1
|
Juefeng Z, Fang L, Haiying Z, Liwei L, Jianming C. Integrated microbiome and metabolomic analysis of Spodoptera litura under Metarhizium flavoviride qc1401 stress. Int Microbiol 2025; 28:721-737. [PMID: 39145832 PMCID: PMC11991939 DOI: 10.1007/s10123-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the fungal pathogen also altered bacterial abundance and diversity in host's midgut, and these changes varied depending on the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly enriched KEGG pathways, we speculated that "tyrosine metabolism," "galactose metabolism," "ATP-binding cassette transporters," "neuroactive ligand-receptor interaction," "purine metabolism," "arginine and proline metabolism," "beta-alanine metabolism," "lysosome," and "carbon metabolism" may participate in the metabolic-level defense response. An integrated pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorganisms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
Collapse
Affiliation(s)
- Zhang Juefeng
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Li Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhong Haiying
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liu Liwei
- Zhejiang Natural Museum, Hangzhou, Zhejiang, China
| | - Chen Jianming
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Guo M, Tang Y, Yang Y, Luo J, Gao J. Identification and Expression Analysis of Polyphenol Oxidase Gene Family Members in Response to Wound Stress in Lettuce ( Lactuca sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:972. [PMID: 40265893 PMCID: PMC11945535 DOI: 10.3390/plants14060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Mechanical injury to lettuce often leads to enzymatic browning caused by polyphenol oxidase (PPO), significantly impairing its sensory quality and processing suitability. In this study, the LsPPOs gene family was comprehensively identified and characterized using bioinformatics methods, including gene and protein structure, codon usage bias, phylogenetic relationships, and gene expression in response to wound stress. Further analysis of the relationship between LsPPOs expression profile and browning was performed. A total of 17 LsPPO family members (LsPPO1-LsPPO17) were identified from publicly available lettuce databases, encoding proteins ranging from 146 to 667 amino acids, with a G/C bias. Most were localized in the chloroplast. The motif structure was highly conserved among family members, and phylogenetic analysis revealed four distinct groups. All genes lacked introns, except LsPPO2 which contained an intron. After mechanical injury, browning at the stem site deepened over time, with PPO activity increasing. The majority of PPO members were significantly upregulated after fresh-cut processing. Among them, LsPPO3, LsPPO4, and LsPPO12 showed sustained upregulation, exhibiting a strong positive correlation with the browning phenotype and PPO activity. Notably, LsPPO4 demonstrated the highest transcriptional abundance and upregulation in response to a wound, indicating its major role in lettuce stem browning. The results of this study provide a foundation for further investigation into the functional role of LsPPOs and support the development of lettuce varieties with enhanced resistance to browning.
Collapse
Affiliation(s)
- Mei Guo
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.T.); (Y.Y.); (J.L.)
| | - Yueming Tang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.T.); (Y.Y.); (J.L.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| | - Yiwen Yang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.T.); (Y.Y.); (J.L.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
- Sichuan Research Center of Vegetable Engineering and Technology, Chengdu 611934, China
| | - Jinghong Luo
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.T.); (Y.Y.); (J.L.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
- Sichuan Research Center of Vegetable Engineering and Technology, Chengdu 611934, China
| | - Jia Gao
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.T.); (Y.Y.); (J.L.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
- Sichuan Research Center of Vegetable Engineering and Technology, Chengdu 611934, China
| |
Collapse
|
3
|
Meitil IK, de O.G. Silva C, Pedersen AG, Agger JW. Classification of polyphenol oxidases shows ancient gene duplication leading to two distinct enzyme types. iScience 2025; 28:111771. [PMID: 39925425 PMCID: PMC11803259 DOI: 10.1016/j.isci.2025.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Polyphenol oxidases (PPOs) are coupled binuclear copper proteins that catalyze the oxidation of phenols. New functions of PPOs are continuously being discovered, latest with several fungal o-methoxy phenolases, which are active on lignin-derived compounds. Here, we perform a comprehensive phylogenetic analysis of PPOs from a wide taxonomic origin and define 12 PPO groups. We find that a deep gene duplication has led to two distinct PPO types. Type 1 includes PPOs from chordates and molluscs, as well as the fungal o-methoxy phenolases. Type 2 includes plant PPOs, molluscan hemocyanins, and fungal tyrosinases. Most of the type 2 proteins have a C-terminal shielding domain and a thioether bond in the copper-binding site. We also find that most ascomycetes contain high numbers of the PPO type 1 that includes the o-methoxy phenolases, which may indicate a role in the lignin conversion strategy of these fungi.
Collapse
Affiliation(s)
- Ida K.S. Meitil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Caio de O.G. Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jane W. Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Huang Y, Wang X, Lyu Y, Li Y, He R, Chen H. Metabolomics analysis reveals the non-enzymatic browning mechanism of green peppers (Piper nigrum L.) during the hot-air drying process. Food Chem 2025; 464:141654. [PMID: 39426262 DOI: 10.1016/j.foodchem.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Non-enzymatic browning (NEB) reduced the colour quality of hot-air dried peppers, but the specific mechanism remains unclear. This may be related to the degradation of chlorophyll, ascorbic acid, and polyphenols. The findings revealed that the surface of pepper gradually browned during hot-air drying, with the ΔE⁎ value and browning degree (BD) significantly increasing by 119.4 % and 62.9 %, respectively. However, the total phenol content (TPC) and ascorbic acid content decreased by 74.2 % and 84.3 %, respectively. TPC was negatively correlated with BD (R = -0.86), and its value (31.7 %) was 300 times higher than that of other colour-related components (ascorbic acid, chlorophyll). UPLC-MS/MS analysis further identified 345 polyphenols, among which 1, 3-dicaffeoylquinic acid and 5,7-dihydroxy-3', 4', 5'-trimethoxyflavone were the two key monophenols influencing NEB (R = -0.87). The results suggested that NEB pathways involve chlorophyll and ascorbic acid degradation, the Maillard reaction, and polyphenol degradation, with the latter playing a major role.
