1
|
Canton APM, Macedo DB, Abreu AP, Latronico AC. Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty. J Endocr Soc 2025; 9:bvae228. [PMID: 39839367 PMCID: PMC11746960 DOI: 10.1210/jendso/bvae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 01/23/2025] Open
Abstract
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH. In the past decade, the identification of genetic causes of CPP has largely expanded, revealing hypothalamic regulatory factors of pubertal timing. Among them, 3 genes associated with CPP are linked to mechanisms involving DNA methylation, reinforcing the strong role of epigenetics underlying this disorder. Loss-of-function mutations in Makorin Ring-Finger Protein 3 (MKRN3) and Delta-Like Non-Canonical Notch Ligand 1 (DLK1), 2 autosomal maternally imprinted genes, have been described as relevant monogenic causes of CPP with the phenotype exclusively associated with paternal transmission. MKRN3 has proven to be a key component of the hypothalamic inhibitory input on GnRH neurons through different mechanisms. Additionally, rare heterozygous variants in the Methyl-CpG-Binding Protein 2 (MECP2), an X-linked gene that is a key factor of DNA methylation machinery, were identified in girls with sporadic CPP with or without neurodevelopmental disorders. In this mini-review, we focus on how the identification of genetic causes of CPP has revealed epigenetic regulators of human pubertal timing, summarizing the latest knowledge on the associations of puberty with MKRN3, DLK1, and MECP2.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Delanie Bulcao Macedo
- Integrated Medical Care Center, Center for Health Sciences, University of Fortaleza (Unifor), Fortaleza 60811-905, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
- Discipline of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Sao Paulo, 05403-000, Sao Paulo, Brazil
| |
Collapse
|
2
|
Wu F, Zhou W, Yue Z, Deng X, Kang W, Yu Z, Zhang H, Zhang B, Feng X, Xiong Q, Chen B. The rs6576457 G > A variant in the MKRN3 gene promoter significantly increases the risk of central precocious puberty and lung cancer in Hubei Chinese population. Hum Mol Genet 2024; 33:1930-1938. [PMID: 39239972 DOI: 10.1093/hmg/ddae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal (HPG) axis. The association between MKRN3 gene variants and central precocious puberty (CPP) has been repeatedly examined. In a recent study, MKRN3 has been assigned a role of tumor suppressor in lung carcinogenesis. Therefore, it is hypothesized that MKRN3 may be the link between CPP and lung cancer (LC), and certain MKRN3 gene variants may affect individuals' susceptibility to CPP and LC. The rs12441287, rs6576457 and rs2239669 in the MKRN3 gene were selected as the target variants. Sanger sequencing was applied to genotype them in two sets of case-control cohorts, namely 384 CPP girls and 422 healthy girls, 550 LC patients and 800 healthy controls. The results showed that rs6576457 but not rs12441287 or rs2239669 was significantly associated with the risk of CPP and LC. Their association with CPP risk was further confirmed in the following meta-analysis. Subsequent functional assays revealed that the rs6576457 genotypes were correlated with differentially expressed MKRN3, and the rs6576457 alleles affected the transcription repressor Oct-1 binding affinity to the MKRN3 promoter. Collectively, the MKRN3 gene rs6576457 may participate in the CPP pathology and LC tumorigenesis in the Hubei Chinese population. However, the present findings should be validated in additional investigations with larger samples from different ethnic populations.
Collapse
Affiliation(s)
- Feng Wu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Weiguang Zhou
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Zhengchu Yue
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Xiangyuan Deng
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Wenqiang Kang
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Zhiyan Yu
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Haixia Zhang
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Bixin Zhang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Xianhong Feng
- Department of Clinical Laboratory, Wuhan Xinzhou District People's Hospital, 61 Xinzhou Road, Xinzhou District, Wuhan, Hubei 431400, China
| | - Qiantao Xiong
- Department of Laboratory, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Guseva EA, Emelianova MA, Sidorova VN, Tyulpakov AN, Dontsova OA, Sergiev PV. Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1558-1572. [PMID: 39418515 DOI: 10.1134/s0006297924090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader-Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelianova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera N Sidorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Bonazza S, Coutts HL, Sukumar S, Turkington HL, Courtney DG. Identifying cellular RNA-binding proteins during infection uncovers a role for MKRN2 in influenza mRNA trafficking. PLoS Pathog 2024; 20:e1012231. [PMID: 38753876 PMCID: PMC11135703 DOI: 10.1371/journal.ppat.1012231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Leigh Coutts
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Swathi Sukumar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Louise Turkington
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David Gary Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
6
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
7
|
