1
|
Aversano R, Iovene M, Esposito S, L'Abbate A, Villano C, Di Serio E, Cardone MF, Bergamini C, Cigliano RA, D'Amelia V, Frusciante L, Carputo D. Distinct structural variants and repeat landscape shape the genomes of the ancient grapes Aglianico and Falanghina. BMC PLANT BIOLOGY 2024; 24:88. [PMID: 38317087 PMCID: PMC10845522 DOI: 10.1186/s12870-024-04778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Mounting evidence recognizes structural variations (SVs) and repetitive DNA sequences as crucial players in shaping the existing grape phenotypic diversity at intra- and inter-species levels. To deepen our understanding on the abundance, diversity, and distribution of SVs and repetitive DNAs, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), we re-sequenced the genomes of the ancient grapes Aglianico and Falanghina. The analysis of large copy number variants (CNVs) detected candidate polymorphic genes that are involved in the enological features of these varieties. In a comparative analysis of Aglianico and Falanghina sequences with 21 publicly available genomes of cultivated grapes, we provided a genome-wide annotation of grape TEs at the lineage level. We disclosed that at least two main clusters of grape cultivars could be identified based on the TEs content. Multiple TEs families appeared either significantly enriched or depleted. In addition, in silico and cytological analyses provided evidence for a diverse chromosomal distribution of several satellite repeats between Aglianico, Falanghina, and other grapes. Overall, our data further improved our understanding of the intricate grape diversity held by two Italian traditional varieties, unveiling a pool of unique candidate genes never so far exploited in breeding for improved fruit quality.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Marina Iovene
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy.
| | - Salvatore Esposito
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA-CI), Foggia, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maria Francesca Cardone
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | - Carlo Bergamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | | | - Vincenzo D'Amelia
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Feng LY, Lin PF, Xu RJ, Kang HQ, Gao LZ. Comparative Genomic Analysis of Asian Cultivated Rice and Its Wild Progenitor ( Oryza rufipogon) Has Revealed Evolutionary Innovation of the Pentatricopeptide Repeat Gene Family through Gene Duplication. Int J Mol Sci 2023; 24:16313. [PMID: 38003501 PMCID: PMC10671101 DOI: 10.3390/ijms242216313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants. However, current knowledge about the evolution of the PPR gene family remains largely limited. In this study, we performed a comparative genomic analysis of the PPR gene family in O. sativa and its wild progenitor, O. rufipogon, and outlined a comprehensive landscape of gene duplications. Our findings suggest that the majority of PPR genes originated from dispersed duplications. Although segmental duplications have only expanded approximately 11.30% and 13.57% of the PPR gene families in the O. sativa and O. rufipogon genomes, we interestingly obtained evidence that segmental duplication promotes the structural diversity of PPR genes through incomplete gene duplications. In the O. sativa and O. rufipogon genomes, 10 (~33.33%) and 22 pairs of gene duplications (~45.83%) had non-PPR paralogous genes through incomplete gene duplication. Segmental duplications leading to incomplete gene duplications might result in the acquisition of domains, thus promoting functional innovation and structural diversification of PPR genes. This study offers a unique perspective on the evolution of PPR gene structures and underscores the potential role of segmental duplications in PPR gene structural diversity.
Collapse
Affiliation(s)
- Li-Ying Feng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Pei-Fan Lin
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Rong-Jing Xu
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Hai-Qi Kang
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| |
Collapse
|
3
|
Li B, Gschwend AR. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1234130. [PMID: 37719220 PMCID: PMC10501149 DOI: 10.3389/fpls.2023.1234130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Wild grapevines are important genetic resources in breeding programs to confer adaptive fitness traits and unique fruit characteristics, but the genetics underlying these traits, and their evolutionary origins, are largely unknown. To determine the factors that contributed to grapevine genome diversification, we performed comprehensive intragenomic and intergenomic analyses with three cultivated European (including the PN40024 reference genome) and two wild North American grapevine genomes, including our newly released Vitis labrusca genome. We found the heterozygosity of the cultivated grapevine genomes was twice as high as the wild grapevine genomes studied. Approximately 30% of V. labrusca and 48% of V. vinifera Chardonnay genes were heterozygous or hemizygous and a considerable number of collinear genes between Chardonnay and V. labrusca had different gene zygosity. Our study revealed evidence that supports gene gain-loss events in parental genomes resulted in the inheritance of hemizygous genes in the Chardonnay genome. Thousands of segmental duplications supplied source material for genome-specific genes, further driving diversification of the genomes studied. We found an enrichment of recently duplicated, adaptive genes in similar functional pathways, but differential retention of environment-specific adaptive genes within each genome. For example, large expansions of NLR genes were discovered in the two wild grapevine genomes studied. Our findings support variation in transposable elements contributed to unique traits in grapevines. Our work revealed gene zygosity, segmental duplications, gene gain-and-loss variations, and transposable element polymorphisms can be key driving forces for grapevine genome diversification.