Collapse
Affiliation(s)
- Yue Huang
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Xinyi Wang
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Ying Lyu
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China.
| | - Yu Li
- Hainan State Farms Tropical Products Industry Group Co., Ltd, Haikou, Hainan 570226, China
| | - Rongrong He
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Haiming Chen
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China.
| |
Collapse
|
5
|
Song Z, Wang B, Liu J, Liu N, Yi Z, Li Z, Dong Z, Zhang C, Dong Y, Li Y. Genome-Wide Identification and Comprehensive Analysis of the PPO Gene Family in Glycine max and Glycine soja. Genes (Basel) 2024; 16:17. [PMID: 39858564 PMCID: PMC11764901 DOI: 10.3390/genes16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Polyphenol oxidases (PPOs) form a multigene family that is widely distributed in plants, animals, and insects. To date, PPOs have been identified in plants such as Populus L. and Solanum tuberosum L., but studies on PPOs in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.) remain limited. METHODS To clarify the nature, structure, evolution, expression pattern, and interaction network of PPOs in these plants, we performed bioinformatics analysis and evaluated the expression patterns of PPOs in soybean and wild soybean throughout the growth period and under salt stress. RESULTS We identified 17 and 15 genes belonging to the PPO family. These genes were distributed across chromosomes 7 and 6 and could be divided into three groups. Most of these genes only contained one coding sequence (CDS), and their gene structure, conserved motifs, and 3D structures were very similar. Although there were a few intraspecies gene duplications, 75 gene replication pairs between soybean and wild soybean were detected. A Ka/Ks analysis showed that the PPOs in these plants were mainly subjected to purity selection. Moreover, the expression of the PPO genes varied greatly during different stages of the growth period and under salt stress, showing high temporal and spatial specificity. The protein interaction networks of these genes appeared to be quite distinct. Through the interaction analysis of the candidate gene GmPPO2 selected under salt stress, Glyma.07G059000, Glyma.10G279000, and Glyma.03G167900 were identified as the candidate genes regulating salt stress tolerance in soybean. CONCLUSIONS These findings provide a foundation for further research on the evolution of soybean and wild soybean, as well as the functions of the PPO gene family.
Collapse
Affiliation(s)
- Ziye Song
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Bo Wang
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Jia Liu
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhigang Yi
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhi Li
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China; (B.W.); (J.L.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| |
Collapse
|
6
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
7
|
Wang Y, Guo Z, Zhou R, Tang Y, Ye N, Zhang D, Rasel M, Huang N, Qiu L, Wang N, Ma H. JrPPO1/2 play distinct roles in regulating walnut fruit browning by different spatiotemporal expression and enzymatic characteristics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109018. [PMID: 39137678 DOI: 10.1016/j.plaphy.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Polyphenol oxidase (PPO) activity drives walnut fruit browning, but the roles of its only two-family genes, JrPPO1 and JrPPO2, remain unclear. This study explores the spatiotemporal expression and enzymatic characteristics of JrPPO1 and JrPPO2 in walnut. Treatment with the PPO activator CuSO4 and H2O2 accelerated fruit browning and up-regulated JrPPO1/2 expression, whereas treatment with the PPO inhibitor ascorbic acid delayed browning, down-regulating JrPPO1 and up-regulating JrPPO2 expression. Compared to mJrPPO1, mJrPPO2 can exhibited better enzyme activity at higher temperatures (47 °C) and in more acidic environments (pH 4.25). mJrPPO2 exhibited a higher substrate specificity over mJrPPO1, and the preferred substrates are catechol, chlorogenic acid, and epicatechin. Additionally, mJrPPO2 adapted better to low concentration of oxygen (as low as 1.0% O2) and slightly elevated CO2 levels compared to mJrPPO1. Subcellular localization and spatiotemporal expression patterns showed that JrPPO1 is only expressed in green tissues and located in chloroplasts, while JrPPO2 is also located in chloroplasts, partly associated with membranes, and is expressed in both green and non-green tissues. Silencing JrPPO1/2 with virus-induced gene silencing (VIGS) reduced fruit browning, maintained higher total phenols, and decreased MDA production. Notably, silencing JrPPO1 had a greater impact on browning than JrPPO2, indicating JrPPO1's greater contribution to PPO activity and fruit browning in walnut fruits. Consequently, JrPPO1 can be effectively regulated both at the molecular level and by manipulating environmental conditions, to achieve the objective of controlling fruit browning.
Collapse
Affiliation(s)
- Yifan Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Yan Tang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Niu Ye
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongli Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Md Rasel
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK; Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ning Huang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingyu Qiu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Wang
- International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, China
| | - Huiling Ma
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Pretzler M, Rompel A. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chembiochem 2024; 25:e202400050. [PMID: 38386893 DOI: 10.1002/cbic.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
"Mushroom tyrosinase" from the common button mushroom is the most frequently used source of tyrosinase activity, both for basic and applied research. Here, the complete tyrosinase family from Agaricus bisporus var. bisporus (abPPO1-6) was cloned from mRNA and expressed heterologously using a single protocol. All six isoenzymes accept a wide range of phenolic and catecholic substrates, but display pronounced differences in their specificity and enzymatic reaction rate. AbPPO3 ignores γ-l-glutaminyl-4-hydroxybenzene (GHB), a natural phenol present in mM concentrations in A. bisporus, while AbPPO4 processes 100 μM GHB at 4-times the rate of the catechol l-DOPA. All six AbPPOs are biochemically distinct enzymes fit for different roles in the fungal life cycle, which challenges the traditional concept of isoenzymes as catalyzing the same physiological reaction and varying only in secondary properties. Transferring this approach to other enzymes and organisms will greatly stimulate both the study of the in vivo function(s) of enzymes and the application of these highly efficient catalysts.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| |
Collapse
|
9
|
Liu Y, Han X, Zhao M, Liu L, Deng Z, Zhao Q, Yu Y. Functional characterization of polyphenol oxidase OfPPO2 supports its involvement in parallel biosynthetic pathways of acteoside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:927-941. [PMID: 38872484 DOI: 10.1111/tpj.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.
Collapse
Affiliation(s)
- Yating Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Mengya Zhao
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| |
Collapse
|
10
|
Zhang S, Yuan G, Peng Z, Li X, Huang Y, Yin C, Cui L, Xiao G, Jiao Z, Wang L, Deng X, Qiu Z, Yan C. Chemical composition analysis and transcriptomics reveal the R2R3-MYB genes and phenol oxidases regulating the melanin formation in black radish. Int J Biol Macromol 2024; 271:132627. [PMID: 38797290 DOI: 10.1016/j.ijbiomac.2024.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guoli Yuan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhaoxin Peng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Xiaoyao Li
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yan Huang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Lei Cui
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guilin Xiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhenbiao Jiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Liping Wang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiaohui Deng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| |
Collapse
|
11
|
Hamel L, Tardif R, Poirier‐Gravel F, Rasoolizadeh A, Brosseau C, Giroux G, Lucier J, Goulet M, Barrada A, Paré M, Roussel É, Comeau M, Lavoie P, Moffett P, Michaud D, D'Aoust M. Molecular responses of agroinfiltrated Nicotiana benthamiana leaves expressing suppressor of silencing P19 and influenza virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1078-1100. [PMID: 38041470 PMCID: PMC11022802 DOI: 10.1111/pbi.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.
