1
|
Schmidt FJ, Grundmann L, Lahme M, Seidemann M, Schwarze A, Lichtenauer S, Twyman RM, Prüfer D, Noll GA. COL2-dependent photoperiodic floral induction in Nicotiana sylvestris seems to be lost in the N. sylvestris × N. tomentosiformis hybrid N. tabacum. FRONTIERS IN PLANT SCIENCE 2024; 14:1249879. [PMID: 38239221 PMCID: PMC10794312 DOI: 10.3389/fpls.2023.1249879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Introduction Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.
Collapse
Affiliation(s)
- Florentin J. Schmidt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Lena Grundmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Michael Lahme
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Marvin Seidemann
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Axel Schwarze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| |
Collapse
|
2
|
Benkő P, Kaszler N, Gémes K, Fehér A. Subfunctionalization of Parental Polyamine Oxidase (PAO) Genes in the Allopolyploid Tobacco Nicotiana tabacum (L.). Genes (Basel) 2023; 14:2025. [PMID: 38002968 PMCID: PMC10671180 DOI: 10.3390/genes14112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines play an important role in developmental and environmental stress responses in plants. Polyamine oxidases (PAOs) are flavin-adenine-dinucleotide-dependent enzymes associated with polyamine catabolism. In this study, 14 genes were identified in the tobacco genome that code for PAO proteins being named based on their sequence homology with Arabidopsis PAOs (AtPAO1-5): NtPAO1A-B; NtPAO2A-C, NtPAO4A-D, and NtPAO5A-E. Sequence analysis confirmed that the PAO gene family of the allopolyploid hybrid Nicotiana tabacum is not an exact combination of the PAO genes of the maternal Nicotiana sylvestris and paternal Nicotiana tomentosiformis ones. The loss of the N. sylvestris homeolog of NtPAO5E and the gain of an extra NtPAO2 copy, likely of Nicotiana othophora origin, was revealed. The latter adds to the few pieces of evidence suggesting that the paternal parent of N. tabacum was an introgressed hybrid of N. tomentosiformis and N. othophora. Gene expression analysis indicated that all 14 PAO genes kept their expression following the formation of the hybrid species. The homeologous gene pairs showed similar or opposite regulation depending on the investigated organ, applied stress, or hormone treatment. The data indicate that the expression pattern of the homeologous genes is diversifying in a process of subfunctionalization.
Collapse
Affiliation(s)
- Péter Benkő
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Yuan G, Sun K, Yu W, Jiang Z, Jiang C, Liu D, Wen L, Si H, Wu F, Meng H, Cheng L, Yang A, Wang Y. Development of a MAGIC population and high-resolution quantitative trait mapping for nicotine content in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1086950. [PMID: 36704165 PMCID: PMC9871594 DOI: 10.3389/fpls.2022.1086950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Multiparent Advanced Generation Inter-Cross (MAGIC) population is an ideal genetic and breeding material for quantitative trait locus (QTL) mapping and molecular breeding. In this study, a MAGIC population derived from eight tobacco parents was developed. Eight parents and 560 homozygous lines were genotyped by a 430K single-nucleotide polymorphism (SNP) chip assay and phenotyped for nicotine content under different conditions. Four QTLs associated with nicotine content were detected by genome-wide association mapping (GWAS), and one major QTL, named qNIC7-1, was mapped repeatedly under different conditions. Furthermore, by combining forward mapping, bioinformatics analysis and gene editing, we identified an ethylene response factor (ERF) transcription factor as a candidate gene underlying the major QTL qNIC7-1 for nicotine content in tobacco. A presence/absence variation (PAV) at qNIC7-1 confers changes in nicotine content. Overall, the large size of this MAGIC population, diverse genetic composition, balanced parental contributions and high levels of recombination all contribute to its value as a genetic and breeding resource. The application of the tobacco MAGIC population for QTL mapping and detecting rare allelic variation was demonstrated using nicotine content as a proof of principle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lirui Cheng
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| | - Aiguo Yang
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| | - Yuanying Wang
- *Correspondence: Lirui Cheng, ; Aiguo Yang, ; Yuanying Wang,
| |
Collapse
|
4
|
Foerster H, Battey JND, Sierro N, Ivanov NV, Mueller LA. Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Brief Bioinform 2021; 22:bbaa136. [PMID: 32662816 PMCID: PMC8138835 DOI: 10.1093/bib/bbaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.