Wang T, Liu W, Wang C, Ma X, Akhtar MF, Li Y, Li L. MRKNs: Gene, Functions, and Role in Disease and Infection. Front Oncol 2022; 12:862206. [PMID: 35463379 PMCID: PMC9024132 DOI: 10.3389/fonc.2022.862206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
The makorin RING finger protein (MKRN) gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs present in a wide array from invertebrates to vertebrates. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) as RING finger E3 ligases that mediate substrate degradation are related with conserved RING finger domains that control multiple cellular components via the ubiquitin-proteasome system (UPS), including p53, p21, FADD, PTEN, p65, Nptx1, GLK, and some viral or bacterial proteins. MKRNs also served as diverse roles in disease, like MKRN1 in transcription regulation, metabolic disorders, and tumors; MKRN2 in testis physiology, neurogenesis, apoptosis, and mutation of MKRN2 regulation signals transduction, inflammatory responses, melanoma, and neuroblastoma; MKRN3 in central precocious puberty (CPP) therapy; and MKRN4 firstly reported as a novel E3 ligase instead of a pseudogene to contribute to systemic lupus erythematosus (SLE). Here, we systematically review advances in the gene’s expression, function, and role of MKRNs orthologs in disease and pathogens infection. Further, MKRNs can be considered targets for the host’s innate intracellular antiviral defenses and disease therapy.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuelian Ma
- Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| |
Collapse
|
8
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
9
|
Chuang HC, Hung WT, Chen YM, Hsu PM, Yen JH, Lan JL, Tan TH. Genomic sequencing and functional analyses identify MAP4K3/GLK germline and somatic variants associated with systemic lupus erythematosus. Ann Rheum Dis 2021; 81:243-254. [PMID: 34610951 PMCID: PMC8762023 DOI: 10.1136/annrheumdis-2021-221010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES MAP4K3 (GLK) overexpression in T cells induces interleukin (IL)-17A production and autoimmune responses. GLK overexpressing T-cell population is correlated with severity of human systemic lupus erythematosus (SLE); however, it is unclear how GLK is upregulated in patients with SLE. METHODS We enrolled 181 patients with SLE and 250 individuals without SLE (93 healthy controls and 157 family members of patients with SLE) in two independent cohorts from different hospitals/cities. Genomic DNAs of peripheral blood mononuclear cells were subjected to next-generation sequencing to identify GLK gene variants. The functional consequences of the identified GLK germline or somatic variants were investigated using site-directed mutagenesis and cell transfection, followed by reporter assays, mass spectrometry, immunoblotting, coimmunoprecipitation, and in situ proximity ligation assays. RESULTS We identified 58 patients with SLE from Cohort #1 and #2 with higher frequencies of a somatic variant (chr2:39 477 124 A>G) in GLK 3'-untranslated region (UTR); these patients with SLE showed increased serum anti-double-stranded DNA levels and decreased serum C3/C4 levels. This somatic variant in 3'-UTR enhanced GLK mRNA levels in T cells. In addition, we identified five patients with SLE with GLK (A410T) germline variant in Cohort #1 and #2, as well as two other patients with SLE with GLK (K650R) germline variant in Cohort #1. Another GLK germline variant, A579T, was also detected in one patient with SLE from Cohort #2. Both GLK (A410T) and GLK (K650R) mutants inhibited GLK ubiquitination induced by the novel E3 ligase makorin ring-finger protein 4 (MKRN4), leading to GLK protein stabilisation. CONCLUSIONS Multiple GLK germline and somatic variants cause GLK induction by increasing mRNA or protein stability in patients with SLE.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pu-Ming Hsu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Jeng-Hsien Yen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Joung-Liang Lan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan .,Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Jeong HR, Yoon JS, Lee HJ, Shim YS, Kang MJ, Hwang IT. Serum level of NPTX1 is independent of serum MKRN3 in central precocious puberty. J Pediatr Endocrinol Metab 2021; 34:59-63. [PMID: 33180049 DOI: 10.1515/jpem-2020-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Makorin ring finger protein 3 (MKRN3) is associated with the initiation of puberty, and loss of function mutation of MKRN3 is the most common genetic cause of central precocious puberty (CPP). A recent study reported that MKRN3 interacts with and suppresses neural pentraxin-1 precursor (NPTX1) activity via polyubiquitination during early puberty in the mouse hypothalamus. This study investigated the correlation between serum NPTX1 and MKRN3 in CPP girls and predicted the potential role of NPTX1 in pubertal progression. METHODS In this case-control study, we examined 34 girls diagnosed with CPP and 34 healthy prepubertal girls. Anthropometric and hormonal parameters were measured and serum levels of NPTX1 and MKRN3 were evaluated with commercial enzyme-linked immunosorbent assay kits. RESULTS Serum MKRN3 level decreased significantly in CPP patients compared to controls (344.48 ± 333.77 and 1295.21 ± 780.80 pg/mL, respectively, p<0.001). Serum MKRN3 tended to decrease as Tanner breast stage increased. However, no significant difference was observed in serum NPTX1 levels between patients and controls (20.14 ± 31.75 ng/mL and 12.93 ± 8.28 ng/mL, respectively, p=0.248). The serum level of NPTX1 did not change significantly with the Tanner breast stage. Serum NPTX1 was correlated with the height standard deviation score (r=0.255; p<0.05), but was not correlated with serum MKRN3 level or the others. Conclusion: Although serum NPTX1 level was independent of serum MKRN3 level, the possibility they might be involved in the progression of puberty or CPP remains. Further research is needed to determine their role in the hypothalamus.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Seo Yoon