Collapse
Affiliation(s)
| | | | | | - Asieh Rasoolizadeh
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Chantal Brosseau
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Geneviève Giroux
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Jean‐François Lucier
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marie‐Claire Goulet
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | - Adam Barrada
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | | | | | | | | - Peter Moffett
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Dominique Michaud
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
12
|
Zhang ZB, Xiong T, Wang XJ, Chen YR, Wang JL, Guo CL, Ye ZY. Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. PLoS One 2024; 19:e0302292. [PMID: 38626181 PMCID: PMC11020792 DOI: 10.1371/journal.pone.0302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Xiao-Jia Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jing-Lei Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Cong-Li Guo
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Zi-Yi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
13
|
Wei X, Tao K, Liu Z, Qin B, Su J, Luo Y, Zhao C, Liao J, Zhang J. The PPO family in Nicotiana tabacum is an important regulator to participate in pollination. BMC PLANT BIOLOGY 2024; 24:102. [PMID: 38331761 PMCID: PMC10854075 DOI: 10.1186/s12870-024-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Keliang Tao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhengmei Liu
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Boyuan Qin
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jie Su
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jugou Liao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
14
|
Glagoleva AY, Kukoeva TV, Khlestkina EK, Shoeva OY. Polyphenol oxidase genes in barley ( Hordeum vulgare L.): functional activity with respect to black grain pigmentation. FRONTIERS IN PLANT SCIENCE 2024; 14:1320770. [PMID: 38259950 PMCID: PMC10800887 DOI: 10.3389/fpls.2023.1320770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Polyphenol oxidase (PPO) is an oxidoreductase. In damaged plant tissues, it catalyzes enzymatic browning by oxidizing o-diphenols to highly reactive o-quinones, which polymerize producing heterogeneous dark polymer melanin. In intact tissues, functions of PPO are not well understood. The aim of the study was to investigate the barley PPO gene family and to reveal the possible involvement of Ppo genes in melanization of barley grain, which is controlled by the Blp1 gene. Based on known barley Ppo genes on chromosome 2H (Ppo1 and Ppo2), two additional genes-Ppo3 and Ppo4-were found on chromosomes 3H and 4H, respectively. These genes have one and two exons, respectively, contain a conserved tyrosinase domain and are thought to be functional. Comparative transcriptional analyzes of the genes in samples of developing grains (combined hulls and pericarp tissues) were conducted in two barley lines differing by melanin pigmentation. The genes were found to be transcribed with increasing intensity (while grains mature) independently from the grain color, except for Ppo2, which is transcribed only in black-grained line i:BwBlp1 accumulating melanin in grains. Analysis of this gene's expression in detached hulls and pericarps showed its elevated transcription in both tissues in comparison with yellow ones, while it was significantly higher in hulls than in pericarp. Segregation analysis in two F2 populations obtained based on barley genotypes carrying dominant Blp1 and recessive ppo1 (I) and dominant Blp1 and recessive ppo1 and ppo2 (II) was carried out. In population I, only two phenotypic classes corresponding to parental black and white ones were observed; the segregation ratio was 3 black to 1 white, corresponding to monogenic. In population II, aside from descendants with black and white grains, hybrids with a gray phenotype - light hulls and dark pericarp - were observed; the segregation ratio was 9 black to 3 gray to 4 white, corresponding to the epistatic interaction of two genes. Most hybrids with the gray phenotype carry dominant Blp1 and a homozygous recessive allele of Ppo2. Based on transcription and segregation assays one may conclude involvement of Ppo2 but not Ppo1 in melanin formation in barley hulls.
Collapse
Affiliation(s)
- Anastasiia Y. Glagoleva
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Tat’jana V. Kukoeva
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| | - Olesya Y. Shoeva
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| |
Collapse
|
15
|
Wold-McGimsey F, Krosch C, Alarcón-Reverte R, Ravet K, Katz A, Stromberger J, Mason RE, Pearce S. Multi-target genome editing reduces polyphenol oxidase activity in wheat ( Triticum aestivum L.) grains. FRONTIERS IN PLANT SCIENCE 2023; 14:1247680. [PMID: 37786514 PMCID: PMC10541959 DOI: 10.3389/fpls.2023.1247680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Introduction Polyphenol oxidases (PPO) are dual activity metalloenzymes that catalyse the production of quinones. In plants, PPO activity may contribute to biotic stress resistance and secondary metabolism but is undesirable for food producers because it causes the discolouration and changes in flavour profiles of products during post-harvest processing. In wheat (Triticum aestivum L.), PPO released from the aleurone layer of the grain during milling results in the discolouration of flour, dough, and end-use products, reducing their value. Loss-of-function mutations in the PPO1 and PPO2 paralogous genes on homoeologous group 2 chromosomes confer reduced PPO activity in the wheat grain. However, limited natural variation and the proximity of these genes complicates the selection of extremely low-PPO wheat varieties by recombination. The goal of the current study was to edit all copies of PPO1 and PPO2 to drive extreme reductions in PPO grain activity in elite wheat varieties. Results A CRISPR/Cas9 construct with one single guide RNA (sgRNA) targeting a conserved copper binding domain was used to edit all seven PPO1 and PPO2 genes in the spring wheat cultivar 'Fielder'. Five of the seven edited T1 lines exhibited significant reductions in PPO activity, and T2 lines had PPO activity up to 86.7% lower than wild-type. The same construct was transformed into the elite winter wheat cultivars 'Guardian' and 'Steamboat', which have five PPO1 and PPO2 genes. In these varieties PPO activity was reduced by >90% in both T1 and T2 lines. In all three varieties, dough samples from edited lines exhibited reduced browning. Discussion This study demonstrates that multi-target editing at late stages of variety development could complement selection for beneficial alleles in crop breeding programs by inducing novel variation in loci inaccessible to recombination.