Collapse
|
5
|
Ludman M, Fátyol K. Targeted inactivation of the AGO1 homeologues of Nicotiana benthamiana reveals their distinct roles in development and antiviral defence. THE NEW PHYTOLOGIST 2021; 229:1289-1297. [PMID: 33037631 DOI: 10.1111/nph.16992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The Solanaceae family includes numerous highly valuable crops. Understanding the viral diseases that affect them is of great importance. Nicotiana benthamiana has contributed greatly to unravelling antiviral RNA interference, and can also be regarded as an adequate model for studying viral diseases of solanaceous crops. This species, however, as with many of its relatives, possesses an allopolyploid genome, in which homeologous gene pairs frequently occur. AGO1 is a pivotal component of most plant RNA silencing pathways. The Nicotiana benthamiana genome encodes two highly similar AGO1 homeologues: AGO1A and AGO1B. To understand their roles in planta, their genes were selectively inactivated. Given the inherent limitations of RNA interference-based techniques, we used genome editing to achieve this goal. We found that AGO1A was not required for normal development, while AGO1B was indispensable for that. By contrast, the two homeologues both contributed to antiviral defence. Additionally, we observed that AGO1B utilised miR168 poorly, which may help to retain a significant level of antiviral RNA interference during viral infection. Our results have important implications for the better understanding of viral diseases of economically important solanaceous crops.
Collapse
Affiliation(s)
- Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| |
Collapse
|
6
|
Liu D, Yang Q. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep 2020; 10:9652. [PMID: 32541846 PMCID: PMC7296017 DOI: 10.1038/s41598-020-66670-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
rgsCaM has been reported as a calmodulin-like (CML) factor induced by viral infection in Nicotiana. There are three CMLs that belong to the rgsCaM family in Arabidopsis thaliana. In this study, we found a total of 5 NbrgsCaM coding sequences in N. benthamiana genome. We analyzed transcription patterns of NbrgsCaMs in transgenic plants expressing a β-glucuronidase (GUS) under the promoter of NbrgsCaMs by histochemistry staining and RT-qPCR. Similar to their Arabidopsis homologs, most NbrgsCaMs have an overlapping but distinct expression pattern in response to developmental and environmental changes. Specifically, the NbrgsCaM4 promoter exhibited robust activity and showed distinct regulatory response to viral infection, developmental stages and other abiotic stimuli. Overall, these findings provide clues for further understanding of the NbrgsCaM family genes in regulating plant growth and development under biotic stress and environmental stimulation.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuying Yang
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Chen S, Ren F, Zhang L, Liu Y, Chen X, Li Y, Zhang L, Zhu B, Zeng P, Li Z, Larkin RM, Kuang H. Unstable Allotetraploid Tobacco Genome due to Frequent Homeologous Recombination, Segmental Deletion, and Chromosome Loss. MOLECULAR PLANT 2018; 11:914-927. [PMID: 29734001 DOI: 10.1016/j.molp.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 05/20/2023]
Abstract
The types of mutations and their corresponding frequencies are difficult to measure in complex genomes. In this study, a high-throughput method was developed to identify spontaneous loss-of-function alleles for the resistance gene N and the transgenic avirulence gene P50 in allotetraploid tobacco. A total of 2134 loss-of-function alleles of the N gene were identified after screening 14 million F1 hybrids. Analysis of these mutants revealed striking evolutionary patterns for genes in polyploids. Only 14 of the loss-of-function mutations were caused by spontaneous point mutations or indels, while the others were caused by homeologous recombination (with a frequency of ∼1/12 000) or chromosome loss (∼1/15 000). Loss of the chromosome with the P50 insertion occurred at a similar frequency (∼1/13 000), and the frequency of spontaneous segmental deletion in this chromosome was ∼1/16 000. Both homeologous recombination and chromosome loss considerably decreased the viability of the mutants. Our data suggest that the high mutation rate in polyploids is probably due to the occurrence of homeologous recombination and the tolerance of large mutations such as chromosome loss in polyploid genomes. Frequent mutations tend to drive polyploids to extinction unless a novel mutation helps the polyploid to effectively compete with diploids or find a new ecological niche.