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Hye Jin Lee
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Yeong Suk Shim
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Min Jae Kang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| |
Collapse
|
11
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
12
|
MKRN2 Physically Interacts with GLE1 to Regulate mRNA Export and Zebrafish Retinal Development. Cell Rep 2020; 31:107693. [DOI: 10.1016/j.celrep.2020.107693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/25/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
|
13
|
Dold A, Han H, Liu N, Hildebrandt A, Brüggemann M, Rücklé C, Hänel H, Busch A, Beli P, Zarnack K, König J, Roignant JY, Lasko P. Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genet 2020; 16:e1008581. [PMID: 31978041 PMCID: PMC7001992 DOI: 10.1371/journal.pgen.1008581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/05/2020] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3’ UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3’ UTR. To ensure accurate development of the Drosophila embryo, proteins and mRNAs are positioned at specific sites within the embryo. Many of these factors are produced and localized during the development of the egg in the mother. One protein essential for this process that has been heavily studied is Oskar (Osk), which is positioned at the posterior pole. During the localization of osk mRNA, its translation is repressed by the RNA-binding protein Bruno1 (Bru1), ensuring that Osk protein is not present outside of the posterior where it is harmful. At the posterior pole, osk mRNA is activated through mechanisms that are not yet understood. In this work, we show that the conserved protein Makorin 1 (Mkrn1) is a novel factor involved in the translational activation of osk. Mkrn1 binds specifically to osk mRNA, overlapping with a binding site of Bru1, thus alleviating the association of Bru1 with osk. Moreover, Mkrn1 is stabilized by poly(A) binding protein (pAbp), a translational activator that binds osk mRNA in close proximity to one Mkrn1 binding site. Our work thus helps to answer a long-standing question in the field, providing insight about the function of Mkrn1 and more generally into embryonic patterning in animals.
Collapse
Affiliation(s)
- Annabelle Dold
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Hong Han
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Niankun Liu
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Andrea Hildebrandt
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany.,Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Cornelia Rücklé
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Heike Hänel
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Anke Busch
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Petra Beli
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian König
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Jean-Yves Roignant
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Thapa P, Shanmugam N, Pokrzywa W. Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism. Bioessays 2019; 42:e1900171. [PMID: 31778250 DOI: 10.1002/bies.201900171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Indexed: 12/17/2022]
Abstract
The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin-proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Nilesh Shanmugam
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| |
Collapse
|
15
|
Hildebrandt A, Brüggemann M, Rücklé C, Boerner S, Heidelberger JB, Busch A, Hänel H, Voigt A, Möckel MM, Ebersberger S, Scholz A, Dold A, Schmid T, Ebersberger I, Roignant JY, Zarnack K, König J, Beli P. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol 2019; 20:216. [PMID: 31640799 PMCID: PMC6805484 DOI: 10.1186/s13059-019-1814-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cells have evolved quality control mechanisms to ensure protein homeostasis by detecting and degrading aberrant mRNAs and proteins. A common source of aberrant mRNAs is premature polyadenylation, which can result in non-functional protein products. Translating ribosomes that encounter poly(A) sequences are terminally stalled, followed by ribosome recycling and decay of the truncated nascent polypeptide via ribosome-associated quality control. RESULTS Here, we demonstrate that the conserved RNA-binding E3 ubiquitin ligase Makorin Ring Finger Protein 1 (MKRN1) promotes ribosome stalling at poly(A) sequences during ribosome-associated quality control. We show that MKRN1 directly binds to the cytoplasmic poly(A)-binding protein (PABPC1) and associates with polysomes. MKRN1 is positioned upstream of poly(A) tails in mRNAs in a PABPC1-dependent manner. Ubiquitin remnant profiling and in vitro ubiquitylation assays uncover PABPC1 and ribosomal protein RPS10 as direct ubiquitylation substrates of MKRN1. CONCLUSIONS We propose that MKRN1 mediates the recognition of poly(A) tails to prevent the production of erroneous proteins from prematurely polyadenylated transcripts, thereby maintaining proteome integrity.
