1
|
Prabakaran AD, Chung HJ, McFarland K, Govindarajan T, El Abdellaoui Soussi F, Durumutla HB, Villa C, Piczer K, Latimer H, Werbrich C, Akinborewa O, Horning R, Quattrocelli M. The human genetic variant rs6190 unveils Foxc1 and Arid5a as novel pro-metabolic targets of the glucocorticoid receptor in muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.586997. [PMID: 38585940 PMCID: PMC10996618 DOI: 10.1101/2024.03.28.586997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genetic variations in the glucocorticoid receptor (GR) gene NR3C1 can impact metabolism. The single nucleotide polymorphism (SNP) rs6190 (p.R23K) has been associated in humans with enhanced metabolic health, but the SNP mechanism of action remains completely unknown. We generated a transgenic knock-in mice genocopying this polymorphism to elucidate how the mutant GR impacts metabolism. Compared to non-mutant littermates, mutant mice showed increased muscle insulin sensitivity and strength on regular chow and high-fat diet, blunting the diet-induced adverse effects on weight gain and exercise intolerance. Overlay of RNA-seq and ChIP-seq profiling in skeletal muscle revealed increased transactivation of Foxc1 and Arid5A genes by the mutant GR. Using adeno-associated viruses for in vivo overexpression in muscle, we found that Foxc1 was sufficient to transcriptionally activate the insulin response pathway genes Insr and Irs1. In parallel, Arid5a was sufficient to transcriptionally repress the lipid uptake genes Cd36 and Fabp4, reducing muscle triacylglycerol accumulation. Collectively, our findings identify a muscle-autonomous epigenetic mechanism of action for the rs6190 SNP effect on metabolic homeostasis, while leveraging a human nuclear receptor coding variant to unveil Foxc1 and Arid5a as novel epigenetic regulators of muscle metabolism.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hyun-Jy Chung
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thirupugal Govindarajan
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chiara Villa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Italy
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert Horning
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Shehab S, Javed H, Johnson AM, Tariq S, Kumar CA, Emerald BS. Unveiling the mechanisms of neuropathic pain suppression: perineural resiniferatoxin targets Trpv1 and beyond. Front Neuroanat 2023; 17:1306180. [PMID: 38099210 PMCID: PMC10720729 DOI: 10.3389/fnana.2023.1306180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Neuropathic pain arises from damage or disorders affecting the somatosensory system. In rats, L5 nerve injury induces thermal and mechanical hypersensitivity/hyperalgesia. Recently, we demonstrated that applying resiniferatoxin (RTX) directly on uninjured L3 and L4 nerves alleviated thermal and mechanical hypersensitivity resulting from L5 nerve injury. Herein, using immunohistochemistry, Western blot, and qRT-PCR techniques, we reveal that perineural application of RTX (0.002%) on the L4 nerve substantially downregulated the expression of its receptor (Trpv1) and three different voltage-gated ion channels (Nav1.9, Kv4.3, and Cav2.2). These channels are found primarily in small-sized neurons and show significant colocalization with Trpv1 in the dorsal root ganglion (DRG). However, RTX treatment did not affect the expression of Kv1.1, Piezo2 (found in large-sized neurons without colocalization with Trpv1), and Kir4.1 (localized in satellite cells) in the ipsilateral DRGs. Furthermore, RTX application on L3 and L4 nerves reduced the activation of c-fos in the spinal neurons induced by heat stimulation. Subsequently, we investigated whether applying RTX to the L3 and L4 nerves 3 weeks before the L5 nerve injury could prevent the onset of neuropathic pain. Both 0.002 and 0.004% concentrations of RTX produced significant analgesic effects, while complete prevention of thermal and mechanical hypersensitivity required a concentration of 0.008%. Importantly, this preventive effect on neuropathic manifestations was not associated with nerve degeneration, as microscopic examination revealed no morphological changes. Overall, this study underscores the mechanisms and the significance of perineural RTX treatment applied to adjacent uninjured nerves in entirely preventing nerve injury-induced neuropathic pain in humans and animals.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
3
|