Collapse
Affiliation(s)
- Shumin Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Feihong Ren
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Yong Liu
- Yunan Academy of Tobacco Agricultural Science, Kunming, Yunnan Province, People's Republic of China
| | - Xuejun Chen
- Yunan Academy of Tobacco Agricultural Science, Kunming, Yunnan Province, People's Republic of China
| | - Yuanmei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Bin Zhu
- Yunan Academy of Tobacco Agricultural Science, Kunming, Yunnan Province, People's Republic of China
| | - Pan Zeng
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zaiyun Li
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, People's Republic of China.
| |
Collapse
|
8
|
Foerster H, Bombarely A, Battey JND, Sierro N, Ivanov NV, Mueller LA. SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases. Database (Oxford) 2018; 2018:4995113. [PMID: 29762652 PMCID: PMC5946812 DOI: 10.1093/database/bay035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/20/2023]
Abstract
Database URL https://solgenomics.net/tools/solcyc/.
Collapse
Affiliation(s)
- Hartmut Foerster
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, 220 Ag Quad Lane, Blacksburg, VA 24061, USA
| | - James N D Battey
- PMI R&D, Philip Morris Products S.A (Part of Philip Morris International group of companies), Quai Jeanrenaud 6, Neuchâtel CH-2000, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A (Part of Philip Morris International group of companies), Quai Jeanrenaud 6, Neuchâtel CH-2000, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A (Part of Philip Morris International group of companies), Quai Jeanrenaud 6, Neuchâtel CH-2000, Switzerland
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA
| |
Collapse
|
9
|
Abstract
Since its first use in plants in 2007, high-throughput RNA sequencing (RNA-Seq) has generated a vast amount of data for both model and nonmodel species. Organellar transcriptomes, however, are virtually always overlooked at the data analysis step. We therefore developed ChloroSeq, a bioinformatic pipeline aimed at facilitating the systematic analysis of chloroplast RNA metabolism, and we provide here a step-by-step user's manual. Following the alignment of quality-controlled data to the genome of interest, ChloroSeq measures genome expression level along with splicing and RNA editing efficiencies. When used in combination with the Tuxedo suite (TopHat and Cufflinks), ChloroSeq allows the simultaneous analysis of organellar and nuclear transcriptomes, opening the way to a better understanding of nucleus-organelle cross talk. We also describe the use of R commands to produce publication-quality figures based on ChloroSeq outputs. The effectiveness of the pipeline is illustrated through analysis of an RNA-Seq dataset covering the transition from growth to maturation to senescence of Arabidopsis thaliana leaves.
Collapse
|
10
|
Kumari K, Jegadeeson V, Suji S, Venkataraman G, Parida A. T-homoeolog specific plasma membrane protein 3 [Nt(t)PMP3-2] in polyploid Nicotiana tabacum shows conserved alternative splicing, derived from extant Nicotiana tomentosiformis parent. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:338-345. [PMID: 28942291 DOI: 10.1016/j.plaphy.2017.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Abiotic stress induced plasma membrane protein 3 (PMP3) genes occur as multigene families in plants, coding for hydrophobic proteins. Group I PMP3s code for shorter ORFs while Group II PMP3s code for proteins with C-terminal extensions. Allotetraploid Nicotiana tabacum (SSTT; 2n = 48) derives its parentage from extant ancestors related to Nicotiana sylvestris (SS) and Nicotiana tomentosiformis (TT). Polyploidization triggers complex genetic and epigenetic changes, often leading to homoeolog-specific retention or loss of function, sub-functionalization or neo-functionalization. Genomic sequences of Nt(t)PMP3-1/Nt(t)PMP3-2 cloned from N. tabacum show near identity with N. tomentosiformis NtoPMP3-1/NtoPMP3-2 genomic sequences respectively (distinct from N. sylvestris NsPMP3-1/NsPMP3-2 genomic regions). RT-PCR with exon 1,2 primer pairs amplified only single fragments for Nt(t)PMP3-1 and Nt(t)PMP3-2. In contrast, for Nt(t)PMP3-2, three variants were detected using exon 2,3 primers by RT-PCR. Cloning revealed (i) a transcript coding for a Group I PMP3 [Nt(t)PMP3-2CS], (ii) a transcript with complete retention of the second intron [Nt(t)PMP3-2IR] and (iii) a transcript with an alternative (exon 2) 5' splice site [Nt(t)PMP3-2AS], coding for a longer protein, similar to ORFs of Group II PMP3 genes. All three Nt(t)PMP3-2 variants have conserved counterparts in the N. tomentosiformis transcriptome, suggesting the transcriptional machinery governing alternative splicing of Nt(t)PMP3-2 in N. tabacum has conserved origins, derived from a N. tomenosiformis lineage. The above data shows alternative splicing of PMP3 genes contributes to transcript and ORF diversity in plants. All three Nt(t)PMP3-2 splice variants show increased root-specific expression. Implications of Nt(t)PMP3-2 alternative splicing on transcript stability and ORF features are discussed.