Collapse
Affiliation(s)
- Andrea Hildebrandt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Cornelia Rücklé
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Susan Boerner
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Jan B Heidelberger
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Heike Hänel
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Martin M Möckel
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | | | - Anica Scholz
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Annabelle Dold
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
| | - Jean-Yves Roignant
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, CH-1015, Lausanne, Switzerland
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
16
|
Naulé L, Kaiser UB. Evolutionary Conservation of MKRN3 and Other Makorins and Their Roles in Puberty Initiation and Endocrine Functions. Semin Reprod Med 2019; 37:166-173. [PMID: 31972861 PMCID: PMC8603287 DOI: 10.1055/s-0039-3400965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Puberty is a critical period of development regulated by genetic, nutritional, and environmental factors. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP). To date, MKRN3 mutations are the most common known genetic cause of CPP. MKRN3 is a member of the makorin family of ubiquitin ligases, together with MKRN1 and MKRN2. The Mkrn genes have been identified in both vertebrates and invertebrates and show high evolutionary conservation of their gene and protein structures. While the existence of Mkrn orthologues in a wide spectrum of species suggests a vital cellular role of the makorins, their role in puberty initiation and endocrine functions is just beginning to be investigated. In this review, we discuss recent studies that have shown the involvement of Mkrn3 and other makorins in the regulation of pubertal development and other endocrine functions, including metabolism and fertility, as well as their underlying mechanisms of action.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Aylwin CF, Vigh-Conrad K, Lomniczi A. The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology 2019; 109:208-217. [PMID: 30731454 PMCID: PMC6794153 DOI: 10.1159/000497745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
To attain sexual competence, all mammalian species go through puberty, a maturational period during which body growth and development of secondary sexual characteristics occur. Puberty begins when the diurnal pulsatile gonadotropin-releasing hormone (GnRH) release from the hypothalamus increases for a prolonged period of time, driving the adenohypophysis to increase the pulsatile release of luteinizing hormone with diurnal periodicity. Increased pubertal GnRH secretion does not appear to be driven by inherent changes in GnRH neuronal activity; rather, it is induced by changes in transsynaptic and glial inputs to GnRH neurons. We now know that these changes involve a reduction in inhibitory transsynaptic inputs combined with increased transsynaptic and glial excitatory inputs to the GnRH neuronal network. Although the pubertal process is known to have a strong genetic component, during the last several years, epigenetics has been implicated as a significant regulatory mechanism through which GnRH release is first repressed before puberty and is involved later on during the increase in GnRH secretion that brings about the pubertal process. According to this concept, a central target of epigenetic regulation is the transcriptional machinery of neurons implicated in stimulating GnRH release. Here, we will briefly review the hormonal changes associated with the advent of female puberty and the role that excitatory transsynaptic inputs have in this process. In addition, we will examine the 3 major groups of epigenetic modifying enzymes expressed in the neuroendocrine hypothalamus, which was recently shown to be involved in pubertal development and progression.
Collapse
Affiliation(s)
- Carlos Francisco Aylwin
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA,
| |
Collapse
|
18
|
Yellapragada V, Liu X, Lund C, Känsäkoski J, Pulli K, Vuoristo S, Lundin K, Tuuri T, Varjosalo M, Raivio T. MKRN3 Interacts With Several Proteins Implicated in Puberty Timing but Does Not Influence GNRH1 Expression. Front Endocrinol (Lausanne) 2019; 10:48. [PMID: 30800097 PMCID: PMC6375840 DOI: 10.3389/fendo.2019.00048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Paternally-inherited loss-of-function mutations in makorin ring finger protein 3 gene (MKRN3) underlie central precocious puberty. To investigate the puberty-related mechanism(s) of MKRN3 in humans, we generated two distinct bi-allelic MKRN3 knock-out human pluripotent stem cell lines, Del 1 and Del 2, and differentiated them into GNRH1-expressing neurons. Both Del 1 and Del 2 clones could be differentiated into neuronal progenitors and GNRH1-expressing neurons, however, the relative expression of GNRH1 did not differ from wild type cells (P = NS). Subsequently, we investigated stable and dynamic protein-protein interaction (PPI) partners of MKRN3 by stably expressing it in HEK cells followed by mass spectrometry analyses. We found 81 high-confidence novel protein interaction partners, which are implicated in cellular processes such as insulin signaling, RNA metabolism and cell-cell adhesion. Of the identified interactors, 20 have been previously implicated in puberty timing. In conclusion, our stem cell model for generation of GNRH1-expressing neurons did not offer mechanistic insight for the role of MKRN3 in puberty initiation. The PPI data, however, indicate that MKRN3 may regulate puberty by interacting with other puberty-related proteins. Further studies are required to elucidate the possible mechanisms and outcomes of these interactions.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, HUH, Helsinki, Finland
| | - Markku Varjosalo
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, HUH, Helsinki, Finland
- *Correspondence: Taneli Raivio
| |
Collapse
|
19
|