Kaimala S, Ansari SA, Emerald BS. DNA methylation in the pathogenesis of type 2 diabetes. VITAMINS AND HORMONES 2023; 122:147-169. [PMID: 36863792 DOI: 10.1016/bs.vh.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Javed H, Johnson AM, Challagandla AK, Emerald BS, Shehab S. Cutaneous Injection of Resiniferatoxin Completely Alleviates and Prevents Nerve-Injury-Induced Neuropathic Pain. Cells 2022; 11:cells11244049. [PMID: 36552812 PMCID: PMC9776507 DOI: 10.3390/cells11244049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fifth lumbar (L5) nerve injury in rodent produces neuropathic manifestations in the corresponding hind paw. The aim of this study was to investigate the effect of cutaneous injection of resiniferatoxin (RTX), a TRPV1 receptor agonist, in the rat's hind paw on the neuropathic pain induced by L5 nerve injury. The results showed that intraplantar injection of RTX (0.002%, 100 µL) (1) completely reversed the development of chronic thermal and mechanical hypersensitivity; (2) completely prevented the development of nerve-injury-induced thermal and mechanical hypersensitivity when applied one week earlier; (3) caused downregulation of nociceptive pain markers, including TRPV1, IB4 and CGRP, and upregulation of VIP in the ipsilateral dorsal horn of spinal cord and dorsal root ganglion (DRG) immunohistochemically and a significant reduction in the expression of TRPV1 mRNA and protein in the ipsilateral DRG using Western blot and qRT-PCR techniques; (4) caused downregulation of PGP 9.5- and CGRP-immunoreactivity in the injected skin; (5) produced significant suppression of c-fos expression, as a neuronal activity marker, in the spinal neurons in response to a second intraplantar RTX injection two weeks later. This work identifies the ability of cutaneous injection of RTX to completely alleviate and prevent the development of different types of neuropathic pain in animals and humans.
Collapse
|
5
|
Javed H, Rehmathulla S, Tariq S, Ali MA, Emerald BS, Shehab S. Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel. J Comp Neurol 2021; 529:3710-3725. [PMID: 34468017 DOI: 10.1002/cne.25240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
6
|
Javed H, Rehmathulla S, Tariq S, Emerald BS, Ljubisavljevic M, Shehab S. Perineural application of resiniferatoxin on uninjured L3 and L4 nerves completely alleviates thermal and mechanical hypersensitivity following L5 nerve injury in rats. J Comp Neurol 2020; 528:2195-2217. [PMID: 32064609 DOI: 10.1002/cne.24884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Fifth lumbar (L5) nerve injury in rats causes neuropathic pain manifested with thermal and mechanical hypersensitivity in the ipsilateral hind paw. This study aimed to determine whether the elimination of unmyelinated primary afferents of the adjacent uninjured nerves (L3 and L4) would alleviate peripheral neuropathic pain. Different concentrations of capsaicin or its analog, resiniferatoxin (RTX), were applied perineurally on either the left L4 or L3 and L4 nerves in Wistar rats whose left L5 nerves were ligated and cut. The application of both capsaicin and RTX on the L4 nerve significantly reduced both thermal and mechanical hypersensitivity. However, only the application of RTX on both L3 and L4 nerves completely alleviated all neuropathic manifestations. Interestingly, responses to thermal and mechanical stimuli were preserved, despite RTX application on uninjured L3, L4, and L5 nerves, which supply the plantar skin in rats. Perineural application of RTX caused downregulation of TRPV1, CGRP, and IB4 binding and upregulation of VIP in the corresponding dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. In comparison, VGLUT1 and NPY immunoreactivities were not altered. RTX application did not cause degenerative or ultrastructural changes in the treated nerves and corresponding DRGs. The results demonstrate that RTX induces neuroplasticity, rather than structural changes in primary afferents, that are responsible for alleviating hypersensitivity and chronic pain. Furthermore, this study suggests that treating uninjured adjacent spinal nerves may be used to manage chronic neuropathic pain following peripheral nerve injury.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bright S Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
7
|
Karakkat JV, Kaimala S, Sreedharan SP, Jayaprakash P, Adeghate EA, Ansari SA, Guccione E, Mensah-Brown EPK, Starling Emerald B. The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Res 2019; 47:10086-10103. [PMID: 31529049 PMCID: PMC6821284 DOI: 10.1093/nar/gkz786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.
