but, more importantly, for the entire gene cluster interacting with the host gene.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Institute of Genomics and RNomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-650-970-0514; Fax: +43-512-9003-73800
| |
Collapse
|
32
|
Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, Schumacher U, Wicklein D, Tonevitsky A. LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Front Mol Biosci 2019; 6:122. [PMID: 31781574 PMCID: PMC6857517 DOI: 10.3389/fmolb.2019.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Specificity of RNAi to selected target is challenged by off-target effects, both canonical and non-canonical. Notably, more than half of all human microRNAs are co-expressed with hosting them proteincoding genes. Here we dissect regulatory subnetwork centered on IGFBP6 gene, which is associated with low proliferative state and high migratory activity of basal-like breast cancer. We inhibited expression of IGFBP6 gene in a model cell line for basal-like breast carcinoma MDA-MB-231, then traced secondary and tertiary effects of this knockdown to LAMA4, a laminin encoding gene that contributes to the phenotype of triple-negative breast cancer. LAMA4-regulating miRNA miR-4274 and its host gene SORCS2 were highlighted as intermediate regulators of the expression levels of LAMA4, which correlated in a basal-like breast carcinoma sample subset of TCGA to the levels of SORCS2 negatively. Overall, our study points that the secondary and tertiary layers of regulatory interactions are certainly underappreciated. As these types of molecular event may significantly contribute to the formation of the cell phenotypes after RNA interference based knockdowns, further studies of multilayered molecular networks affected by RNAi are warranted.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia
| | | | - Stepan Nersisyan
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Center of Medical Genetics, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
33
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
34
|
Wang X, Liao X, Huang K, Zeng X, Liu Z, Zhou X, Yu T, Yang C, Yu L, Wang Q, Han C, Zhu G, Ye X, Peng T. Clustered microRNAs hsa-miR-221-3p/hsa-miR-222-3p and their targeted genes might be prognostic predictors for hepatocellular carcinoma. J Cancer 2019; 10:2520-2533. [PMID: 31258758 PMCID: PMC6584338 DOI: 10.7150/jca.29207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: MicroRNAs (miRNAs) have been explored in malignancies. We investigated the functions of clustered miRNAs hsa-miR-221/222-3p in hepatocellular carcinoma (HCC). Methods: Human miRNA tissue atlas website was determined expression levels in liver tissue. Four databases, TarBase, miRTarBase, miRecords and miRPathDB, were found experimentally validated target genes of clustered miRNAs. TargetScanHuman was predicted target genes. The STRING website was depicted protein-protein interaction (PPI) networks. The OncoLnc website analyzed prognostic values for hsa-miR-221/222-3p and their target genes. The MCODE plugin calculated modules of PPI networks. Receiver operating characteristic (ROC) curves were predicted 1, 3, and 5 years prognostic values. Results: Expression of clustered miRNAs was high in liver tissues. A total of 1577 target genes were identified. Enrichment analysis showed that target genes were enriched mainly in cancer, Wnt signaling and ErbB signaling pathways. Two modules were calculated using PPI networks. Has-miR-221-3p was not associated with prognosis (P = 0.401). Has-miR-222-3p and target genes ESR1, TMED7, CBFB, ETS2, UBE2J1 and UBE2N of the clustered miRNAs were associated with HCC survival (all P < 0.05). Has-miR-222-3p, CBFB, and UBE2N showed good performance of ROC in prognosis prediction at 1, 3, and 5 years (all area under curves > 0.600). Conclusion: Has-miR-222-3p and target genes, especially CBFB, UBE2N, may serve as prognostic predictors for HCC.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| |
Collapse
|
35
|
Kittelmann S, McGregor AP. Modulation and Evolution of Animal Development through microRNA Regulation of Gene Expression. Genes (Basel) 2019; 10:genes10040321. [PMID: 31027314 PMCID: PMC6523689 DOI: 10.3390/genes10040321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs regulate gene expression by blocking the translation of mRNAs and/or promoting their degradation. They, therefore, play important roles in gene regulatory networks (GRNs) by modulating the expression levels of specific genes and can tune GRN outputs more broadly as part of feedback loops. These roles for microRNAs provide developmental buffering on one hand but can facilitate evolution of development on the other. Here we review how microRNAs can modulate GRNs during animal development as part of feedback loops and through their individual or combinatorial targeting of multiple different genes in the same network. We then explore how changes in the expression of microRNAs and consequently targets can facilitate changes in GRNs that alter development and lead to phenotypic evolution. The reviewed studies exemplify the key roles played by microRNAs in the regulation and evolution of gene expression during developmental processes in animals.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
36
|