Tran HT, Cho E, Jeong S, Jeong EB, Lee HS, Jeong SY, Hwang JS, Kim EY. Makorin 1 Regulates Developmental Timing in Drosophila. Mol Cells 2018; 41:1024-1032. [PMID: 30396233 PMCID: PMC6315317 DOI: 10.14348/molcells.2018.0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The central mechanisms coordinating growth and sexual maturation are well conserved across invertebrates and vertebrates. Although mutations in the gene encoding makorin RING finger protein 3 (mkrn3 ) are associated with central precocious puberty in humans, a causal relationship has not been elucidated. Here, we examined the role of mkrn1, a Drosophila ortholog of mammalian makorin genes, in the regulation of developmental timing. Loss of MKRN1 in mkrn1 exS prolonged the 3rd instar stage and delayed the onset of pupariation, resulting in bigger size pupae. MKRN1 was expressed in the prothoracic gland, where the steroid hormone ecdysone is produced. Furthermore, mkrn1 exS larvae exhibited reduced mRNA levels of phantom, which encodes ecdysone-synthesizing enzyme and E74, which is a downstream target of ecdysone. Collectively, these results indicate that MKRN1 fine-tunes developmental timing and sexual maturation by affecting ecdysone synthesis in Drosophila. Moreover, our study supports the notion that malfunction of makorin gene family member, mkrn3 dysregulates the timing of puberty in mammals.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eunjoo Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seongsu Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eui Beom Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seon Yong Jeong
- Department of Medical Genetics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| |
Collapse
|
20
|
Abstract
Puberty involves a series of morphological, physiological and behavioural changes during the last part of the juvenile period that culminates in the attainment of fertility. The activation of the pituitary-gonadal axis by increased hypothalamic secretion of gonadotrophin-releasing hormone (GnRH) is an essential step in the process. The current hypothesis postulates that a loss of transsynaptic inhibition and a rise in excitatory inputs are responsible for the activation of GnRH release. Similarly, a shift in the balance in the expression of puberty activating and puberty inhibitory genes exists during the pubertal transition. In addition, recent evidence suggests that the epigenetic machinery controls this genetic balance, giving rise to the tantalising possibility that epigenetics serves as a relay of environmental signals known for many years to modulate pubertal development. Here, we review the contribution of epigenetics as a regulatory mechanism in the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- C A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - C F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - A Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
21
|
Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata-Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep 2017; 7:46097. [PMID: 28378844 PMCID: PMC5380948 DOI: 10.1038/srep46097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
Activation of NF-κB transcription factor is strictly regulated to prevent excessive inflammatory responses leading to immunopathology. However, it still remains unclear how NF-κB activation is negatively controlled. The PDZ-LIM domain-containing protein PDLIM2 is a nuclear ubiquitin E3 ligase targeting the p65 subunit of NF-κB for degradation, thus terminating NF-κB-mediated inflammation. Using yeast two-hybrid screening, we sought to isolate PDLIM2-interacting proteins that are critical for suppressing NF-κB signaling. Here we identified MKRN2, a RING finger domain-containing protein that belongs to the makorin ring finger protein gene family, as a novel p65 ubiquitin E3 ligase. MKRN2 bound to p65 and promoted the polyubiquitination and proteasome-dependent degradation of p65 through the MKRN2 RING finger domain, thereby suppressing p65-mediated NF-κB transactivation. Notably, MKRN2 and PDLIM2 synergistically promote polyubiquitination and degradation of p65. Consistently, MKRN2 knockdown in dendritic cells resulted in larger amounts of nuclear p65 and augmented production of proinflammatory cytokines in responses to innate stimuli. These results delineate a novel role of MKRN2 in negatively regulating NF-κB-mediated inflammatory responses, cooperatively with PDLIM2.
Collapse
Affiliation(s)
- Chanyoung Shin
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Research Center for Allergy and Immunology (RCAI), Yokohama, Kanagawa 230-0045, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Shota Ichikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kumiko Sakata-Sogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Takashi Tanaka
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Research Center for Allergy and Immunology (RCAI), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Dimitrova-Mladenova MS, Stefanova EM, Glushkova M, Todorova AP, Todorov T, Konstantinova MM, Kazakova K, Tincheva RS. Males with Paternally Inherited MKRN3 Mutations May Be Asymptomatic. J Pediatr 2016; 179:263-265. [PMID: 27640350 DOI: 10.1016/j.jpeds.2016.08.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/19/2016] [Accepted: 08/19/2016] [Indexed: 11/16/2022]
Abstract
Ten girls with sporadic central precocious puberty were screened for mutations in the maternally imprinted gene MKRN3. We detected 1 novel frameshift mutation (p.Arg351Serfs*44) and a previously described mutation (p.Pro161Argfs*10). In the course of investigating the family, genetic analysis found 2 asymptomatic males with paternally inherited MKRN3 mutations, which has not been reported in previous studies.
Collapse
Affiliation(s)
- Mihaela S Dimitrova-Mladenova
- Department of Endocrinology and Genetics, University Children's Hospital, Medical University Sofia, Sofia, Bulgaria.
| | - Elisaveta M Stefanova
- Department of Endocrinology and Genetics, University Children's Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Maria Glushkova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria
| | - Albena P Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria
| | - Maia M Konstantinova
- Department of Endocrinology and Genetics, University Children's Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Krasimira Kazakova
- Department of Endocrinology and Genetics, University Children's Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Radka S Tincheva
- Department of Endocrinology and Genetics, University Children's Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
23
|
Spikol ED, Laverriere CE, Robnett M, Carter G, Wolfe E, Glasgow E. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016; 4. [PMID: 27857842 PMCID: PMC5110251 DOI: 10.3390/diseases4010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.
Collapse
|
24
|
Herrera RA, Kiontke K, Fitch DHA. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development 2016; 143:799-809. [PMID: 26811380 DOI: 10.1242/dev.132738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/16/2016] [Indexed: 12/27/2022]
Abstract
The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development.