Collapse
Affiliation(s)
| | - Andrea R. Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Liao B, Wang C, Li X, Man Y, Ruan H, Zhao Y. Genome-wide analysis of the Populus trichocarpa laccase gene family and functional identification of PtrLAC23. FRONTIERS IN PLANT SCIENCE 2023; 13:1063813. [PMID: 36733583 PMCID: PMC9887407 DOI: 10.3389/fpls.2022.1063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Biofuel is a kind of sustainable, renewable and environment friendly energy. Lignocellulose from the stems of woody plants is the main raw material for "second generation biofuels". Lignin content limits fermentation yield and is therefore a major obstacle in biofuel production. Plant laccase plays an important role in the final step of lignin formation, which provides a new strategy for us to obtain ideal biofuels by regulating the expression of laccase genes to directly gain the desired lignin content or change the composition of lignin. METHODS Multiple sequence alignment and phylogenetic analysis were used to classify PtrLAC genes; sequence features of PtrLACs were revealed by gene structure and motif composition analysis; gene duplication, interspecific collinearity and Ka/Ks analysis were conducted to identify ancient PtrLACs; expression levels of PtrLAC genes were measured by RNA-Seq data and qRT-PCR; domain analysis combine with cis-acting elements prediction together showed the potential function of PtrLACs. Furthermore, Alphafold2 was used to simulate laccase 3D structures, proLAC23::LAC23-eGFP transgenic Populus stem transects were applied to fluorescence observation. RESULTS A comprehensive analysis of the P. trichocarpa laccase gene (PtLAC) family was performed. Some ancient PtrLAC genes such as PtrLAC25, PtrLAC19 and PtrLAC41 were identified. Gene structure and distribution of conserved motifs clearly showed sequence characteristics of each PtrLAC. Combining published RNA-Seq data and qRT-PCR analysis, we revealed the expression pattern of PtrLAC gene family. Prediction results of cis-acting elements show that PtrLAC gene regulation was closely related to light. Through above analyses, we selected 5 laccases and used Alphafold2 to simulate protein 3D structures, results showed that PtrLAC23 may be closely related to the lignification. Fluorescence observation of proLAC23::LAC23-eGFP transgenic Populus stem transects and qRT-PCR results confirmed our hypothesis again. DISCUSSION In this study, we fully analyzed the Populus trichocarpa laccase gene family and identified key laccase genes related to lignification. These findings not only provide new insights into the characteristics and functions of Populus laccase, but also give a new understanding of the broad prospects of plant laccase in lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Boyang Liao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chencan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Yi Man
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Hang Ruan
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Fiol A, Jurado-Ruiz F, López-Girona E, Aranzana MJ. An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster. PLANT METHODS 2022; 18:105. [PMID: 36030243 PMCID: PMC9419362 DOI: 10.1186/s13007-022-00937-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Genome complexity is largely linked to diversification and crop innovation. Examples of regions with duplicated genes with relevant roles in agricultural traits are found in many crops. In both duplicated and non-duplicated genes, much of the variability in agronomic traits is caused by large as well as small and middle scale structural variants (SVs), which highlights the relevance of the identification and characterization of complex variability between genomes for plant breeding. RESULTS Here we improve and demonstrate the use of CRISPR-Cas9 enrichment combined with long-read sequencing technology to resolve the MYB10 region in the linkage group 3 (LG3) of Japanese plum (Prunus salicina). This region, which has a length from 90 to 271 kb according to the P. salicina genomes available, is associated with fruit color variability in Prunus species. We demonstrate the high complexity of this region, with homology levels between Japanese plum varieties comparable to those between Prunus species. We cleaved MYB10 genes in five plum varieties using the Cas9 enzyme guided by a pool of crRNAs. The barcoded fragments were then pooled and sequenced in a single MinION Oxford Nanopore Technologies (ONT) run, yielding 194 Mb of sequence. The enrichment was confirmed by aligning the long reads to the plum reference genomes, with a mean read on-target value of 4.5% and a depth per sample of 11.9x. From the alignment, 3261 SNPs and 287 SVs were called and phased. A de novo assembly was constructed for each variety, which also allowed detection, at the haplotype level, of the variability in this region. CONCLUSIONS CRISPR-Cas9 enrichment is a versatile and powerful tool for long-read targeted sequencing even on highly duplicated and/or polymorphic genomic regions, being especially useful when a reference genome is not available. Potential uses of this methodology as well as its limitations are further discussed.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Federico Jurado-Ruiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Barcelona, Spain.