Collapse
Affiliation(s)
- Forrest Wold-McGimsey
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Caitlynd Krosch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Rocío Alarcón-Reverte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Karl Ravet
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Andrew Katz
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - John Stromberger
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Richard Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
16
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
17
|
Liu Q, Wang C, Cui Q, Fan Y, Zhang J, Rao G. Genome-Wide Analysis of the Polyphenol Oxidase Gene Family in Olea europaea Provides Insights into the Mechanism of Enzymatic Browning in Olive Fruit. Antioxidants (Basel) 2023; 12:1661. [PMID: 37759964 PMCID: PMC10525835 DOI: 10.3390/antiox12091661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Browning of olive (Olea europaea L.) fruit reduces the sensory and nutritional qualities of olive oil, thereby increasing production costs. Polyphenol oxidases (PPOs) are the key enzymes that catalyze phenolic substance oxidation and mediate enzymatic browning in olive fruit, but the exact regulatory mechanism remains unclear. The main challenge is the lack of comprehensive information on OePPOs at the genome-wide level. In this study, 18 OePPO genes were identified. Subsequently, we performed a bioinformatic analysis on them. We also analyzed the expression patterns and determined the relationship among browning degree, PPO activity, and expression of OePPOs in the fruits of three olive varieties. Based on our analysis, we identified the four most conserved motifs. OePPOs were classified into two groups, with OePPOs from Group 1 showing only diphenolase activity and OePPOs from Group 2 exhibiting both mono-/diphenolase activities. Seven pairs of gene duplication events were identified, and purifying selection was found to have played a critical role in the evolution of the OePPO gene family. A positive correlation was observed between the browning degree of olive fruit and PPO activity across different olive varieties. Moreover, two important genes were found: OePPO-5 the main effector gene responsible for fruit browning, and OePPO-8, a key gene associated with specialized metabolite synthesis in the olive fruit. In short, our discoveries provide a basis for additional functional studies on OePPO genes and can help elucidate the mechanism of enzymatic browning in olive fruit in the future.
Collapse
Affiliation(s)
- Qingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chenhe Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qizhen Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yutong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
18
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
19
|
Liao J, Wei X, Tao K, Deng G, Shu J, Qiao Q, Chen G, Wei Z, Fan M, Saud S, Fahad S, Chen S. Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants. HORTICULTURE RESEARCH 2023; 10:uhad102. [PMID: 37786731 PMCID: PMC10541563 DOI: 10.1093/hr/uhad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, 671003, China
| | - Keliang Tao
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Gang Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Jie Shu
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Meihui Fan
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| |
Collapse
|
20
|
Wei X, Shu J, Fahad S, Tao K, Zhang J, Chen G, Liang Y, Wang M, Chen S, Liao J. Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107702. [PMID: 37099880 DOI: 10.1016/j.plaphy.2023.107702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China; School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Jie Shu
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Yingchong Liang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | | | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| |
Collapse
|
21
|
Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis. Int J Biol Macromol 2023; 240:124353. [PMID: 37059281 DOI: 10.1016/j.ijbiomac.2023.124353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.
Collapse
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yiran Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
22
|
Shumilak A, El-Shetehy M, Soliman A, Tambong JT, Daayf F. Goss's Wilt Resistance in Corn Is Mediated via Salicylic Acid and Programmed Cell Death but Not Jasmonic Acid Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:1475. [PMID: 37050101 PMCID: PMC10097360 DOI: 10.3390/plants12071475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss's wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments. We analyzed the expression of key genes related to plant defense in both corn lines challenged with the CMN14-5-1 strain. Allene oxide synthase (ZmAOS), a gene responsible for the production of jasmonic acid (JA), was induced in the CO447 line in response to CMN14-5-1. Following inoculation with CMN14-5-1, the CO450 line demonstrated a higher expression of salicylic acid (SA)-related genes, ZmPAL and ZmPR-1, compared to the CO447 line. In the CO450 line, four genes related to programmed cell death (PCD) were upregulated: respiratory burst oxidase homolog protein D (ZmrbohD), polyphenol oxidase (ZmPPO1), ras-related protein 7 (ZmRab7), and peptidyl-prolyl cis-trans isomerase (ZmPPI). The differential gene expression in response to CMN14-5-1 between the two corn lines provided an indication that SA and PCD are involved in the regulation of corn defense responses against Goss's wilt disease, whereas JA may be contributing to disease susceptibility.
Collapse
Affiliation(s)
- Alexander Shumilak
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta 31527, Egypt
| | - James T Tambong
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
23
|
Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023; 28:molecules28052158. [PMID: 36903403 PMCID: PMC10004730 DOI: 10.3390/molecules28052158] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Polyphenol oxidase (PPO) is present in most higher plants, but also in animals and fungi. PPO in plants had been summarized several years ago. However, recent advances in studies of PPO in plants are lacking. This review concludes new researches on PPO distribution, structure, molecular weights, optimal temperature, pH, and substrates. And, the transformation of PPO from latent to active state was also discussed. This state shift is a vital reason for elevating PPO activity, but the activation mechanism in plants has not been elucidated. PPO has an important role in plant stress resistance and physiological metabolism. However, the enzymatic browning reaction induced by PPO is a major problem in the production, processing, and storage of fruits and vegetables. Meanwhile, we summarized various new methods that had been invented to decrease enzymatic browning by inhibiting PPO activity. In addition, our manuscript included information on several important biological functions and the transcriptional regulation of PPO in plants. Furthermore, we also prospect some future research areas of PPO and hope they will be useful for future research in plants.