Collapse
Affiliation(s)
- Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Vidya Jegadeeson
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - S Suji
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India.
| | - Ajay Parida
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| |
Collapse
|
11
|
Yang Y, Yan P, Yi C, Li W, Chai Y, Fei L, Gao P, Zhao H, Wang Y, Timko MP, Wang B, Han S. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:1-10. [PMID: 28527333 DOI: 10.1016/j.jplph.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco.
Collapse
Affiliation(s)
- Yuping Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China.
| | - Che Yi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wenzheng Li
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Yuhui Chai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lingling Fei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 2017; 18:448. [PMID: 28625162 PMCID: PMC5474855 DOI: 10.1186/s12864-017-3791-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tobacco (Nicotiana tabacum) is an important plant model system that has played a key role in the early development of molecular plant biology. The tobacco genome is large and its characterisation challenging because it is an allotetraploid, likely arising from hybridisation between diploid N. sylvestris and N. tomentosiformis ancestors. A draft assembly was recently published for N. tabacum, but because of the aforementioned genome complexities it was of limited utility due to a high level of fragmentation. RESULTS Here we report an improved tobacco genome assembly, which, aided by the application of optical mapping, achieves an N50 size of 2.17 Mb and enables anchoring of 64% of the genome to pseudomolecules; a significant increase from the previous value of 19%. We use this assembly to identify two homeologous genes that explain the differentiation of the burley tobacco market class, with potential for greater understanding of Nitrogen Utilization Efficiency and Nitrogen Use Efficiency in plants; an important trait for future sustainability of agricultural production. CONCLUSIONS Development of an improved genome assembly for N. tabacum enables what we believe to be the first successful map-based gene discovery for the species, and demonstrates the value of an improved assembly for future research in this model and commercially-important species.
Collapse
Affiliation(s)
- K. D. Edwards
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | | | - K. Drake-Stowe
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | - M. Humphry
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - A. D. Evans
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - A. Bombarely
- Boyce Thompson Institute, Ithaca, NY USA
- Present address Department of Horticulture, Virginia Tech, Blacksburg, VA USA
| | - F. Allen
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - R. Hurst
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - B. White
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - S. P. Kernodle
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | - J. R. Bromley
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | | | - R. S. Lewis
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | | |
Collapse
|
13
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
14
|
Fasano C, Diretto G, Aversano R, D'Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. THE NEW PHYTOLOGIST 2016; 210:1382-94. [PMID: 26915816 DOI: 10.1111/nph.13878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/06/2015] [Indexed: 05/19/2023]
Abstract
Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species.
Collapse
Affiliation(s)
- Carlo Fasano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura (CRA-ORT), via dei Cavalleggeri 25, Pontecagnano, Salerno, 84098, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
15
|
A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1. PLoS Genet 2016; 12:e1006060. [PMID: 27177036 PMCID: PMC4866766 DOI: 10.1371/journal.pgen.1006060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/26/2016] [Indexed: 11/18/2022] Open
Abstract
Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures-openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores-the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them.
Collapse
|
16
|
Bozsó Z, Ott PG, Kámán-Tóth E, Bognár GF, Pogány M, Szatmári Á. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:251. [PMID: 27014286 PMCID: PMC4779890 DOI: 10.3389/fpls.2016.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 05/18/2023]
Abstract
In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were also observable. Genes specifically affected by virulent P. tabaci belonged to various previously identified signaling routes, suggesting that compatible pathogens may modulate diverse signaling pathways of PTI to overcome plant defense.