| |
Collapse
|
6
|
Li G, Wang Q, Lu L, Wang S, Chen X, Khan MHU, Zhang Y, Yang S. Identification of the soybean small auxin upregulated RNA (SAUR) gene family and specific haplotype for drought tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Huang Z, Shen F, Chen Y, Cao K, Wang L. Chromosome-scale genome assembly and population genomics provide insights into the adaptation, domestication, and flavonoid metabolism of Chinese plum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1174-1192. [PMID: 34473873 DOI: 10.1111/tpj.15482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Globally, commercialized plum cultivars are mostly diploid Chinese plums (Prunus salicina Lindl.), also known as Japanese plums, and are one of the most abundant and variable fruit tree species. To advance Prunus genomic research, we present a chromosome-scale P. salicina genome assembly, constructed using an integrated strategy that combines Illumina, Oxford Nanopore, and high-throughput chromosome conformation capture (Hi-C) sequencing. The high-quality genome assembly consists of a 318.6-Mb sequence (contig N50 length of 2.3 Mb) with eight pseudo-chromosomes. The expansion of the P. salicina genome is led by recent segmental duplications and a long terminal repeat burst of approximately 0.2 Mya. This resulted in a significant expansion of gene families associated with flavonoid metabolism and plant resistance, which impacted fruit flavor and increased species adaptability. Population structure and domestication history suggest that Chinese plum may have originated from South China and provides a domestication route with accompanying genomic variations. Selection sweep and genetic diversity analysis enabled the identification of several critical genes associated with flowering time, stress tolerance, and flavonoid metabolism, demonstrating the essential roles of related pathways during domestication. Furthermore, we reconstructed and exploited flavonoid-anthocyanin metabolism using multi-omics analysis in Chinese plum and proposed a complete metabolic pathway. Collectively, our results will facilitate further candidate gene discovery for important agronomic traits in Chinese plum and provide insights into future functional genomic studies and DNA-informed breeding.
Collapse
Affiliation(s)
- Zhenyu Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuling Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| |
Collapse
|
8
|
Seeing the Forest through the (Phylogenetic) Trees: Functional Characterisation of Grapevine Terpene Synthase ( VviTPS) Paralogues and Orthologues. PLANTS 2021; 10:plants10081520. [PMID: 34451565 PMCID: PMC8401418 DOI: 10.3390/plants10081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Gene families involved in specialised metabolism play a key role in a myriad of ecophysiological and biochemical functions. The Vitis vinifera sesquiterpene synthases represent the largest subfamily of grapevine terpene synthase (VviTPS) genes and are important volatile metabolites for wine flavour and aroma, as well as ecophysiological interactions. The functional characterisation of VviTPS genes is complicated by a reliance on a single reference genome that greatly underrepresents this large gene family, exacerbated by extensive duplications and paralogy. The recent release of multiple phased diploid grapevine genomes, as well as extensive whole-genome resequencing efforts, provide a wealth of new sequence information that can be utilised to overcome the limitations of the reference genome. A large cluster of sesquiterpene synthases, localised to chromosome 18, was explored by means of comparative sequence analyses using the publicly available grapevine reference genome, three PacBio phased diploid genomes and whole-genome resequencing data from multiple genotypes. Two genes, VviTPS04 and -10, were identified as putative paralogues and/or allelic variants. Subsequent gene isolation from multiple grapevine genotypes and characterisation by means of a heterologous in planta expression and volatile analysis resulted in the identification of genotype-specific structural variations and polymorphisms that impact the gene function. These results present novel insight into how grapevine domestication likely shaped the VviTPS landscape to result in genotype-specific functions.