Collapse
|
24
|
Qin F, Hu C, Dou T, Sheng O, Yang Q, Deng G, He W, Gao H, Li C, Dong T, Yi G, Bi F. Genome-wide analysis of the polyphenol oxidase gene family reveals that MaPPO1 and MaPPO6 are the main contributors to fruit browning in Musa acuminate. FRONTIERS IN PLANT SCIENCE 2023; 14:1125375. [PMID: 36866367 PMCID: PMC9971926 DOI: 10.3389/fpls.2023.1125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Polyphenol oxidases (PPOs), which are widely present in plants, play an important role in the growth, development, and stress responses. They can catalyze the oxidization of polyphenols and result in the browning of damaged or cut fruit, which seriously affects fruit quality and compromises the sale of fruit. In banana (Musa acuminata, AAA group), 10 PPO genes were determined based on the availability of a high-quality genome sequence, but the role of PPO genes in fruit browning remains unclear. METHODS In this study, we analyzed the physicochemical properties, gene structure, conserved structural domains, and evolutionary relationship of the PPO gene family of banana. The expression patterns were analyzed based on omics data and verified by qRT-PCR analysis. Transient expression assay in tobacco leaves was used to identify the subcellular localization of selected MaPPOs, and we analyzed the polyphenol oxidase activity using recombinant MaPPOs and transient expression assay. RESULTS AND DISCUSSION We found that more than two-thirds of the MaPPO genes had one intron, and all contained three conserved structural domains of PPO, except MaPPO4. Phylogenetic tree analysis revealed that MaPPO genes were categorized into five groups. MaPPOs did not cluster with Rosaceae and Solanaceae, indicating distant affinities, and MaPPO6/7/8/9/10 clustered into an individual group. Transcriptome, proteome, and expression analyses showed that MaPPO1 exhibits preferential expression in fruit tissue and is highly expressed at respiratory climacteric during fruit ripening. Other examined MaPPO genes were detectable in at least five different tissues. In mature green fruit tissue, MaPPO1 and MaPPO6 were the most abundant. Furthermore, MaPPO1 and MaPPO7 localized in chloroplasts, and MaPPO6 was a chloroplast- and Endoplasmic Reticulum (ER)-localized protein, whereas MaPPO10 only localized in the ER. In addition, the enzyme activity in vivo and in vitro of the selected MaPPO protein showed that MaPPO1 had the highest PPO activity, followed by MaPPO6. These results imply that MaPPO1 and MaPPO6 are the main contributors to banana fruit browning and lay the foundation for the development of banana varieties with low fruit browning.
Collapse
Affiliation(s)
- Fei Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chunhua Hu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tongxin Dou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ou Sheng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiaosong Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiming Deng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weidi He
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huijun Gao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tao Dong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fangcheng Bi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
26
|
Xu Y, Bai Y, Dai C, Lv H, Zhou X, Xu Q. Effects of non-thermal atmospheric plasma on protein. J Clin Biochem Nutr 2022; 71:173-184. [PMID: 36447493 PMCID: PMC9701599 DOI: 10.3164/jcbn.22-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2024] Open
Abstract
Currently, the advancement in non-thermal atmospheric plasma technology enables plasma treatments on some heat-sensitive targets, including biological substances, without unspecific damage caused by thermal effect. The significant effects of non-thermal atmospheric plasma modulating biological events have been demonstrated by considerable studies. Protein, one of the most important biomolecules, participates in the majority of the life-sustaining activities in all organisms, whose functions are derived from the diverse biochemical properties of amino acid compositions and four-tiered protein structure hierarchy. Therefore, the knowledge of how non-thermal atmospheric plasma affects protein greatly benefits the understanding and application of the non-thermal atmospheric plasma's effect in biological area. In this review, we summarize recent research progress on the effects of non-thermal atmospheric plasma, particularly its reactive species, on biochemical and biophysical characteristics of proteins at different structural levels that leads to their functional changes. Moreover, the physiological effects of non-thermal atmospheric plasma at cellular or organism level driven by the manipulations on protein and their relative application prospects are reviewed. Despite the exceptional application potential, the exploration of the non-thermal atmospheric plasma's effect on protein still confronts with difficulties due to the limited knowledge of the underlying mechanisms and the complexity of non-thermal atmospheric plasma operation systems, which requires further studies and standardization of non-thermal atmospheric plasma treatments.
Collapse
Affiliation(s)
- Yong Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Yu Bai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Chenwei Dai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Han Lv
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Xiuhong Zhou
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Qinghua Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| |
Collapse
|
27
|
Han M, Xu M, Su T, Wang S, Wu L, Feng J, Ding C. Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine. Int J Mol Sci 2022; 23:9998. [PMID: 36077396 PMCID: PMC9456319 DOI: 10.3390/ijms23179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar 'Nanlin895' in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar 'Nanlin895' fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
28
|
Balarynová J, Klčová B, Sekaninová J, Kobrlová L, Cechová MZ, Krejčí P, Leonova T, Gorbach D, Ihling C, Smržová L, Trněný O, Frolov A, Bednář P, Smýkal P. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. THE NEW PHYTOLOGIST 2022; 235:1807-1821. [PMID: 35585778 DOI: 10.1111/nph.18256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.
Collapse
Affiliation(s)
- Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Lucie Kobrlová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Halle (Saale), 06120, Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Daria Gorbach
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University, Halle-Wittenberg, 06120, Germany
| | - Lucie Smržová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd, Troubsko, 664 41, Czech Republic
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Halle (Saale), 06120, Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| |
Collapse
|
29
|
Gaucher M, Righetti L, Aubourg S, Dugé de Bernonville T, Brisset MN, Chevreau E, Vergne E. An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance. PLANT CELL REPORTS 2022; 41:1499-1513. [PMID: 35385991 PMCID: PMC9270298 DOI: 10.1007/s00299-022-02869-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes. Intragenesis is an important alternative to transgenesis to produce modified plants containing native DNA only. A key point to develop such a strategy is the availability of regulatory sequences controlling the expression of the gene of interest. With the aim of finding apple gene promoters either inducible by the fire blight pathogen Erwinia amylovora (Ea) or moderately constitutive, we focused on polyphenoloxidase genes (PPO). These genes encode oxidative enzymes involved in many physiological processes and have been previously shown to be upregulated during the Ea infection process. We found ten PPO and two PPO-like sequences in the apple genome and characterized the promoters of MdPPO16 (pPPO16) and MdKFDV02 PPO-like (pKFDV02) for their potential as Ea-inducible and low-constitutive regulatory sequences, respectively. Expression levels of reporter genes fused to these promoters and transiently or stably expressed in apple were quantified after various treatments. Unlike pKFDV02 which displayed a variable activity, pPPO16 allowed a fast and strong expression of transgenes in apple following Ea infection in a Type 3 Secretion System dependent manner. Altogether our results does not confirmed pKFDV02 as a constitutive and weak promoter whereas pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes.