Collapse
Affiliation(s)
- Jimsheena V Karakkat
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sreejisha P Sreedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Princy Jayaprakash
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
8
|
Prabakaran AD, Karakkat JV, Vijayan R, Chalissery J, Ibrahim MF, Kaimala S, Adeghate EA, Al-Marzouqi AH, Ansari SA, Mensah-Brown E, Emerald BS. Identification of early indicators of altered metabolism in normal development using a rodent model system. Dis Model Mech 2018; 11:dmm.031815. [PMID: 29434026 PMCID: PMC5897726 DOI: 10.1242/dmm.031815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups – lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) – using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII (Ins2) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life. Summary: This study suggests an important link between the early embryonic environment and later adult physiology and pathology. At least one process by which this might be coordinated is through the regulatory mechanisms mediated by Dnmt1.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Jimsheena Valiyakath Karakkat
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Marwa F Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Ahmed Hassan Al-Marzouqi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, PO Box 505055, Dubai, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Eric Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, Abu Dhabi, UAE
| |
Collapse
|
9
|
Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, ‘t Hart BA, Hopkins WD, Hu SL, Miller LA, Nader MA, Nathanielsz PW, Rogers J, Shively CA, Voytko ML. Why primate models matter. Am J Primatol 2014; 76:801-27. [PMID: 24723482 PMCID: PMC4145602 DOI: 10.1002/ajp.22281] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/01/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
Research involving nonhuman primates (NHPs) has played a vital role in many of the medical and scientific advances of the past century. NHPs are used because of their similarity to humans in physiology, neuroanatomy, reproduction, development, cognition, and social complexity-yet it is these very similarities that make the use of NHPs in biomedical research a considered decision. As primate researchers, we feel an obligation and responsibility to present the facts concerning why primates are used in various areas of biomedical research. Recent decisions in the United States, including the phasing out of chimpanzees in research by the National Institutes of Health and the pending closure of the New England Primate Research Center, illustrate to us the critical importance of conveying why continued research with primates is needed. Here, we review key areas in biomedicine where primate models have been, and continue to be, essential for advancing fundamental knowledge in biomedical and biological research.