Collapse
|
9
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
10
|
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Segmental duplications are hot spots of copy number variants affecting barley gene content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1073-1088. [PMID: 32338390 PMCID: PMC7496488 DOI: 10.1111/tpj.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/31/2023]
Abstract
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low-copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD-rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome-wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.
Collapse
Affiliation(s)
- Gianluca Bretani
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Chiara Ferrandi
- Parco Tecnologico PadanoLoc. C.na CodazzaVia Einstein26900LodiItaly
| | | | - Robbie Waugh
- James Hutton Institute, InvergowrieDundeeDD2 5DAUK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 306466GaterslebenGermany
- Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| |
Collapse
|
11
|
Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. The Soybean Laccase Gene Family: Evolution and Possible Roles in Plant Defense and Stem Strength Selection. Genes (Basel) 2019; 10:E701. [PMID: 31514462 PMCID: PMC6770974 DOI: 10.3390/genes10090701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xiaobin Zhu
- School of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
12
|
Genome Wide Identification, Molecular Characterization, and Gene Expression Analyses of Grapevine NHX Antiporters Suggest Their Involvement in Growth, Ripening, Seed Dormancy, and Stress Response. Biochem Genet 2019; 58:102-128. [PMID: 31286319 DOI: 10.1007/s10528-019-09930-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/27/2019] [Indexed: 01/23/2023]
Abstract
Plant NHX antiporters are critical for cellular pH, Na+, and K+ homeostasis and salt tolerance. Even though their genomic and functional studies have been conducted in many species, the grapevine NHX family has not been described yet. Our work highlights the presence of six VvNHX genes whose phylogenetic analysis revealed their classification in two distinct groups: group I vacuolar (VvNHX1-5) and group II endosomal (VvNHX6). Several cis-acting regulatory elements related to tissue-specific expression, transcription factor binding, abiotic/biotic stresses response, and light regulation elements were identified in their promoter. Expression profile analyses of VvNHX genes showed variable transcription within organs and tissues with diverse patterns according to biochemical, environmental, and biotic treatments. All VvNHXs are involved in berry growth, except VvNHX5 that seems to be rather implicated in seed maturation. VvNHX4 would be more involved in floral development, while VvNHX2 and 3 display redundant roles. QPCR expression analyses of VvNHX1 showed its induction by NaCl and KNO3 treatments, whereas VvNHX6 was induced by ABA application and strongly repressed by PEG treatment. VvNHX1 plays a crucial role in a bunch of grape developmental steps and adaptation responses through mechanisms of phyto-hormonal signaling. Overall, VvNHX family members could be valuable candidate genes for grapevine improvement.
Collapse
|
13
|
Catacchio CR, Alagna F, Perniola R, Bergamini C, Rotunno S, Calabrese FM, Crupi P, Antonacci D, Ventura M, Cardone MF. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Sci Rep 2019; 9:2809. [PMID: 30809001 PMCID: PMC6391451 DOI: 10.1038/s41598-019-39010-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and -signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management.
Collapse
Affiliation(s)
- C R Catacchio
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - F Alagna
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
- ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Centro Ricerche Trisaia, Rotondella (MT), Italy
| | - R Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - C Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - S Rotunno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - F M Calabrese
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - P Crupi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - D Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - M Ventura
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - M F Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy.
| |
Collapse
|
14
|
Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:43-53. [PMID: 29960182 DOI: 10.1016/j.plaphy.2018.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/26/2023]
Abstract
The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.
Collapse
Affiliation(s)
- Soni Chowrasia
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Alok Kumar Panda
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Harmeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
15
|
Little A, Schwerdt JG, Shirley NJ, Khor SF, Neumann K, O'Donovan LA, Lahnstein J, Collins HM, Henderson M, Fincher GB, Burton RA. Revised Phylogeny of the Cellulose Synthase Gene Superfamily: Insights into Cell Wall Evolution. PLANT PHYSIOLOGY 2018; 177:1124-1141. [PMID: 29780036 PMCID: PMC6052982 DOI: 10.1104/pp.17.01718] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/10/2018] [Indexed: 05/18/2023]
Abstract
Cell walls are crucial for the integrity and function of all land plants and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterization of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was thought previously to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-β-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae.