Collapse
Affiliation(s)
| | - Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, New York University, New York, NY 10003, USA Faculty of Arts and Sciences, New York University-Shanghai, Shanghai 200122, China
| |
Collapse
|
25
|
Neocleous V, Shammas C, Phelan MM, Nicolaou S, Phylactou LA, Skordis N. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty. Clin Endocrinol (Oxf) 2016; 84:80-4. [PMID: 26173472 DOI: 10.1111/cen.12854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/10/2015] [Accepted: 07/09/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. OBJECTIVE To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. DESIGN AND PATIENTS We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. RESULTS A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. CONCLUSION A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christos Shammas
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marie M Phelan
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Makarios III Hospital, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
- St George's University of London Medical School at the University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
26
|
Grandone A, Cantelmi G, Cirillo G, Marzuillo P, Luongo C, Miraglia del Giudice E, Perrone L. A case of familial central precocious puberty caused by a novel mutation in the makorin RING finger protein 3 gene. BMC Endocr Disord 2015; 15:60. [PMID: 26499472 PMCID: PMC4619005 DOI: 10.1186/s12902-015-0056-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Central precocious puberty (CPP) is often familial but its genetic cause is largely unknown. Very recently, the makorin RING finger protein 3 (MKRN3) gene, located on chromosome 15 in the Prader-Willi syndrome (PWS)-associated region (15q11-q13), has been found mutated in 5 families with familial precocious puberty. The MKRN3 is a maternal imprinted gene and the phenotype is expressed only when the MKRN3 mutations are localized on the allele inherited from the father. The function of this gene is not completely known and the phenotype caused by its defect is not yet fully elucidated. We report a new MKRN3 mutation (Pro160Cysfs*14) causing familial CPP. CASE PRESENTATION The index case is a 7 years old girl showing Tanner stage 3 and pubic hair stage 1. Her bone age evaluated by TW2 method was 10.3 years. Her hormonal data confirmed the diagnosis of central precocious puberty. Familial medical history revealed precocious puberty in a cousin on paternal side. Paternal grandmother had menarche at the age of 9 years and 6 months and premature menopause when she was 36 years old. Genetic analysis revealed a new mutation (c477_485del; Pro160Cysfs*14) in the maternally imprinted MKRN3. Puberty onset was at 5 years in the other affected female family member. Precocious puberty was well controlled by pharmacological therapy. CONCLUSION We expand the number of the MKRN3 mutations associated with CPP and highlight the importance of an accurate family medical history to disclose the peculiar pattern of inheritance of this gene.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Grazia Cantelmi
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Grazia Cirillo
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Caterina Luongo
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| | - Laura Perrone
- Department of Woman, Child and General and Specialized Surgery, Seconda Università degli Studi di Napoli, Naples, Italy.
| |
Collapse
|
27
|
Abreu AP, Macedo DB, Brito VN, Kaiser UB, Latronico AC. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J Mol Endocrinol 2015; 54:R131-9. [PMID: 25957321 PMCID: PMC4573396 DOI: 10.1530/jme-14-0315] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pubertal timing is influenced by complex interactions among genetic, nutritional, environmental, and socioeconomic factors. The role of MKRN3, an imprinted gene located in the Prader-Willi syndrome critical region (chromosome 15q11-13), in pubertal initiation was first described in 2013 after the identification of deleterious MKRN3 mutations in five families with central precocious puberty (CPP) using whole-exome sequencing analysis. Since then, additional loss-of-function mutations of MKRN3 have been associated with the inherited premature sexual development phenotype in girls and boys from different ethnic groups. In all of these families, segregation analysis clearly demonstrated autosomal dominant inheritance with complete penetrance, but with exclusive paternal transmission, consistent with the monoallelic expression of MKRN3 (a maternally imprinted gene). Interestingly, the hypothalamic Mkrn3 mRNA expression pattern in mice correlated with a putative inhibitory input on puberty initiation. Indeed, the initiation of puberty depends on a decrease in factors that inhibit the release of GnRH combined with an increase in stimulatory factors. These recent human and animal findings suggest that MKRN3 plays an inhibitory role in the reproductive axis to represent a new pathway in pubertal regulation.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of EndocrinologyDiabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USAUnidade de Endocrinologia do DesenvolvimentoDisciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular, LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, CEP: 05403-900, São Paulo, Brazil