Collapse
Affiliation(s)
- Matthieu Gaucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Sébastien Aubourg
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Thomas Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 avenue Monge, 37200, Tours, France
| | | | - Elisabeth Chevreau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Emilie Vergne
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.
| |
Collapse
|
30
|
Wei Y, Yu N, Zhu Y, Jia C, Xiao Y, Zhao Y, Cai P, Zhao W, Ju M, Wu T, Gan Z, Sun A. Characterization of blueberry (Vaccinium corymbosum L.) catechol oxidases III binding mechanism in response to selected substrates and inhibitors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
De Jaegere I, Cornelis Y, De Clercq T, Goossens A, Van de Poel B. Overview of Witloof Chicory ( Cichorium intybus L.) Discolorations and Their Underlying Physiological and Biochemical Causes. FRONTIERS IN PLANT SCIENCE 2022; 13:843004. [PMID: 35283895 PMCID: PMC8905253 DOI: 10.3389/fpls.2022.843004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many fruits and vegetables suffer from unwanted discolorations that reduce product quality, leading to substantial losses along the supply chain. Witloof chicory (Cichorium intybus L. var. foliosum), a specialty crop characterized by its unique bitter taste and crunchiness, is particularly sensitive to various types of red and brown discolorations. The etiolated vegetable suffers from three predominant color disorders, i.e., core browning, internal leaf reddening, and leaf edge browning. Additionally, several less frequently observed color disorders such as hollow pith, external red, and point noir can also negatively affect crop quality. In this article, we bring together fragmented literature and present a comprehensive overview of the different discoloration types in chicory, and discuss their potential underlying physiological causes, including laticifer rupture, calcium deficiency, and a disturbed water distribution. We also describe the role of environmental cues that influence discoloration incidence, including cultivation and postharvest storage conditions such as forcing and storage temperature, root ripeness and the duration of the forcing process. Finally, we zoom in on the underlying biochemical pathways that govern color disorders in witloof chicory, with a strong emphasis on polyphenol oxidase.
Collapse
Affiliation(s)
- Isabel De Jaegere
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | | | - Tim De Clercq
- Praktijkpunt Landbouw Vlaams-Brabant, Herent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Investigation of the Volatile Profile of Red Jujube by Using GC-IMS, Multivariate Data Analysis, and Descriptive Sensory Analysis. Foods 2022; 11:foods11030421. [PMID: 35159572 PMCID: PMC8834224 DOI: 10.3390/foods11030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/08/2023] Open
Abstract
The aroma characteristics of six red jujube cultivars (Jinchang-'JC', Junzao-'JZ', Huizao-'HZ', Qiyuexian-'QYX', Hetiandazao-'HTDZ', and Yuanzao-'YZ'), cultivated in Xinjiang Province, China, were studied by E-nose and GC-IMS. The presence of acetoin, E-2-hexanol, hexanal, acetic acid, and ethyl acetate played an important role in the classification results. JC, JZ, HZ, and YZ were different from others, while QYX and HTDZ were similar to each other. HZ had the most abundant specific VOCs, including linalool, nonanoic acid, methyl myristoleate, 2-acetylfuran, 1-octen-3-one, E-2-heptenal, 2-heptenone, 7-octenoic acid, and 2-pentanone. HZ had higher intensity in jujube ID, floral, sweet, and fruity attributes. Correlation analysis showed that jujube ID (identity) might be related to phenylacetaldehyde and isobutanoic acid that formed by the transamination or dehydrogenation of amino acids; meanwhile, the sweet attribute was correlated with amino acids, including threonine, glutamic acid, glycine, alanine, valine, leucine, tyrosine, phenylalanine, lysine, histidine, and arginine.
Collapse
|
33
|
Comparative Transcriptomic Analyses Provide Insights into the Enzymatic Browning Mechanism of Fresh-Cut Sand Pear Fruit. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pear (Pyrus spp.) is one of the most commonly consumed temperate fruits, having considerable economic and health importance. Fresh-cut or processed pear fruits are prone to browning because of the abundant phenolic compounds; however, little is known about the molecular mechanisms underlying enzymatic browning of fresh-cut sand pear fruit. In this study, fruits of two sand pear genotypes (low browning cultivar ‘Eli No.2′ and high browning cultivar ‘Weiningdahuangli’) were used to analyze the molecular mechanism of enzymatic browning by SMRT-seq and RNA-seq. The results generated 69,122 consensus isoforms, 21,336 new transcripts, 7105 alternative splicing events, and 254 long non-coding RNAs (lncRNAs). Furthermore, five genes related to enzymatic browning were predicted to be targets of six lncRNAs, and 9930 differentially expressed genes (DEGs) were identified between two different flesh browning cultivars. Meanwhile, most DEGs (e.g., PAL, 4CL, CAD, CCR, CHS, and LAR) involved in the phenylpropanoid biosynthesis pathway were up-regulated, and the expression of PPO and POD were highly expressed in the high-browning cultivar. Interestingly, the transcript level of PbrPPO4 (Pbr000321.4) was significantly higher than other PPO and POD genes, and a high level of total polyphenol and PPO activity were observed in the high browning cultivar. We found that the expression of lncRNA PB.156.1 was significantly positively correlated with the target gene PbrPPO4 (Pbr000321.4). The results suggest that PbrPPO4 might act as a major contributor and a key enzyme encoding gene in regulating fresh-cut sand pear fruit enzymatic browning; the expression of PbrPPO4 was probably regulated by lncRNA PB.156.1. Altogether, the transcriptomic and physiological analyses expand the knowledge of sand pear flesh enzymatic browning at the molecular level and provide a foundation for germplasm resources for molecular breeding of high polyphenol and low browning cultivars in sand pears.
Collapse
|
34
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
35
|
Roohigohar S, Clarke AR, Prentis PJ. Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. PeerJ 2021; 9:e11762. [PMID: 34434644 PMCID: PMC8359797 DOI: 10.7717/peerj.11762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Fruit production is negatively affected by a wide range of frugivorous insects, among them tephritid fruit flies are one of the most important. As a replacement for pesticide-based controls, enhancing natural fruit resistance through biotechnology approaches is a poorly researched but promising alternative. The use of quantitative reverse transcription PCR (RT-qPCR) is an approach to studying gene expression which has been widely used in studying plant resistance to pathogens and non-frugivorous insect herbivores, and offers a starting point for fruit fly studies. In this paper, we develop a gene selection pipe-line for known induced-defense genes in tomato fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started with a literature review on plant/herbivore and plant/pathogen molecular interactions. With respect to the fly, this was then followed by the identification of gene families known to be associated with insect resistance to toxins, and then individual genes through reference to annotated B. tryoni transcriptomes and gene identity matching with related species. In contrast for tomato, a much better studied species, individual defense genes could be identified directly through literature research. For B. tryoni, gene selection was then further refined through gene expression studies. Ultimately 28 putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE), glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene families were identified for B. tryoni, and 15 induced defense genes from receptor-like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK), lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were identified from tomato fruit. The developed gene selection process for B. tryoni can be applied to other herbivorous and frugivorous insect pests so long as the minimum necessary genomic information, an annotated transcriptome, is available.