Collapse
Affiliation(s)
- Alan Little
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Julian G Schwerdt
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Shi F Khor
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Kylie Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O'Donovan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Marilyn Henderson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
16
|
Pezer Ž, Chung AG, Karn RC, Laukaitis CM. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions. Genome Biol Evol 2018; 9:3858091. [PMID: 28575204 PMCID: PMC5513543 DOI: 10.1093/gbe/evx099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.
Collapse
Affiliation(s)
- Željka Pezer
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ruđer Bošković Institute, Zagreb, Croatia
| | - Amanda G Chung
- Department of Medicine, College of Medicine, University of Arizona
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| | | |
Collapse
|
17
|
Minio A, Lin J, Gaut BS, Cantu D. How Single Molecule Real-Time Sequencing and Haplotype Phasing Have Enabled Reference-Grade Diploid Genome Assembly of Wine Grapes. FRONTIERS IN PLANT SCIENCE 2017; 8:826. [PMID: 28567052 PMCID: PMC5434136 DOI: 10.3389/fpls.2017.00826] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 05/23/2023]
Affiliation(s)
- Andrea Minio
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Jerry Lin
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
- *Correspondence: Dario Cantu
| |
Collapse
|
18
|
Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S. Sequence Polymorphisms and Structural Variations among Four Grapevine ( Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1279. [PMID: 28775732 PMCID: PMC5517397 DOI: 10.3389/fpls.2017.01279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.
Collapse
Affiliation(s)
- Luca Mercenaro
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Giovanni Nieddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
- *Correspondence: Salvatore Camiolo,
| |
Collapse
|
19
|
Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porceddu A, Camiolo S, Wong D, Castellarin S, Vandelle E, Polverari A. Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members. Sci Rep 2016; 6:38260. [PMID: 27910910 PMCID: PMC5133618 DOI: 10.1038/srep38260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The Arabidopsis Tóxicos en Levadura (ATL) protein family is a class of E3 ubiquitin ligases with a characteristic RING-H2 Zn-finger structure that mediates diverse physiological processes and stress responses in plants. We carried out a genome-wide survey of grapevine (Vitis vinifera L.) ATL genes and retrieved 96 sequences containing the canonical ATL RING-H2 domain. We analysed their genomic organisation, gene structure and evolution, protein domains and phylogenetic relationships. Clustering revealed several clades, as already reported in Arabidopsis thaliana and rice (Oryza sativa), with an expanded subgroup of grapevine-specific genes. Most of the grapevine ATL genes lacked introns and were scattered among the 19 chromosomes, with a high level of duplication retention. Expression profiling revealed that some ATL genes are expressed specifically during early or late development and may participate in the juvenile to mature plant transition, whereas others may play a role in pathogen and/or abiotic stress responses, making them key candidates for further functional analysis. Our data offer the first genome-wide overview and annotation of the grapevine ATL family, and provide a basis for investigating the roles of specific family members in grapevine physiology and stress responses, as well as potential biotechnological applications.
Collapse
Affiliation(s)
- Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alice Regaiolo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Arianna Lovato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alejandro Giorgetti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Andrea Porceddu
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Salvatore Camiolo
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Darren Wong
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
20
|
Cardone MF, D'Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D. Inter-varietal structural variation in grapevine genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:648-661. [PMID: 27419916 DOI: 10.1111/tpj.13274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 05/10/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties.