Yang L, Du X, Liu L, Cao Q, Pan Z, Li Q. miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells. Cells 2019; 8:cells8040298. [PMID: 30935128 PMCID: PMC6523565 DOI: 10.3390/cells8040298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-β receptor II (TGFBR2), the type II receptor of the TGF-β/SMA- and MAD-related protein (SMAD) signaling pathway, plays a crucial role in TGF-β signal transduction and is regulated by multiple factors. Nevertheless, the modulation of the non-coding RNA involved in the process of TGFBR2 expression in ovaries is not well studied. In our study, we isolated and characterized the 3′-untranslated region (UTR) of the porcine TGFBR2 gene and microRNA-1306 (miR-1306) was identified as the functional miRNA that targets TGFBR2 in porcine granulosa cells (GCs). Functional analysis showed that miR-1306 promotes apoptosis of GCs as well as attenuating the TGF-β/SMAD signaling pathway targeting and impairing TGFBR2 in GCs. Moreover, we identified the miR-1306 core promoter and found three potential SMAD4-binding elements (SBEs). Luciferase and chromatin immunoprecipitation (ChIP) assays revealed that the transcription factor SMAD4 directly binds to the miR-1306 core promoter and inhibits its transcriptional activity. Furthermore, the TGF-β/SMAD signaling pathway is modulated by SMAD4 positive feedback via inhibition of miR-1306 expression in GCs. Collectively, our findings provide evidence of an epigenetic mechanism that modulates as well as mediates the feedback regulation of the classical TGF-β/SMAD signaling pathway in GCs from porcine ovaries.
Collapse
Affiliation(s)
- Liu Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuyu Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Roy R, Chatterjee A, Das D, Ray A, Singh R, Chattopadhyay E, Sarkar ND, Eccles M, Pal M, Maitra A, Roy B. Genome-wide miRNA methylome analysis in oral cancer: possible biomarkers associated with patient survival. Epigenomics 2019; 11:473-487. [PMID: 30875235 DOI: 10.2217/epi-2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The methylome associated with miRNA loci was investigated in oral cancer to explore tobacco specific methylation and potential biomarkers for patient survival. METHODS Methylome data was generated from 16 pairs of cancer-normal tissues by reduced representation bisulfite sequencing method. Differentially methylated regions were identified using the DMAP pipeline. In silico validation and Kaplan-Meier survival analyses were performed on The Cancer Genome Atlas data based on our miRNA methylome data. RESULTS A total of 4310 unique differentially methylated regions, mapping to 144 miRNA loci, were identified. Three distinct groups of miRNAs were differentially methylated in cancer tissues from smokers, chewers and mixed habitués. Hypermethylation of miR-503, miR-200a/b, miR-320b and miR-489 was associated with worse 5-year survival. CONCLUSION Differential methylation patterns in miRNA loci are associated with poor survival underscoring their potential as predictive and prognostic biomarkers in oral cancer.
Collapse
Affiliation(s)
- Roshni Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Aniruddha Chatterjee
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Debasis Das
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Anindita Ray
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Richa Singh
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Esita Chattopadhyay
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Navonil De Sarkar
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand.,Department of Oral & Maxillofacial Pathology, Guru Nanak Institute of Dental Science & Research, Kolkata, India
| | - Michael Eccles
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Mousumi Pal
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Arindam Maitra
- Human Genetics Unit, Indian Statistical Institute, 205 B.T. Road, Kolkata 700108, India
| | - Bidyut Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| |
Collapse
|
38
|
Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine 2019; 41:357-369. [PMID: 30797711 PMCID: PMC6444029 DOI: 10.1016/j.ebiom.2018.12.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The cross-talk between RNA binding proteins (RBPs) and microRNAs (miRNAs) in the regulation of gene expression is a complex process. Here, we describe a new mode of regulation of TRIM25 expression mediated by an antagonistic interplay between IGF2BP3 and miR-3614-3p. METHODS The expression level of TRIM25, IGF2BP3, pri-miR-3614 and miR-3614-3p in breast cancer (BC) tissues, non-tumor tissues and BC cell lines were detected by qRT-PCR, Western blot and Immunohistochemistry (IHC). Binding of miR-3614-3p and IGF2BP3 to TRIM25 RNA was verified using luciferase activation assays, RNA immunoprecipitation (RIP) and biotin pull-down assays. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and related mechanism of IGF2BP3-miR-3614-3p-TRIM25 axis in in breast cancer cells proliferation. FINDINGS We found that an intragenic miRNA-3614-3p inhibits the expression of its host gene TRIM25 by binding to its 3'- untranslated region (UTR). Interestingly, IGF2BP3 can competitively occupy this binding site and inhibit miRNA-3614 maturation, thereby protecting TRIM25 mRNA from miR-3614-mediated degradation. The overexpression of miR-3614-3p dramatically inhibited breast cancer cell growth through the downregulation of TRIM25. Furthermore, the silencing of IGF2BP3 reduced TRIM25 expression, suppressed cell proliferation, and exhibited a synergistic effect with miR-3614-3p overexpression. INTERPRETATION Collectively, these results demonstrate that control of TRIM25 RNA by an interplay between IGF2BP3 and miR-3614-3p represents a mechanism for breast cancer cell proliferation. FUND: The scientific research and sharing platform construction project of Shaanxi Province, Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, China Postdoctoral Science Foundation and The National Natural Science Foundation of China.