Collapse
Affiliation(s)
- Shirin Roohigohar
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
37
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
38
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
39
|
Wei Y, Yu N, Zhu Y, Hao J, Shi J, Lei Y, Gan Z, Jia G, Ma C, Sun A. Exploring the biochemical properties of three polyphenol oxidases from blueberry (Vaccinium corymbosum L.). Food Chem 2020; 344:128678. [PMID: 33267982 DOI: 10.1016/j.foodchem.2020.128678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Purification of blueberry polyphenol oxidase (PPO) has not been substantially progressed for a long time, which leads to little further study. We purified three PPOs from blueberries for the first time by modified Native-Page. The PPO-2 consists of two subunits (68 and 36 kDa), whereas PPO-3 and PPO-4 contain only one subunit (36 kDa). The optimum pH and temperature of PPO-2, PPO-3, and PPO-4 were 5.8-6.2 and 40 °C-45 °C with catechol as a substrate. The optimal substrates for them were all catechol (Km = 14.91, 7.19, and 11.20, respectively). High-pressure processing (HPP) had a limited inhibitory effect on the three PPOs. The activities of PPO-2, PPO-3, and PPO-4 were significantly reduced with increased SDS concentration. The binding of substrate to catalytic cavity is related to the residues His76, His209, His213, Gly228, and Phe230. The carbonyl group of residue Gly228 is one of the key sites for screening substrates.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ning Yu
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yue Zhu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jingyi Hao
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junyan Shi
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhilin Gan
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Guoliang Jia
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Aidong Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
40
|
Rolly NK, Imran QM, Shahid M, Imran M, Khan M, Lee SU, Hussain A, Lee IJ, Yun BW. Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:384-395. [PMID: 33007532 DOI: 10.1016/j.plaphy.2020.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
We investigated the role of AtbZIP62, an uncharacterized Arabidopsis bZIP TF, in oxidative, nitro-oxidative and drought stress conditions using reverse genetics approach. We further monitored the expression of AtPYD1 gene (orthologous to rice OsDHODH1 involved in the pyrimidine biosynthesis) in atbzip62 knock-out (KO) plants in order to investigate the transcriptional interplay of AtbZIP62 and AtPYD1. The atbzip62 KO plants showed significant increase in shoot length under oxidative stress, while no significant difference was recorded for root length compared to WT. However, under nitro-oxidative stress conditions, atbzip62 showed differential response to both NO-donors. Further characterization of AtbZIP62 under drought conditions showed that both atbzip62 and atpyd1-2 showed a sensitive phenotype to drought stress, and could not recover after re-watering. Transcript accumulation of AtbZIP62 and AtPYD1 showed that both were highly up-regulated by drought stress in wild type (WT) plants. Interestingly, AtPYD1 transcriptional level significantly decreased in atbzip62 exposed to drought stress. However, AtbZIP62 expression was highly induced in atpyd1-2 under the same conditions. Both AtbZIP62 and AtPYD1 were up-regulated in atnced3 and atcat2 while showing a contrasting expression pattern in atgsnor1-3. The recorded increase in CAT, POD, and PPO-like activities, the accumulation of chlorophylls and total carotenoids, and the enhanced proline and malondialdehyde levels would explain the sensitivity level of atbzip62 towards drought stress. All results collectively suggest that AtbZIP62 could be involved in AtPYD1 transcriptional regulation while modulating cellular redox state and photosynthetic processes. In addition, AtbZIP62 is suggested to positively regulate drought stress response in Arabidopsis.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea; National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa, Democratic Republic of the Congo.
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Muhammad Imran
- Laboratory of Crop Physiology, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Murtaza Khan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, 23200, KP, Pakistan.
| | - In-Jung Lee
- Laboratory of Crop Physiology, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
41
|
Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:817-828. [PMID: 32673582 DOI: 10.1016/j.tplants.2020.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
Plants require sunlight, water, CO2, and essential nutrients to drive photosynthesis and fulfill their life cycle. The photosynthetic apparatus resides in chloroplasts and fundamentally relies on transition metals as catalysts and cofactors. Accordingly, chloroplasts are particularly rich in iron (Fe), manganese (Mn), and copper (Cu). Owing to their redox properties, those metals need to be carefully balanced within the cell. However, the regulation of transition metal homeostasis in chloroplasts is poorly understood. With the availability of the arabidopsis genome information and membrane protein databases, a wider catalogue for searching chloroplast metal transporters has considerably advanced the study of transition metal regulation. This review provides an updated overview of the chloroplast transition metal requirements and the transporters involved for efficient photosynthesis in higher plants.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
42
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Biundo A, Braunschmid V, Pretzler M, Kampatsikas I, Darnhofer B, Birner-Gruenberger R, Rompel A, Ribitsch D, Guebitz GM. Polyphenol oxidases exhibit promiscuous proteolytic activity. Commun Chem 2020; 3:62. [PMID: 36703476 PMCID: PMC9814219 DOI: 10.1038/s42004-020-0305-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 01/29/2023] Open
Abstract
Tyrosinases catalyse both the cresolase and catecholase reactions for the formation of reactive compounds which are very important for industrial applications. In this study, we describe a proteolytic activity of tyrosinases. Two different tyrosinases originating from mushroom and apple are able to cleave the carboxylesterase EstA. The cleavage reaction correlates with the integrity of the active site of tyrosinase and is independent of other possible influencing factors, which could be present in the reaction. Therefore, the cleavage of EstA represents a novel functionality of tyrosinases. EstA was previously reported to degrade synthetic polyesters, albeit slowly. However, the EstA truncated by tyrosinase shows higher degradation activity on the non-biodegradable polyester polyethylene terephthalate (PET), which is a well-established environmental threat.
Collapse
Affiliation(s)
- A Biundo
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Edoardo Orabona, 70125, Bari, Italy
| | - V Braunschmid
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| | - M Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - I Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - B Darnhofer
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - R Birner-Gruenberger
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - A Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - D Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria.