Collapse
Affiliation(s)
- Maria Francesca Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, TR-06800, Turkey
| | - Carlo Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | | | - Fabio Anaclerio
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giorgia Chiatante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Annamaria Marra
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rocco Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Donato Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| |
Collapse
|
21
|
Cardone MF, Bergamini C, D'Addabbo P, Alkan C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D. Genomics technologies to study structural variations in the grapevine genome. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160701016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Samaniego Castruita JA, Zepeda Mendoza ML, Barnett R, Wales N, Gilbert MTP. Odintifier--A computational method for identifying insertions of organellar origin from modern and ancient high-throughput sequencing data based on haplotype phasing. BMC Bioinformatics 2015. [PMID: 26216337 PMCID: PMC4517485 DOI: 10.1186/s12859-015-0682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Cellular organelles with genomes of their own (e.g. plastids and mitochondria) can pass genetic sequences to other organellar genomes within the cell in many species across the eukaryote phylogeny. The extent of the occurrence of these organellar-derived inserted sequences (odins) is still unknown, but if not accounted for in genomic and phylogenetic studies, they can be a source of error. However, if correctly identified, these inserted sequences can be used for evolutionary and comparative genomic studies. Although such insertions can be detected using various laboratory and bioinformatic strategies, there is currently no straightforward way to apply them as a standard organellar genome assembly on next-generation sequencing data. Furthermore, most current methods for identification of such insertions are unsuitable for use on non-model organisms or ancient DNA datasets. Results We present a bioinformatic method that uses phasing algorithms to reconstruct both source and inserted organelle sequences. The method was tested in different shotgun and organellar-enriched DNA high-throughput sequencing (HTS) datasets from ancient and modern samples. Specifically, we used datasets from lions (Panthera leo ssp. and Panthera leo leo) to characterize insertions from mitochondrial origin, and from common grapevine (Vitis vinifera) and bugle (Ajuga reptans) to characterize insertions derived from plastid genomes. Comparison of the results against other available organelle genome assembly methods demonstrated that our new method provides an improvement in the sequence assembly. Conclusion Using datasets from a wide range of species and different levels of complexity we showed that our novel bioinformatic method based on phasing algorithms can be used to achieve the next two goals: i) reference-guided assembly of chloroplast/mitochondrial genomes from HTS data and ii) identification and simultaneous assembly of odins. This method represents the first application of haplotype phasing for automatic detection of odins and reference-based organellar genome assembly. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0682-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose Alfredo Samaniego Castruita
- Centre for GeoGenetics, The Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark.
| | - Marie Lisandra Zepeda Mendoza
- Centre for GeoGenetics, The Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark.
| | - Ross Barnett
- Centre for GeoGenetics, The Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark.
| | - Nathan Wales
- Centre for GeoGenetics, The Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark.
| | - M Thomas P Gilbert
- Centre for GeoGenetics, The Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark.
| |
Collapse
|
23
|
Gray DJ, Li ZT, Dhekney SA. Precision breeding of grapevine (Vitis vinifera L.) for improved traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:3-10. [PMID: 25438781 DOI: 10.1016/j.plantsci.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 05/26/2023]
Abstract
This review provides an overview of recent technological advancements that enable precision breeding to genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termed "cisgenic" or "intragenic" genetic improvement, necessitates a better understanding and use of genomic resources now becoming accessible. Although it is now a relatively simple task to identify genetic elements and genes from numerous "omics" databases, the control of major agronomic and enological traits often involves the currently unknown participation of many genes and regulatory machineries. In addition, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus, it is critical to functionally test each of these genetic entities to determine their real-world functionality or contribution to trait attributes. Toward this goal, several diverse techniques now are in place, including cell culture systems to allow efficient plant regeneration, advanced gene insertion techniques, and, very recently, resources for genomic analyses. Currently, these techniques are being used for high-throughput expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envisioned that future research efforts will be extended to the study of promoters and genes functioning to enhance other important traits, such as fruit quality and vigor.
Collapse
Affiliation(s)
- Dennis J Gray
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504 USA.
| | - Zhijian T Li
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504 USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, 663 Wyarno Road, Sheridan, WY 82801 USA
| |
Collapse
|
24
|
Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, Bitz O, Schwab W. A UDP-Glucose:Monoterpenol Glucosyltransferase Adds to the Chemical Diversity of the Grapevine Metabolome. PLANT PHYSIOLOGY 2014; 165:561-581. [PMID: 24784757 PMCID: PMC4044836 DOI: 10.1104/pp.113.232470] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/28/2014] [Indexed: 05/22/2023]
Abstract
Terpenoids represent one of the major classes of natural products and serve different biological functions. In grape (Vitis vinifera), a large fraction of these compounds is present as nonvolatile terpene glycosides. We have extracted putative glycosyltransferase (GT) sequences from the grape genome database that show similarity to Arabidopsis (Arabidopsis thaliana) GTs whose encoded proteins glucosylate a diversity of terpenes. Spatial and temporal expression levels of the potential VvGT genes were determined in five different grapevine varieties. Heterologous expression and biochemical assays of candidate genes led to the identification of a UDP-glucose:monoterpenol β-d-glucosyltransferase (VvGT7). The VvGT7 gene was expressed in various tissues in accordance with monoterpenyl glucoside accumulation in grape cultivars. Twelve allelic VvGT7 genes were isolated from five cultivars, and their encoded proteins were biochemically analyzed. They varied in substrate preference and catalytic activity. Three amino acids, which corresponded to none of the determinants previously identified for other plant GTs, were found to be important for enzymatic catalysis. Site-specific mutagenesis along with the analysis of allelic proteins also revealed amino acids that impact catalytic activity and substrate tolerance. These results demonstrate that VvGT7 may contribute to the production of geranyl and neryl glucoside during grape ripening.