| | - Delanie B Macedo
- Division of EndocrinologyDiabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USAUnidade de Endocrinologia do DesenvolvimentoDisciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular, LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, CEP: 05403-900, São Paulo, Brazil
| | - Vinicius N Brito
- Division of EndocrinologyDiabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USAUnidade de Endocrinologia do DesenvolvimentoDisciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular, LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, CEP: 05403-900, São Paulo, Brazil
| | - Ursula B Kaiser
- Division of EndocrinologyDiabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USAUnidade de Endocrinologia do DesenvolvimentoDisciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular, LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, CEP: 05403-900, São Paulo, Brazil
| | - Ana Claudia Latronico
- Division of EndocrinologyDiabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USAUnidade de Endocrinologia do DesenvolvimentoDisciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular, LIM 42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, CEP: 05403-900, São Paulo, Brazil
| |
Collapse
|
28
|
Macedo DB, Abreu AP, Reis ACS, Montenegro LR, Dauber A, Beneduzzi D, Cukier P, Silveira LFG, Teles MG, Carroll RS, Junior GG, Filho GG, Gucev Z, Arnhold IJP, de Castro M, Moreira AC, Martinelli CE, Hirschhorn JN, Mendonca BB, Brito VN, Antonini SR, Kaiser UB, Latronico AC. Central precocious puberty that appears to be sporadic caused by paternally inherited mutations in the imprinted gene makorin ring finger 3. J Clin Endocrinol Metab 2014; 99:E1097-103. [PMID: 24628548 PMCID: PMC4037732 DOI: 10.1210/jc.2013-3126] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Loss-of-function mutations in makorin ring finger 3 (MKRN3), an imprinted gene located on the long arm of chromosome 15, have been recognized recently as a cause of familial central precocious puberty (CPP) in humans. MKRN3 has a potential inhibitory effect on GnRH secretion. OBJECTIVES The objective of the study was to investigate potential MKRN3 sequence variations as well as copy number and methylation abnormalities of the 15q11 locus in patients with apparently sporadic CPP. SETTING AND PARTICIPANTS We studied 215 unrelated children (207 girls and eight boys) from three university medical centers with a diagnosis of CPP. All but two of these patients (213 cases) reported no family history of premature sexual development. First-degree relatives of patients with identified MKRN3 variants were included for genetic analysis. MAIN OUTCOME MEASURES All 215 CPP patients were screened for MKRN3 mutations by automatic sequencing. Multiplex ligation-dependent probe amplification was performed in a partially overlapping cohort of 52 patients. RESULTS We identified five novel heterozygous mutations in MKRN3 in eight unrelated girls with CPP. Four were frame shift mutations predicted to encode truncated proteins and one was a missense mutation, which was suggested to be deleterious by in silico analysis. All patients with MKRN3 mutations had classical features of CPP with a median age of onset at 6 years. Copy number and methylation abnormalities at the 15q11 locus were not detected in the patients tested for these abnormalities. Segregation analysis was possible in five of the eight girls with MKRN3 mutations; in all cases, the mutation was inherited on the paternal allele. CONCLUSIONS We have identified novel inherited MKRN3 defects in children with apparently sporadic CPP, supporting a fundamental role of this peptide in the suppression of the reproductive axis.
Collapse
|
29
|
Bulcao Macedo D, Nahime Brito V, Latronico AC. New causes of central precocious puberty: the role of genetic factors. Neuroendocrinology 2014; 100:1-8. [PMID: 25116033 DOI: 10.1159/000366282] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
Abstract
A pivotal event in the onset of puberty in humans is the reemergence of the pulsatile release of the gonadotropin-releasing hormone (GnRH) from hypothalamic neurons. Pathways governing GnRH ontogeny and physiology have been discovered by studying animal models and humans with reproductive disorders. Recent human studies implicated the activation of kisspeptin and its cognate receptor (KISS1/KISS1R) and the inactivation of MKRN3 in the premature reactivation of GnRH secretion, causing central precocious puberty (CPP). MKRN3, an imprinted gene located on the long arm of chromosome 15, encodes makorin ring finger protein 3, which is involved in ubiquitination and cell signaling. The MKRN3 protein is derived only from RNA transcribed from the paternally inherited copy of the gene due to maternal imprinting. Currently, MKRN3 defects represent the most frequent known genetic cause of familial CPP. In this review, we explored the clinical, hormonal and genetic aspects of children with sporadic or familial CPP caused by mutations in the kisspeptin and MKRN3 systems, essential genetic factors for pubertal timing.