Collapse
|
39
|
Prakash S, Mattiotti A, Sylva M, Mulder BJM, Postma AV, van den Hoff MJB. Identifying pathogenic variants in the Follistatin-like 1 gene (FSTL1) in patients with skeletal and atrioventricular valve disorders. Mol Genet Genomic Med 2019; 7:e00567. [PMID: 30722102 PMCID: PMC6465659 DOI: 10.1002/mgg3.567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Follistatin-like 1 (Fstl1) is a glycoprotein expressed throughout embryonic development. Homozygous loss of Fstl1 in mice results in skeletal and respiratory defects, leading to neonatal death due to a collapse of the trachea. Furthermore, Fstl1 conditional deletion from the endocardial/endothelial lineage results in postnatal death due to heart failure and profound atrioventricular valve defects. Here, we investigated patients with phenotypes similar to the phenotypes observed in the transgenic mice, for variants in FSTL1. METHODS In total, 69 genetically unresolved patients were selected with the following phenotypes: campomelic dysplasia (12), small patella syndrome (2), BILU (1), and congenital heart disease patients (54), of which 16 also had kyphoscoliosis, and 38 had valve abnormalities as their main diagnosis. Using qPCR, none of 69 patients showed copy number variations in FSTL1. The entire gene body, including microRNA-198 and three validated microRNA-binding sites, were analyzed using Sanger sequencing. RESULTS No variants were found in the coding region. However, 8 intronic variants were identified that differed significantly in their minor allele frequency compared to controls. Variant rs2272515 was found to significantly correlate (p < 0.05) with kyphoscoliosis. CONCLUSION We conclude that pathogenic variants in FSTL1 are unlikely to be responsible for skeletal or atrioventricular valve anomalies in humans.
Collapse
Affiliation(s)
- Stuti Prakash
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Andrea Mattiotti
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Marc Sylva
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Pan S, Cui Y, Fu Z, Zhang L, Xing H. MicroRNA-128 is involved in dexamethasone-induced lipid accumulation via repressing SIRT1 expression in cultured pig preadipocytes. J Steroid Biochem Mol Biol 2019; 186:185-195. [PMID: 30394333 DOI: 10.1016/j.jsbmb.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
In this study, pig preadipocytes were firstly treated with 10-6 M DEX for 48 h to explore the role of dexamethasone (DEX, a chemically synthesized long-acting glucocorticoid) on lipid accumulation. Then, miRNA scrambled control (miR-SC), miR-128 overexpression plasmid and miR-128 inhibitor were respectively transfected into pig preadipocytes at 24 h before DEX treatment for 48 h (miR-SC-DEX, miR-128-DEX and miR-128-inhibitor-DEX) to illustrate the regulatory role of miR-128 on DEX-induced lipid accumulation. Compared with control preadipocytes, 10-6 M Dex significantly increased triglyceride (TG) level, whereas the cell proliferation did not change. Moreover, 10-6 M Dex obviously decreased sirtuin 1 (SIRT1) and its related lipolysis genes adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) mRNA expression and enzyme activity, while significantly increased expression of adipogenesis genes peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α (C/EBP-α) and fatty acid synthase (FAS). In addition, 10-6 M DEX significantly upregulated miR-128 expression, which was confirmed to directly target SIRT1 by bioinformatics analysis and dual-luciferase reporter assay. Gain- and loss-of-function study also showed that when compared with miR-SC-DEX cells, miR-128-DEX cells showed significantly reduced SIRT1 expression and increased TG level, as well as elevated cellular levels of PPAR-γ, C/EBP-α and FAS and suppressed ATGL and HSL expression and enzyme activity. In contrast, miR-128-inhibitor-DEX cells precisely presented the opposite results. Collectively, these results indicate that miR-128 plays a role in the pathogenesis of glucocorticoid-related abnormal lipid accumulation via repressing SIRT1 expression, consequently, miR-128 inhibition may represent a novel potential therapeutic target in preventing DEX-induced abnormal lipid accumulation.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yixin Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Zhiliang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
41
|
Politano G, Di Carlo S, Benso A. 'One DB to rule them all'-the RING: a Regulatory INteraction Graph combining TFs, genes/proteins, SNPs, diseases and drugs. Database (Oxford) 2019; 2019:baz108. [PMID: 31682269 PMCID: PMC6827393 DOI: 10.1093/database/baz108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023]
Abstract
In the last decade, genomics data have been largely adopted to sketch, study and better understand the complex mechanisms that underlie biological processes. The amount of publicly available data sources has grown accordingly, and several types of regulatory interactions have been collected and documented in literature. Unfortunately, often these efforts do not follow any data naming/interoperability/formatting standards, resulting in high-quality but often uninteroperable heterogeneous data repositories. To efficiently take advantage of the large amount of available data and integrate these heterogeneous sources of information, we built the RING (Regulatory Interaction Graph), an integrative standardized multilevel database of biological interactions able to provide a comprehensive and unmatched high-level perspective on several phenomena that take place in the regulatory cascade and that researchers can use to easily build regulatory networks around entities of interest.