Collapse
Affiliation(s)
- Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio TX 78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX
| | - Karen L. Bales
- Department of Psychology, University of California, Davis CA 95616
- California National Primate Research Center, Davis CA 95616
| | - John P. Capitanio
- Department of Psychology, University of California, Davis CA 95616
- California National Primate Research Center, Davis CA 95616
| | - Alan Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis CA 95616
| | - Paul W. Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Bert A. ‘t Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswick, The Netherlands
| | - William D. Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta GA 30302
- Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center, Atlanta GA 30030
| | - Shiu-Lok Hu
- Department of Pharmaceutics and Washington National Primate Research Center, University of Washington, Seattle WA
| | - Lisa A. Miller
- California National Primate Research Center, Davis CA 95616
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis CA 95616
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio TX 78229
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX
- Wisconsin National Primate Research Center, Madison, WI
| | - Carol A. Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Mary Lou Voytko
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem NC 27157
| |
Collapse
|
10
|
Cox LA, Comuzzie AG, Havill LM, Karere GM, Spradling KD, Mahaney MC, Nathanielsz PW, Nicolella DP, Shade RE, Voruganti S, VandeBerg JL. Baboons as a model to study genetics and epigenetics of human disease. ILAR J 2014; 54:106-21. [PMID: 24174436 DOI: 10.1093/ilar/ilt038] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge for understanding susceptibility to common human diseases is determining genetic and environmental factors that influence mechanisms underlying variation in disease-related traits. The most common diseases afflicting the US population are complex diseases that develop as a result of defects in multiple genetically controlled systems in response to environmental challenges. Unraveling the etiology of these diseases is exceedingly difficult because of the many genetic and environmental factors involved. Studies of complex disease genetics in humans are challenging because it is not possible to control pedigree structure and often not practical to control environmental conditions over an extended period of time. Furthermore, access to tissues relevant to many diseases from healthy individuals is quite limited. The baboon is a well-established research model for the study of a wide array of common complex diseases, including dyslipidemia, hypertension, obesity, and osteoporosis. It is possible to acquire tissues from healthy, genetically characterized baboons that have been exposed to defined environmental stimuli. In this review, we describe the genetic and physiologic similarity of baboons with humans, the ability and usefulness of controlling environment and breeding, and current genetic and genomic resources. We discuss studies on genetics of heart disease, obesity, diabetes, metabolic syndrome, hypertension, osteoporosis, osteoarthritis, and intrauterine growth restriction using the baboon as a model for human disease. We also summarize new studies and resources under development, providing examples of potential translational studies for targeted interventions and therapies for human disease.
Collapse
|
11
|
Schlabritz-Loutsevitch N, Schenone A, Schenone M, Gupta S, Hubbard G, Zhang J, Mari G, Dick E. Abruptio placentae in cynomolgus macaques (Macaca fascicularis): male bias. J Med Primatol 2013; 42:204-10. [PMID: 23621893 DOI: 10.1111/jmp.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abruptio placentae is a serious problem with a high rate of maternal and fetal mortality and documented sexual dimorphism in reoccurrence. Macaca fascicularis is a well-described reproductive model; however, there are no data available regarding sexual dimorphism in abruptio placentae in these species. METHODS A retrospective study of pathology and medical records in a large colony of M. fascicularis was performed. Placental specimens were analyzed. RESULTS The incidence of placenta abruptio in the colony was 15.7/1000 births. In the abruptio placentae group, male fetuses had lower placental disk length and increased femur length compared with female fetuses. The feto-pacental ratio and fetal weight were lower in the male fetuses in the abruption group compared with those in the stillbirth group without abruption placentae. CONCLUSION This is the first documentation of male bias in placental and fetal development in abruptio placentae in non-human primates.
Collapse
Affiliation(s)
- N Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schlabritz-Loutsevitch N, Hubbard G, Zhang J, Gupta S, Dick E. Recurrent abruptio placentae in a cynomolgus monkey (Macaca fascicularis). Placenta 2013; 34:388-90. [PMID: 23398915 DOI: 10.1016/j.placenta.2013.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Abruptio placentae, defined as premature separation of a normally implanted placenta, is a life threatening pregnancy complication with unknown pathophysiology. A history of abruptio placentae is the major risk factor for this pregnancy complication in humans. We describe the first case of recurrent abruptio placentae in a Macaca fascicularis. MATERIAL AND METHODS A pregnant M. fascicularis at term gestation was presented with weakness and hypothermia. Cesarean section revealed retroplacental hemorrhage with partial placental separation from the uterus. RESULTS The weight of the female fetus was within the lower birth weight range for these species. The maternal side of placenta contained necrotic tissue, occupying approximately 60% of the maternal surface. The placental implantation bed demonstrated neutrophil infiltration. Perivascular collections of lymphocytes were noticed in the uterine smooth muscle. CONCLUSION This case report underlines the importance of neutrophil infiltration and uterine venous drainage in the cascade of events leading to abruptio placentae.
Collapse
Affiliation(s)
- N Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38103-2896, USA.
| | | | | | | | | |
Collapse
|