Collapse
Affiliation(s)
- Delanie Bulcao Macedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | | |
Collapse
|
30
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, Rodrigues T, Kochi C, Longui CA, Beckers D, de Zegher F, Montenegro LR, Mendonca BB, Carroll RS, Hirschhorn JN, Latronico AC, Kaiser UB. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013; 368:2467-75. [PMID: 23738509 PMCID: PMC3808195 DOI: 10.1056/nejmoa1302160] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Early activation of the hypothalamic-pituitary-gonadal axis results in central precocious puberty. The timing of pubertal development is driven in part by genetic factors, but only a few, rare molecular defects associated with central precocious puberty have been identified. METHODS We performed whole-exome sequencing in 40 members of 15 families with central precocious puberty. Candidate variants were confirmed with Sanger sequencing. We also performed quantitative real-time polymerase-chain-reaction assays to determine levels of messenger RNA (mRNA) in the hypothalami of mice at different ages. RESULTS We identified four novel heterozygous mutations in MKRN3, the gene encoding makorin RING-finger protein 3, in 5 of the 15 families; both sexes were affected. The mutations included three frameshift mutations, predicted to encode truncated proteins, and one missense mutation, predicted to disrupt protein function. MKRN3 is a paternally expressed, imprinted gene located in the Prader-Willi syndrome critical region (chromosome 15q11-q13). All affected persons inherited the mutations from their fathers, a finding that indicates perfect segregation with the mode of inheritance expected for an imprinted gene. Levels of Mkrn3 mRNA were high in the arcuate nucleus of prepubertal mice, decreased immediately before puberty, and remained low after puberty. CONCLUSIONS Deficiency of MKRN3 causes central precocious puberty in humans. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wadekar HB, Sahi VP, Morita EH, Abe S. MKRN expression pattern during embryonic and post-embryonic organogenesis in rice (Oryza sativa L. var. Nipponbare). PLANTA 2013; 237:1083-1095. [PMID: 23262670 DOI: 10.1007/s00425-012-1828-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Rice MKRN is a member of the makorin RING finger protein gene (MKRN) family, which encodes a protein with a characteristic array of zinc-finger motifs conserved in various eukaryotes. Using non-radioactive in situ hybridization, we investigated the spatio-temporal gene expression pattern of rice MKRN during embryogenesis, imbibition, seminal and lateral root development of Oryza sativa L. var. Nipponbare. MKRN expression was ubiquitous during early organogenesis in the embryo along the apical-basal and radial axes. The expression of MKRN decreased during embryonic organ elongation and maturation compared to early embryogenesis, but increased again during imbibition. Tissue-specific and position-dependent MKRN expression was found during embryonic and post-embryonic root and shoot development. Meristematic cells ubiquitously expressed MKRN transcripts, while differentiating cells showed a gradual reduction and termination of MKRN expression. Interestingly, during post-germination MKRN expression was prominent and continued in the metabolically active, differentiated companion cells of the phloem. The differential expression pattern was observed both in the differentiating and differentiated cells. Also, MKRN was expressed in the various developmental stages of the lateral root primordia and the cells surrounding them. Expression of MKRN was also observed after periclinal division of the presumptive pericycle founder cells. The MKRN expression pattern during development of various growth stages suggests an important role of makorin RING finger protein gene (MKRN) in embryonic and post-embryonic organogenesis in both apical-basal and radial developmental axes of rice.
Collapse
Affiliation(s)
- Hanumant Baburao Wadekar
- Laboratory of Molecular Cell Physiology, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| | | | | | | |
Collapse
|
33
|
Chamberlain SJ. RNAs of the human chromosome 15q11-q13 imprinted region. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23208756 DOI: 10.1002/wrna.1150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human chromosome 15q11-q13 region hosts a wide variety of coding and noncoding RNAs, and is also the site of nearly every imaginable type of RNA processing. To deepen the intrigue, the transcripts in the human chromosome 15q11-q13 region are subject to regulation by genomic imprinting, and some of these transcripts are imprinted in a tissue-specific manner. As the region is critically important for three human neurogenetic disorders, Angelman syndrome, Prader-Willi syndrome, and 15q duplication syndrome, there is intense interest in understanding the types of RNA and RNA processing that occurs among the imprinted genes. This review summarizes what is known about the various RNAs within the imprinted domain, including a novel type of RNA that was only very recently identified.
Collapse
Affiliation(s)
- Stormy J Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
34
|
Sahi VP, Wadekar HB, Ravi NS, Arumugam TU, Morita EH, Abe S. A molecular insight into Darwin's "plant brain hypothesis" through expression pattern study of the MKRN gene in plant embryo compared with mouse embryo. PLANT SIGNALING & BEHAVIOR 2012; 7:375-81. [PMID: 22499205 PMCID: PMC3443919 DOI: 10.4161/psb.19094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MKRN gene family encodes zinc ring finger proteins characterized by a unique array of motifs (C3H, RING and a characteristic cys-his motif) in eukaryotes. To elucidate the function of the MKRN gene and to draw an analogy between plant root apical meristem and animal brain, we compared the gene expression pattern of MKRN in plant seeds with that of mouse embryo. The spatio-temporal expression of MKRN in seeds of pea and rice was performed using non radioactive mRNA in situ hybridization (NRISH) with DIG and BIOTIN labeled probes for pea and rice embryos respectively. Images of MKRN1 expression in e10.5 whole mount mouse embryo, hybridized with DIG labeled probes, were obtained from the Mouse Genome Database (MGD). MKRN transcripts were expressed in the vascular bundle, root apical meristem (RAM) and shoot apical meristem (SAM) in pea and rice embryos. The spatial annotation of the MKRN1 NRISH of whole mount mouse embryo shows prominent localization of MKRN1 in the brain, and its possible expression in spinal cord and the genital ridge. Localization of MKRN in the anterior and posterior ends of pea and rice embryo suggests to the probable role it may have in sculpting the pea and rice plants. The expression of MKRN in RAM may give a molecular insight into the hypothesis that plants have their brains seated in the root. The expression of MKRN is similar in functionally and anatomically analogous regions of plant and animal embryos, including the vascular bundle (spinal cord), the RAM (brain), and SAM (genital ridge) thus paving way for further inter-kingdom comparison studies.
Collapse
Affiliation(s)
- Vaidurya Pratap Sahi
- Laboratory of Molecular Cell Physiology, Faculty of Agriculture, Ehime University, Matsuyama, Japan.
| | | | | | | | | | | |
Collapse
|