Collapse
|
17
|
Gursinsky T, Pirovano W, Gambino G, Friedrich S, Behrens SE, Pantaleo V. Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control. PLANT PHYSIOLOGY 2015; 168:938-52. [PMID: 26015446 PMCID: PMC4741319 DOI: 10.1104/pp.15.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
The plant ARGONAUTE1 protein (AGO1) is a central functional component of the posttranscriptional regulation of gene expression and the RNA silencing-based antiviral defense. By genomic and molecular approaches, we here reveal the presence of two homeologs of the AGO1-like gene in Nicotiana benthamiana, NbAGO1-1H and NbAGO1-1L. Both homeologs retain the capacity to transcribe messenger RNAs (mRNAs), which mainly differ in one 18-nucleotide insertion/deletion (indel). The indel does not modify the frame of the open reading frame, and it is located eight nucleotides upstream of the target site of a microRNA, miR168, which is an important modulator of AGO1 expression. We demonstrate that there is a differential accumulation of the two NbAGO1-1 homeolog mRNAs at conditions where miR168 is up-regulated, such as during a tombusvirus infection. The data reported suggest that the indel affects the miR168-guided regulation of NbAGO1 mRNA. The two AGO1 homeologs show full functionality in reconstituted, catalytically active RNA-induced silencing complexes following the incorporation of small interfering RNAs. Virus-induced gene silencing experiments suggest a specific involvement of the NbAGO1 homeologs in symptom development. The results provide an example of the diversity of microRNA target regions in NbAGO1 homeolog genes, which has important implications for improving resilience measures of the plant during viral infections.
Collapse
Affiliation(s)
- Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Walter Pirovano
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Giorgio Gambino
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Vitantonio Pantaleo
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| |
Collapse
|
18
|
Tan FQ, Tu H, Liang WJ, Long JM, Wu XM, Zhang HY, Guo WW. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC PLANT BIOLOGY 2015; 15:89. [PMID: 25848687 PMCID: PMC4374211 DOI: 10.1186/s12870-015-0450-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock. RESULTS Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation. CONCLUSION Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.
Collapse
Affiliation(s)
- Feng-Quan Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hong Tu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wu-Jun Liang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hong-Yan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
19
|
Strickler SR, Bombarely A, Munkvold JD, York T, Menda N, Martin GB, Mueller LA. Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ 2015; 3:e793. [PMID: 25780758 PMCID: PMC4358695 DOI: 10.7717/peerj.793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 02/04/2015] [Indexed: 01/27/2023] Open
Abstract
Background. Studies of ancestry are difficult in the tomato because it crosses with many wild relatives and species in the tomato clade that have diverged very recently. As a result, the phylogeny in relation to its closest relatives remains uncertain. By using the coding sequence from Solanum lycopersicum, S. galapagense, S. pimpinellifolium, S. corneliomuelleri, and S. tuberosum and the genomic sequence from S. lycopersicum ‘Heinz’, an heirloom line, S. lycopersicum ‘Yellow Pear’, and two of cultivated tomato’s closest relatives, S. galapagense and S. pimpinellifolium, we have aimed to resolve the phylogenies of these closely related species as well as identify phylogenetic discordance in the reference cultivated tomato. Results. Divergence date estimates suggest that the divergence of S. lycopersicum, S. galapagense, and S. pimpinellifolium happened less than 0.5 MYA. Phylogenies based on 8,857 coding sequences support grouping of S. lycopersicum and S. galapagense, although two secondary trees are also highly represented. A total of 25 genes in our analysis had sites with evidence of positive selection along the S. lycopersicum lineage. Whole genome phylogenies showed that while incongruence is prevalent in genomic comparisons between these genotypes, likely as a result of introgression and incomplete lineage sorting, a primary phylogenetic history was strongly supported. Conclusions. Based on analysis of these genotypes, S. galapagense appears to be closely related to S. lycopersicum, suggesting they had a common ancestor prior to the arrival of an S. galapagense ancestor to the Galápagos Islands, but after divergence of the sequenced S. pimpinellifolium. Genes showing selection along the S. lycopersicum lineage may be important in domestication or selection occurring post-domestication. Further analysis of intraspecific data in these species will help to establish the evolutionary history of cultivated tomato. The use of an heirloom line is helpful in deducing true phylogenetic information of S. lycopersicum and identifying regions of introgression from wild species.