Collapse
Affiliation(s)
- Friedericke Bönisch
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Johanna Frotscher
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Sarah Stanitzek
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Ernst Rühl
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Matthias Wüst
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Oliver Bitz
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany (F.B., W.S.);Geisenheim University, Department of Grape Breeding, 65366 Geisenheim, Germany (J.F., E.R., O.B.); andFood Chemistry Research Unit, Institute of Nutrition and Food Sciences, University of Bonn, D-53115 Bonn, Germany (S.S., M.W.)
| |
Collapse
|
25
|
Janoušek V, Karn RC, Laukaitis CM. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family. BMC Evol Biol 2013; 13:107. [PMID: 23718880 PMCID: PMC3669608 DOI: 10.1186/1471-2148-13-107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022] Open
Abstract
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague 128 43, Czech Republic
| | | | | |
Collapse
|
26
|
Jiang SY, González JM, Ramachandran S. Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS One 2013; 8:e63551. [PMID: 23696832 PMCID: PMC3656045 DOI: 10.1371/journal.pone.0063551] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/03/2013] [Indexed: 12/20/2022] Open
Abstract
Tandem and segmental duplications significantly contribute to gene family expansion and genome evolution. Genome-wide identification of tandem and segmental genes has been analyzed before in several plant genomes. However, comparative studies in functional bias, expression divergence and their roles in species domestication are still lacking. We have carried out a genome-wide identification and comparative analysis of tandem and segmental genes in the rice genome. A total of 3,646 and 3,633 pairs of tandem and segmental genes, respectively, were identified in the genome. They made up around 30% of total annotated rice genes (excluding transposon-coding genes). Both tandem and segmental duplicates showed different physical locations and exhibited a biased subset of functions. These two types of duplicated genes were also under different functional constrains as shown by nonsynonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analysis. They are also differently regulated depending on the tissues and abiotic and biotic stresses based on transcriptomics data. The expression divergence might be related to promoter differentiation and DNA methylation status after tandem or segmental duplications. Both tandem and segmental duplications differ in their contribution to genetic novelty but evidence suggests that they play their role in species domestication and genome evolution.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
| | - José M. González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
27
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
28
|
Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. THE PLANT CELL 2012; 24:3489-505. [PMID: 22948079 PMCID: PMC3480284 DOI: 10.1105/tpc.112.100230] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 05/18/2023]
Abstract
We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.
Collapse
Affiliation(s)
- Marianna Fasoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Silvia Dal Santo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Sara Zenoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | | | - Lorenzo Farina
- Dipartimento di Informatica e Sistemistica Antonio Ruberti, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy
| | - Anita Zamboni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Andrea Porceddu
- Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Luca Venturini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Manuele Bicego
- Dipartimento di Informatica, Università degli Studi di Verona, 37134 Verona, Italy
| | | | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
- Address correspondence to
| |
Collapse
|
29
|
Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC PLANT BIOLOGY 2012; 12:130. [PMID: 22863370 PMCID: PMC3433347 DOI: 10.1186/1471-2229-12-130] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/03/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS), a type III polyketide synthase (PKS). Stilbene synthases are closely related to chalcone synthases (CHS), the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. RESULTS In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection) and abiotic (wounding and UV-C exposure) stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be diametrically opposed suggesting that flow of carbon between these two competing metabolic pathways is tightly regulated at the transcriptional level. CONCLUSIONS This study represents an overview of the expression pattern of each member of the STS gene family in grapevine under both constitutive and stress-induced conditions. The results strongly indicate the existence of a transcriptional subfunctionalization amongst VvSTSs and provide the foundation for further functional investigations about the role and evolution of this large gene family. Moreover, it represents the first study to clearly show the differential regulation of VvCHS and VvSTS genes, suggesting the involvement of transcription factors (TFs) in both the activation and repression of these genes.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università di Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Ian B Dry
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA, 5064, Australia
| | - Marianna Fasoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Sara Zenoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università di Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|