Collapse
Affiliation(s)
| | - Stefano Di Carlo
- Control and Computer Engineering Department, Politecnico di Torino, Italy
| | - Alfredo Benso
- Control and Computer Engineering Department, Politecnico di Torino, Italy
| |
Collapse
|
42
|
Abstract
The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.
Collapse
|
43
|
Steiman-Shimony A, Shtrikman O, Margalit H. Assessing the functional association of intronic miRNAs with their host genes. RNA (NEW YORK, N.Y.) 2018; 24:991-1004. [PMID: 29752351 PMCID: PMC6049507 DOI: 10.1261/rna.064386.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/26/2018] [Indexed: 05/07/2023]
Abstract
In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.
Collapse
Affiliation(s)
- Avital Steiman-Shimony
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Orr Shtrikman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
44
|
Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 2018; 18:255-266. [PMID: 30785618 PMCID: PMC6609535 DOI: 10.1093/bfgp/elz002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding functional RNAs that post-transcriptionally regulate gene expression. They play essential roles in nearly all biological processes including cell development and differentiation, DNA damage repair, cell death as well as intercellular communication. They are highly involved in cancer, acting as tumor suppressors and/or promoters to modulate cell proliferation, epithelial-mesenchymal transition and tumor invasion and metastasis. Recent studies have shown that more than half of miRNAs are located within protein-coding or non-coding genes. Intragenic miRNAs and their host genes either share the promoter or have independent transcription. Meanwhile, miRNAs work as partners or antagonists of their host genes by fine-tuning their target genes functionally associated with host genes. This review outlined the complicated relationship between intragenic miRNAs and host genes. Focusing on miRNAs known as oncogenes or tumor suppressors in specific cancer types, it studied co-expression relationships between these miRNAs and host genes in the cancer types using TCGA data sets, which validated previous findings and revealed common, tumor-specific and even subtype-specific patterns. These observations will help understand the function of intragenic miRNAs and further develop miRNA therapeutics in cancer.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75:2339-2354. [PMID: 29594389 PMCID: PMC5986856 DOI: 10.1007/s00018-018-2805-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Collapse
Affiliation(s)
- Andrea Mattiotti
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Stuti Prakash
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Pinhal D, Bovolenta LA, Moxon S, Oliveira AC, Nachtigall PG, Acencio ML, Patton JG, Hilsdorf AWS, Lemke N, Martins C. Genome-wide microRNA screening in Nile tilapia reveals pervasive isomiRs' transcription, sex-biased arm switching and increasing complexity of expression throughout development. Sci Rep 2018; 8:8248. [PMID: 29844338 PMCID: PMC5974277 DOI: 10.1038/s41598-018-26607-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression in multicellular organisms. The elucidation of miRNA function and evolution depends on the identification and characterization of miRNA repertoire of strategic organisms, as the fast-evolving cichlid fishes. Using RNA-seq and comparative genomics we carried out an in-depth report of miRNAs in Nile tilapia (Oreochromis niloticus), an emergent model organism to investigate evo-devo mechanisms. Five hundred known miRNAs and almost one hundred putative novel vertebrate miRNAs have been identified, many of which seem to be teleost-specific, cichlid-specific or tilapia-specific. Abundant miRNA isoforms (isomiRs) were identified with modifications in both 5p and 3p miRNA transcripts. Changes in arm usage (arm switching) of nine miRNAs were detected in early development, adult stage and even between male and female samples. We found an increasing complexity of miRNA expression during ontogenetic development, revealing a remarkable synchronism between the rate of new miRNAs recruitment and morphological changes. Overall, our results enlarge vertebrate miRNA collection and reveal a notable differential ratio of miRNA arms and isoforms influenced by sex and developmental life stage, providing a better picture of the evolutionary and spatiotemporal dynamics of miRNAs.