Collapse
Affiliation(s)
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University , Blacksburg, VA , USA
| | | | - Thomas York
- Boyce Thompson Institute for Plant Research , Ithaca, NY , USA
| | - Naama Menda
- Boyce Thompson Institute for Plant Research , Ithaca, NY , USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research , Ithaca, NY , USA ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University , Ithaca, NY , USA
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research , Ithaca, NY , USA
| |
Collapse
|
20
|
Buggs RJA, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE. The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0354. [PMID: 24958927 DOI: 10.1098/rstb.2013.0354] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allopolyploidization (hybridization and whole-genome duplication) is a common phenomenon in plant evolution with immediate saltational effects on genome structure and gene expression. New technologies have allowed rapid progress over the past decade in our understanding of the consequences of allopolyploidy. A major question, raised by early pioneer of this field Leslie Gottlieb, concerned the extent to which gene expression differences among duplicate genes present in an allopolyploid are a legacy of expression differences that were already present in the progenitor diploid species. Addressing this question necessitates phylogenetically well-understood natural study systems, appropriate technology, availability of genomic resources and a suitable analytical framework, including a sufficiently detailed and generally accepted terminology. Here, we review these requirements and illustrate their application to a natural study system that Gottlieb worked on and recommended for this purpose: recent allopolyploids of Tragopogon (Asteraceae). We reanalyse recent data from this system within the conceptual framework of parental legacies on duplicate gene expression in allopolyploids. On a broader level, we highlight the intellectual connection between Gottlieb's phrasing of this issue and the more contemporary framework of cis- versus trans-regulation of duplicate gene expression in allopolyploid plants.
Collapse
Affiliation(s)
- Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011, USA
| | - Jeffrey J Doyle
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
21
|
Wang X, Bennetzen JL. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics 2015; 290:11-21. [PMID: 25582664 DOI: 10.1007/s00438-015-0989-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
Abstract
Nicotiana, a member of the Solanaceae family, is one of the most important research model plants, and of high agricultural and economic value worldwide. To better understand the substantial and rapid research progress with Nicotiana in recent years, its genomics, genetics, and nicotine gene studies are summarized, with useful web links. Several important genetic maps, including a high-density map of N. tabacum consisting of ~2,000 markers published in 2012, provide tools for genetics research. Four whole genome sequences are from allotetraploid species, including N. benthamiana in 2012, and three N. tabacum cultivars (TN90, K326, and BX) in 2014. Three whole genome sequences are from diploids, including progenitors N. sylvestris and N. tomentosiformis in 2013 and N. otophora in 2014. These and additional studies provide numerous insights into genome evolution after polyploidization, including changes in gene composition and transcriptome expression in N. tabacum. The major genes involved in the nicotine biosynthetic pathway have been identified and the genetic basis of the differences in nicotine levels among Nicotiana species has been revealed. In addition, other progress on chloroplast, mitochondrial, and NCBI-registered projects on Nicotiana are discussed. The challenges and prospects for genomic, genetic and application research are addressed. Hence, this review provides important resources and guidance for current and future research and application in Nicotiana.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, People's Republic of China,
| | | |
Collapse
|
22
|
Sablok G, Fu Y, Bobbio V, Laura M, Rotino GL, Bagnaresi P, Allavena A, Velikova V, Viola R, Loreto F, Li M, Varotto C. Fuelling genetic and metabolic exploration of C 3 bioenergy crops through the first reference transcriptome of Arundo donax L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12. [PMCID: PMC4285118 DOI: 10.1111/pbi.12159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of inexpensive and highly productive biomass sources of biofuel is a priority in global climate change biology. Arundo donax, also known as the giant reed, is recognized as one of the most promising nonfood bioenergy crops in Europe. Despite its relevance, to date no genomic resources are available to support the characterization of the developmental, adaptive and metabolic traits underlying the high productivity of this nonmodel species. We hereby present the first report on the de novo assembly of bud, culm, leaf and root transcriptomes of A. donax, which can be accessed through a customized BLAST server (http://ecogenomics.fmach.it/arundo/) for mining and exploring the genetic potential of this species. Based on functional annotation and homology comparison to 19 prospective biofuel Poaceae species, we provide the first genomic view of this so far unexplored crop and indicate the model species with highest potential for comparative genomics approaches. The analysis of the transcriptome reveals strong differences in the enrichment of the Gene Ontology categories and the relative expression among different organs, which can guide future efforts for functional genomics or genetic improvement of A. donax. A set of homologs to key genes involved in lignin, cellulose, starch, lipid metabolism and in the domestication of other crops is discussed to provide a platform for possible enhancement of productivity and saccharification efficiency in A. donax.