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria.
| | - G M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
44
|
Xu JJ, Fang X, Li CY, Yang L, Chen XY. General and specialized tyrosine metabolism pathways in plants. ABIOTECH 2020; 1:97-105. [PMID: 36304719 PMCID: PMC9590561 DOI: 10.1007/s42994-019-00006-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants, such as tocopherols, plastoquinone, ubiquinone, betalains, salidroside, benzylisoquinoline alkaloids, and so on. Among these, tyrosine-derived metabolites, tocopherols, plastoquinone, and ubiquinone are essential to plant survival. In addition, this pathway provides us essential micronutrients (e.g., vitamin E and ubiquinone) and medicine (e.g., morphine, salidroside, and salvianolic acid B). However, our knowledge of the plant tyrosine metabolism pathway remains rudimentary, and genes encoding the pathway enzymes have not been fully defined. In this review, we summarize and discuss recent advances in the tyrosine metabolism pathway, key enzymes, and important tyrosine-derived metabolites in plants.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Kunming, 650201 Yunnan People’s Republic of China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
- University of Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
45
|
Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Food Res Int 2020; 129:108842. [DOI: 10.1016/j.foodres.2019.108842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
|
46
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:7. [PMID: 32117358 PMCID: PMC7010833 DOI: 10.3389/fpls.2020.00007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.
Collapse
Affiliation(s)
- Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Brian R. Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
47
|
Li B, Lu X, Gebremeskel H, Zhao S, He N, Yuan P, Gong C, Mohammed U, Liu W. Genetic Mapping and Discovery of the Candidate Gene for Black Seed Coat Color in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2020; 10:1689. [PMID: 32038674 PMCID: PMC6987421 DOI: 10.3389/fpls.2019.01689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/29/2019] [Indexed: 06/01/2023]
Abstract
Seed coat color is an important trait highly affecting the seed quality and flesh appearance of watermelon (Citrullus lanatus). However, the molecular regulation mechanism of seed coat color in watermelon is still unclear. In the present study, genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (9904 with light yellow seeds and Handel with black seeds), suggesting that a single dominant gene controls the black seed coat. The initial mapping result revealed a region of interest spanning 370 kb on chromosome 3. Genetic mapping with CAPS and SNP markers narrowed down the candidate region to 70.2 kb. Sequence alignment of the three putative genes in the candidate region suggested that there was a single-nucleotide insertion in the coding region of Cla019481 in 9904, resulting in a frameshift mutation and premature stop codon. The results indicated that Cla019481 named ClCS1 was the candidate gene for black seed coat color in watermelon. In addition, gene annotation revealed that Cla019481 encoded a polyphenol oxidase (PPO), which involved in the oxidation step of the melanin biosynthesis. This research finding will facilitate maker-assisted selection in watermelon and provide evidence for the study of black seed coat coloration in plants.
Collapse
|
48
|
Zhang X, Li C, Wang L, Fei Y, Qin W. Analysis of Centranthera grandiflora Benth Transcriptome Explores Genes of Catalpol, Acteoside and Azafrin Biosynthesis. Int J Mol Sci 2019; 20:ijms20236034. [PMID: 31795510 PMCID: PMC6928798 DOI: 10.3390/ijms20236034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of health loss in the world. Prevention and treatment of this disease by traditional Chinese medicine is a promising method. Centranthera grandiflora Benth is a high-value medicinal herb in the prevention and treatment of CVDs; its main medicinal components include iridoid glycosides, phenylethanoid glycosides, and azafrin in roots. However, biosynthetic pathways of these components and their regulatory mechanisms are unknown. Furthermore, there are no genomic resources of this herb. In this article, we provide sequence and transcript abundance data for the root, stem, and leaf transcriptome of C. grandiflora Benth obtained by the Illumina Hiseq2000. More than 438 million clean reads were obtained from root, stem, and leaf libraries, which produced 153,198 unigenes. Based on databases annotation, a total of 557, 213, and 161 unigenes were annotated to catalpol, acteoside, and azafrin biosynthetic pathways, respectively. Differentially expressed gene analysis identified 14,875 unigenes differentially enriched between leaf and root with 8,054 upregulated genes and 6,821 downregulated genes. Candidate MYB transcription factors involved in catalpol, acteoside, and azafrin biosynthesis were also predicated. This work is the first transcriptome analysis in C. grandiflora Benth which will aid the deciphering of biosynthesis pathways and regulatory mechanisms of active components.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Caixia Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Lianchun Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
| | - Yahong Fei
- Yuxi Flyingbear Agricultural Development Company Limited, Yuxi 653100, China;
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-343-8467
| |
Collapse
|
49
|
Berland H, Albert NW, Stavland A, Jordheim M, McGhie TK, Zhou Y, Zhang H, Deroles SC, Schwinn KE, Jordan BR, Davies KM, Andersen ØM. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proc Natl Acad Sci U S A 2019; 116:20232-20239. [PMID: 31527265 PMCID: PMC6778211 DOI: 10.1073/pnas.1912741116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthocyanins are key pigments of plants, providing color to flowers, fruit, and foliage and helping to counter the harmful effects of environmental stresses. It is generally assumed that anthocyanin biosynthesis arose during the evolutionary transition of plants from aquatic to land environments. Liverworts, which may be the closest living relatives to the first land plants, have been reported to produce red cell wall-bound riccionidin pigments in response to stresses such as UV-B light, drought, and nutrient deprivation, and these have been proposed to correspond to the first anthocyanidins present in early land plant ancestors. Taking advantage of the liverwort model species Marchantia polymorpha, we show that the red pigments of Marchantia are formed by a phenylpropanoid biosynthetic branch distinct from that leading to anthocyanins. They constitute a previously unreported flavonoid class, for which we propose the name "auronidin," with similar colors as anthocyanin but different chemistry, including strong fluorescence. Auronidins might contribute to the remarkable ability of liverworts to survive in extreme environments on land, and their discovery calls into question the possible pigment status of the first land plants.
Collapse
Affiliation(s)
- Helge Berland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Nick W Albert
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Anne Stavland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Tony K McGhie
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Yanfei Zhou
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Huaibi Zhang
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Simon C Deroles
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Kathy E Schwinn
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Kevin M Davies
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | | |
Collapse
|
50
|
Li Y, McLarin MA, Middleditch MJ, Morrow SJ, Kilmartin PA, Leung IK. An approach to recombinantly produce mature grape polyphenol oxidase. Biochimie 2019; 165:40-47. [DOI: 10.1016/j.biochi.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023]
|