Collapse
Affiliation(s)
- Danillo Pinhal
- Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, United Kingdom
| | - Arthur C Oliveira
- Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Pedro G Nachtigall
- Department of Genetics, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcio L Acencio
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - James G Patton
- Stevenson Center, Vanderbilt University, Nashville, TN, USA
| | | | - Ney Lemke
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
47
|
Hirschberger S, Hinske LC, Kreth S. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett 2018; 431:11-21. [PMID: 29800684 DOI: 10.1016/j.canlet.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany.
| |
Collapse
|
48
|
Nakano M, Nakajima M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 2018; 14:493-504. [PMID: 29718737 DOI: 10.1080/17425255.2018.1472237] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.
Collapse
Affiliation(s)
- Masataka Nakano
- a Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences , WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University , Kanazawa , Japan.,b Research Fellow of Japan Society for the Promotion Science
| | - Miki Nakajima
- a Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences , WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University , Kanazawa , Japan
| |
Collapse
|
49
|
Galatenko VV, Galatenko AV, Samatov TR, Turchinovich AA, Shkurnikov MY, Makarova JA, Tonevitsky AG. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep 2018; 8:2418. [PMID: 29402894 PMCID: PMC5799291 DOI: 10.1038/s41598-018-20215-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate gene expression and play an important role in multiple cellular processes. A significant percentage of miRNAs are intragenic, which is often functionally related to their host genes playing either antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) mutually connected via directed paths. Both the entire network and its core possessed statistically significant non-random properties. Specifically, genes forming the core had high expression levels and low expression variance. Furthermore, the network core did not split into separate components corresponding to individual signalling or metabolic pathways, but integrated genes involved in key cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and colorectal cancer patients.
Collapse
Affiliation(s)
- Vladimir V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. .,SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,Tauber Bioinformatics Research Center, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Alexey V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.,Evotec International GmbH, Marie-Curie Str. 7, 37079, Göttingen, Germany
| | | | - Maxim Yu Shkurnikov
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia
| | - Julia A Makarova
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
| | - Alexander G Tonevitsky
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.
| |
Collapse
|
50
|
Hinske LC, Dos Santos FRC, Ohara DT, Ohno-Machado L, Kreth S, Galante PAF. MiRIAD update: using alternative polyadenylation, protein interaction network analysis and additional species to enhance exploration of the role of intragenic miRNAs and their host genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4060447. [PMID: 29220447 PMCID: PMC5569676 DOI: 10.1093/database/bax053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/20/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs have established their role as potent regulators of the epigenome. Interestingly, most miRNAs are located within protein-coding genes with functional consequences that have yet to be fully investigated. MiRIAD is a database with an interactive and user-friendly online interface that has been facilitating research on intragenic miRNAs. In this article, we present a major update. First, data for five additional species (chimpanzee, rat, dog, cow and frog) were added to support the exploration of evolutionary aspects of the relationship between host genes and intragenic miRNAs. Moreover, we integrated data from two different sources to generate a comprehensive alternative polyadenylation dataset. The miRIAD interface was therefore redesigned and provides a completely new gene model representation, including an interactive visualization of the 3′ untranslated region (UTR) with alternative polyadenylation sites, corresponding signals and potential miRNA binding sites. Furthermore, we expanded on functional host gene network analysis. Although the previous version solely reported protein interactions, the update features a separate network analysis view that can either be accessed through the submission of a list of genes of interest or directly from a gene’s list of protein interactions. In addition to statistical properties of the submitted gene set, the interaction network graph is presented and miRNAs with seed site over- and underrepresentation are identified. In summary, the update of miRIAD provides novel datasets and bioinformatics resources with a significant increase in functionality to facilitate intragenic miRNA research in a user-friendly and interactive way. Database URL:http://www.miriad-database.org
Collapse
Affiliation(s)
- Ludwig C Hinske
- Department of Anaesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Felipe R C Dos Santos
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil.,Inter Unidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniel T Ohara
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil
| | - Lucila Ohno-Machado
- Health System Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 93093, USA
| | - Simone Kreth
- Department of Anaesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil
| |
Collapse
|