Collapse
Affiliation(s)
- Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Yuan Fu
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Valentina Bobbio
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di GenovaGenova, Italy
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Marina Laura
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Giuseppe L Rotino
- Unità di Ricerca per l'Orticoltura, Consiglio per la Ricerca e la Sperimentazione in AgricolturaMontanaso Lombardo, LO, Italy
| | - Paolo Bagnaresi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Genomics Research CentreFiorenzuola D'Arda, PC, Italy
| | - Andrea Allavena
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- Bulgarian Academy of Sciences, Institute of Plant Physiology and GeneticsSofia, Bulgaria
| | - Roberto Viola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari (DISBA), Consiglio Nazionale delle Ricerche (CNR)Roma, Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- * Correspondence (fax +39 0461 650 956; email )
| |
Collapse
|
23
|
Bombarely A, Coate JE, Doyle JJ. Mining transcriptomic data to study the origins and evolution of a plant allopolyploid complex. PeerJ 2014; 2:e391. [PMID: 24883252 PMCID: PMC4034613 DOI: 10.7717/peerj.391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022] Open
Abstract
Allopolyploidy combines two progenitor genomes in the same nucleus. It is a common speciation process, especially in plants. Deciphering the origins of polyploid species is a complex problem due to, among other things, extinct progenitors, multiple origins, gene flow between different polyploid populations, and loss of parental contributions through gene or chromosome loss. Among the perennial species of Glycine, the plant genus that includes the cultivated soybean (G. max), are eight allopolyploid species, three of which are studied here. Previous crossing studies and molecular systematic results from two nuclear gene sequences led to hypotheses of origin for these species from among extant diploid species. We use several phylogenetic and population genomics approaches to clarify the origins of the genomes of three of these allopolyploid species using single nucleotide polymorphism data and a guided transcriptome assembly. The results support the hypothesis that all three polyploid species are fixed hybrids combining the genomes of the two putative parents hypothesized on the basis of previous work. Based on mapping to the soybean reference genome, there appear to be no large regions for which one homoeologous contribution is missing. Phylogenetic analyses of 27 selected transcripts using a coalescent approach also are consistent with multiple origins for these allopolyploid species, and suggest that origins occurred within the last several hundred thousand years.
Collapse
Affiliation(s)
| | - Jeremy E Coate
- Department of Biology, Reed College , Portland, OR , USA
| | - Jeff J Doyle
- Department of Plant Biology, Cornell University , Ithaca, NY , USA
| |
Collapse
|
24
|
Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 2014; 5:3833. [PMID: 24807620 PMCID: PMC4024737 DOI: 10.1038/ncomms4833] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other Solanaceae species. We identify over 90,000 gene models and determine the ancestral origin of tobacco mosaic virus and potyvirus disease resistance in tobacco. We anticipate that the draft genomes will strengthen the use of N. tabacum as a versatile model organism for functional genomics and biotechnology applications.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - James N.D. Battey
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Adrian Willig
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
- Present address: 25b Quai Charles-Page, CH-1205 Genève, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| |
Collapse
|
25
|
Lashermes P, Combes MC, Hueber Y, Severac D, Dereeper A. Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:674-85. [PMID: 24628823 DOI: 10.1111/tpj.12505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 05/27/2023]
Abstract
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next-generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single-nucleotide polymorphisms detected using RNA-seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.
Collapse
Affiliation(s)
- Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
26
|
An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJCB, Chen S. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes. PLoS One 2014; 9:e85991. [PMID: 24727655 PMCID: PMC3984080 DOI: 10.1371/journal.pone.0085991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN) metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.
Collapse
Affiliation(s)
- Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
| | - Jie Fan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
| | - Jun Li
- Analysis and Testing Center, Jiangsu University, Jiangsu, China
| | - Qing X. Li
- Proteomics Core Facility, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Manoa, Hawaii, United States of America
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
- * E-mail: (KL); (SC)
| | - Wenli Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
| | - Feng Wen
- Guangxi Sub-tropical Crop Research Institute, Nanning, China
| | | | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
- * E-mail: (KL); (SC)
| |
Collapse
|
27
|
Nakasugi K, Crowhurst R, Bally J, Waterhouse P. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS One 2014; 9:e91776. [PMID: 24614631 PMCID: PMC3948916 DOI: 10.1371/journal.pone.0091776] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. RESULTS In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. CONCLUSIONS To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the 'best' output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.
Collapse
Affiliation(s)
- Kenlee Nakasugi
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Ross Crowhurst
- Mount Albert Research Centre, Plant & Food Research, Auckland, New Zealand
| | - Julia Bally
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Peter Waterhouse
- School of Biological Sciences, University of Sydney, Sydney, Australia
- The Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
28
|
Mapping epistasis and environment×QTX interaction based on four -omics genotypes for the detected QTX loci controlling complex traits in tobacco. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. THE NEW PHYTOLOGIST 2013; 200:251-260. [PMID: 23790161 DOI: 10.1111/nph.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout the evolutionary history of plants and led to diversification and plant ecological adaptation. Functional plasticity of duplicate genes is believed to play a major role in the environmental adaptation of polyploids. In this context, we characterized genome-wide homoeologous gene expression in Coffea arabica, a recent allopolyploid combining two subgenomes that derive from two closely related diploid species, and investigated its variation in response to changing environment. The transcriptome of leaves of C. arabica cultivated at different growing temperatures suitable for one or the other parental species was examined using RNA-sequencing. The relative contribution of homoeologs to gene expression was estimated for 9959 and 10,628 genes in warm and cold conditions, respectively. Whatever the growing conditions, 65% of the genes showed equivalent levels of homoeologous gene expression. In 92% of the genes, relative homoeologous gene expression varied < 10% between growing temperatures. The subgenome contributions to the transcriptome appeared to be only marginally altered by the different conditions (involving intertwined regulations of homeologs) suggesting that C. arabica's ability to tolerate a broader range of growing temperatures than its diploid parents does not result from differential use of homoeologs.
Collapse
Affiliation(s)
- Marie-Christine Combes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Alexis Dereeper
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cédex 5, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| |
Collapse
|
30
|
Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 2013; 14:R60. [PMID: 23773524 PMCID: PMC3707018 DOI: 10.1186/gb-2013-14-6-r60] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. RESULTS Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. CONCLUSIONS The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - James ND Battey
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| |
Collapse
|
31
|
Pujar A, Menda N, Bombarely A, Edwards JD, Strickler SR, Mueller LA. From manual curation to visualization of gene families and networks across Solanaceae plant species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat028. [PMID: 23681907 PMCID: PMC3655285 DOI: 10.1093/database/bat028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL:http://solgenomics.net/
Collapse
Affiliation(s)
- Anuradha Pujar
- Boyce Thompson Institute for Plant Research, 533, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
32
|
Nakasugi K, Crowhurst RN, Bally J, Wood CC, Hellens RP, Waterhouse PM. De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 2013; 8:e59534. [PMID: 23555698 PMCID: PMC3610648 DOI: 10.1371/journal.pone.0059534] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. METHODOLOGY/RESULTS RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of 16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. CONCLUSIONS The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant.
Collapse
Affiliation(s)
- Kenlee Nakasugi
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Ross N. Crowhurst
- Mount Albert Research Centre, Plant and Food Research, Auckland, New Zealand
| | - Julia Bally
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Craig C. Wood
- Commonwealth Scientific and Industrial Research Organisation–Plant Industry, Canberra, Australia
| | - Roger P. Hellens
- Mount Albert Research Centre, Plant and Food Research, Auckland, New Zealand
| | | |
Collapse
|